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Process Capability Analysis via Continuous
Ranked Probability Score
Liangxing Shi,a*† Hongye Maa and Dennis K. J. Linb
Process capability analysis is an important aspect of quality control. Various process capability indices are proposed when
the distribution is normal. For non-normal cases, percentile and yield-based indices have been introduced. These two
methods use partial features of a process distribution, such as key percentiles and the proportion of non-conforming
(PNC) to estimate the process capability. However, these local features may not reflect the uniformity of a process
appropriately when the distribution is non-normal. In this paper, continuous ranked probability score (CRPS) is introduced
to process capability analysis and a CRPS-based approach is proposed. This method can assess the dispersion of process
variation across the overall distribution and is applicable to any continuous distribution. An example and simulations show
that CRPS-based indices are more stable and accurate indicators of process capability than the existing indices in reflecting
the degree of process fluctuation. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

P
rocess capability analysis plays an important role in quality control and continuous improvement. To manufacture high quality
products with 1ow cost, it is essential to ensure the process capability. Process capability analysis is widely used in factories to
guarantee the uniformity of the process. It is also an important factor considered by manufacturers to choose suppliers.

Process capability indices (PCIs) are used to reflect process capability. Indices such as Cp and Cpk
1 are widely applied. Cp measures

the potential process capability, and Cpk also takes into account the location parameter of the process distribution. However, the
indices Cp and Cpk are based on the assumption of normality. These indices may not be appropriate when the process distribution
is non-normal.

Various PCIs for non-normal distribution have been proposed. However, the methods developed to date have a very limited focus
on the extremes of the distribution and are not sensitive to major variations in the bulk of the distribution. A percentile-based method
proposed by Clements2 calculates an index of process variation based on the 0.135, 50 and 99.865 percentiles. This method is widely
applied in process capability analysis when the distribution is non-normal. Pearn et al.3 studied the second and third generation PCIs.
Chen et al.,4 Tong et al.5 and Peng6 gave a unified form of PCIs named Cp(u, v). Yang et al.7 modified the natural tolerance and
proposed indices based on the highest density interval. These methods are proposed based on the percentile-based method and also
use percentiles to reflect the process capability, so we mainly study the percentile-based method. While percentile-based indices are
not sensitive to the changes of the points on the process distribution except the 0.135, 50 and 99.865 percentiles, and therefore give
an identical process capability evaluation to production lines with very different probability of producing ideal or extremely deviant
part sizes. Therefore this method does not accurately evaluate the potential capability of non-normal distributions. Yield-based
indices have also been studied by many researchers (see Castagliola8, Chen9, Chao et al.,10 Abbasi et al.11). But this approach focuses
exclusively on the proportion of products that do not conform to the defined specification limits, and is insensitive to variations in the
distribution shape within the specification interval.

Methods such as data transformation are also suggested (see Box et al.,12 Somerville et al.13). However, it is often difficult or
impossible to find a proper transformation function,14 and the relationship between the transformed data and the original
specification can be unclear.15,16

In this paper, PCIs based on continuous ranked probability score (CRPS) are proposed. CRPS is widely used in probabilistic
forecasting field (see Hersbach,17 Gneiting et al.18). CRPS is an effective scoring rule as Nau19 proved that the outcomes given by CRPS
are meaningfully ordered. When using CRPS to evaluate the capability, only a cumulative distribution function (CDF) needs to be
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known, and CRPS can be applied to any data distribution. This scoring rule considers all the points on the distribution, so it gives a
more complete indication of process quality. CRPS can measure the distance from the distribution to its center, so it can be used
to reflect process variation. Based on this, CRPS-based indices can effectively evaluate the process capability.

The paper is organized as follows: commonly used PCIs under non-normal distributions are illustrated and discussed in Section 2.
Then CRPS-based PCIs are proposed in Section 3. In Sections 4 and 5, simulations and an example are given to illustrate the
effectiveness of the CRPS-based method. The discussion and conclusions are made in Section 6 and 7.
2. Methods for assessing process capability

2.1. Case of normal distribution

Process capability is used to reflect whether the process fluctuation meets customers’ requirements. It can be obtained through
comparing the specification spread with the actual process spread. If the process spread is within the specification interval, the
process capability is sufficient. Two process capability evaluation indices that are commonly used are Cp and Cpk. The Cp is defined
as the ratio of the product tolerance and the process range, as

Cp ¼ USL� LSL

6σp
(1)

where USL and LSL are upper and lower specification limits, respectively. σp is standard deviation of the process distribution. Cpk is
used to judge whether the process mean value coincides with the specification center. It can be simply defined as

Cpk ¼ min Cpu; Cpl

� �
(2)

where Cpu ¼ USL�μ
3σp

and Cpl ¼ μ�LSL
3σp

. If Cpk< Cp, it indicates that the process is biased toward either the USL or LSL.

This method can effectively measure the process capability when the process is normally distributed. However, when the process
distribution is non-normal, these indices may be misleading.
2.2. Case of non-normal distribution

With respect to the process capability of non-normal distribution, various indices have been proposed. Clements2 proposed
percentile-based indices to evaluate the process capability under non-normal distribution, defined as

Cp pð Þ ¼ USL� LSL

P99:865 � P0:135
(3)

Cpk pð Þ ¼ min Cpu pð Þ;Cpl pð Þ
� � ¼ min

USL�m

P99:865 �m
;
m� LSL

m� P0:135

� �
(4)

where Pα stands for the α percentile of the fitting distribution and m is the median value of the process. Wu et al.20 indicated that this
method may be inaccurate when the distribution is extremely skewed.

Castagliola8 and Chen,9 for example, studied the relationship between PCIs and proportion of non-conforming (PNC). Yield-based
indices are also proposed to evaluate the capability of non-normal process, defined as

Cp yð Þ ¼ Φ�1 0:5þ 0:5 F USLð Þ-F LSLð Þ½ �ð Þ
3

(5)

Cpk yð Þ ¼ min Cpu yð Þ; Cpl yð Þ
� � ¼ min

Φ�1 F USLð Þ½ �
3

;
Φ�1 1-F LSLð Þ½ �

3

� �
(6)

where Φ is the CDF of standard normal distribution and F represents the CDF of the distribution.
Percentile-based indices are commonly applied. However, these indices may be misleading because they only consider the

percentiles, ignoring other features of the distribution. When the processes that need to be evaluated are distributed differently,
but have the same 0.135 percentile, median value and 99.865 percentile, the method gives the same evaluation result despite the
differences in process capability that these differing distributions represent. Furthermore, accurately identifying the 0.135 percentile
of the distribution requires an extremely large amount of data. Thus, this method may not give exact evaluation results.

Yield-based indices can effectively reflect the PNC, while they fail to measure the dispersion degree of the process within the
specification limits. Processes distributed differently may also have the same PNC. Figure 1 shows probability density functions (PDFs)
and CDFs of normal and uniform distributions which have the same PNC. Yield-based indices give both the normally and uniformly
distributed data the same evaluation result, even though the two distributions show processes with very different quality (the
products from a normally distributed manufacturing process are far more likely to function perfectly, while products from the process
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2823–2834



Figure 1. Distributions with the same PNC: (a) PDF and (b) CDF
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with the uniform distribution are far more likely to be borderline-defective). Therefore, the yield-based method may not be
appropriate when the process is non-normally distributed.

These percentile-based and yield-based methods consider specific features of the process distribution, but ignore the impact of
the large amount of distribution points on the process capability. In the estimation of the process dispersion, all the points, but
not some certain points on the process distribution should be concerned. To address this issue, a CRPS evaluation method will be
introduced. Nau19 proved CRPS is meaningful in ranking the distributions, so CRPS is used to measure the dispersion degree of the
process distribution and CRPS-based process evaluation indices will be proposed in the next section.
2
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3. Process capability analysis via CRPS

3.1. Continuous ranked probability score

CRPS, short for continuous rankedprobability score, is an ensemble-specific assessment tool used to evaluate the forecastingperformanceof
the ensemble. CRPS has drawnmuch attention in recent research and is well applied in probabilistic forecasting field (see Hersbach,17 Pinson
et al.,21 Thorarinsdottir et al.22). CRPS can access sharpness aswell as accuracy of a forecasting process simultaneously.23 It can be obtained by
computing the integral of the square difference between two CDFs of deterministic and probabilistic forecasts.24,25 CRPS is defined as:

S F; yð Þ ¼ ∫
þ∞

�∞ F tð Þ � H t � yð Þð Þ
2

dt (7)

where H(t-y) is the indicative function. If t< y, the function value is 0; otherwise, the function value is 1. The schematic diagram of CRPS
can be seen in Figure 2. The CRPS can be presented as the shaded area between CDF and y.

CRPS generalizes the absolute error,26,27 and it can be used as a metric to compare the deterministic and probabilistic forecasts
directly. CRPS is also negative oriented: the smaller the value of CRPS is, the more accurate the prediction will be. When the forecast
is deterministic, that is F(t) =H(t� y), CRPS reaches the smallest value 0.

According to Equation (7), CRPS can also be expressed as

S F; yð Þ ¼ ∫
y

�∞ F tð Þð Þ2dt þ ∫
þ∞

y F tð Þ � 1ð Þ
2

dt ¼ Sl F; yð Þ þ Su F; yð Þ (8)

where Sl(F, y) is the CRPS value below y and Su(F, y) is the CRPS value beyond y.
Gneiting et al.18 pointed out that when FN represents CDF of normal distribution with mean μ and variance σ2, the formula of CRPS

is

S FN μ; σ2
� �

; y
� � ¼ σ

y � μ
σ

� 	
2Φ

y � μ
σ

� 	
� 1

� 	
þ 2ϕ

y � μ
σ

� 	
� 1ffiffiffi

π
p

� �
(9)

where ϕ represents PDF of standard normal distribution.
Nau19 studied the relationship between CRPS and distance measures on classes of probability distributions. With respect to any

distance d which is symmetric and satisfies the triangle inequality, it is shown that:

S F1; yð Þ≥S F2; yð Þ⇔d f 1; yð Þ≥d f 2; yð Þ (10)

where f1 and f2 represent two PDFs while F1 and F2 are corresponding CDFs. And when f1 = f2, the equality holds. CRPS can effectively
measure the distance between a distribution function and a certain point.17 When F1 and F2 represent different CDFs of process
distributions, y is the distribution center, (10) still holds. Therefore, CRPS is able to reflect the dispersion degree of the process distribution.
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2823–2834



Figure 3. The expression of specification limits and process spread in capability indices.
Note: UPLi and LPLi (i = 1, 2) represent the upper and lower process limits; T is the width of the tolerance

Figure 2. Schematic diagram of CRPS
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A smaller CRPS value indicates amore capable process, while a larger CRPS value indicates a worse performance. As CRPS can be applied to
any continuous distribution, it can be used in process capability analysis to reflect theprocess spread of normal or non-normal distributions.
3.2. The proposed CRPS-based indices

PCI is defined as the ratio of the specification spread to the process spread. If F is set as the CDF of the process distribution, process
spread can be represented by S(F,m) using the CRPS method, whether the process distribution is normal or not. Median value m is
always regarded as the center of a non-normal distribution.28 Moreover, for any type of continuous distribution, the distance
computed by CRPS from the distribution to the median value is the smallest, compared with distances from the distribution to the
mean or other indicators of central tendency (see Appendix A). So S(F,m) is able to reflect the dispersion of the process distribution.

To evaluate the process capability, the process spread is usually compared with the specification. The expression of the
specification and the process range should keep consistent. Figure 3 presents the expressions of specification limits and process
range in different indices. It shows that when the process is one dimensional, the PCIs are obtained by comparing the widths of
the specification and the process spread; and in multivariate cases, such as two variables, the PCI is the ratio of the areas between
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2823–2834
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the process spread and the specification.29,30 If we want to construct CRPS-based indices, both of the process spread and the
specification should be expressed by CRPS.

To obtain the CRPS form of the specification, we build a specification function which follows the form of normal distribution with
mean μs ¼ USLþLSL

2 and standard deviation σs ¼ USL�LSL
6 . Then S(FN(μs, σs),μs) is used to reflect the specification range. Then CRPS-based

Cp(s) is proposed to measure the potential capability of the process, defined as

Cp sð Þ ¼ S FN μs; σsð Þ;μsð Þ
S F;mð Þ : (11)

CRPS-based Cpk(s) is also proposed. The process distribution is divided by m value into two deviations, the upper-sided distribution
and the lower-sided one. When the process capability for upper-sided specification is considered, the dispersion degree of the upper-
sided distribution is expressed as Su(F,m) by CRPS. The corresponding specification interval is [m,USL]. We also define a function for
the upper-sided specification which follows normal distribution with mean μu =m and standard deviation σu= (USL�m)/3. Then
upper-sided specification range can be expressed by CRPS as S(FN(m, σu),m)/2. So PCI for the upper-sided specification is

Cpu sð Þ ¼ S FN m; σuð Þ;mð Þ
2Su F;mð Þ : (12)

Similarly, PCI for the lower-sided specification is

Cpl sð Þ ¼ S FN m; σlð Þ;mð Þ
2Sl F;mð Þ (13)

where Sl(F,m) reflects the range of the lower distribution and σl= (m� LSL)/3. So PCI for the two-sided specification is

Cpk sð Þ ¼ min Cpu sð Þ; Cpl sð Þ
� �

: (14)

When the process distribution is normal with mean μ and standard deviation σp, we have

Cp sð Þ ¼ Cp (15)

and

Cpk sð Þ ¼ Cpk: (16)

Namely, Cp and Cpk are special cases of CRPS-based indices (The proof can be seen in Appendix B).
CRPS-based indices work equally well for any continuous distribution, whether it is normal or not. In the following sections, we

apply CRPS to non-normal distributions. As Wang et al.31 proved, S(Fe, y) is an asymptotic unbiased estimator of S(F, y), where Fe
represents empirical CDF. Therefore, we use empirical CDF to curve the unknown distributions. The detailed calculations of S(Fe,m)
can be seen in Appendix C. The calculation process is complex when done manually, but with the help of computers, it is very easy.
2
8
2
7

4. Simulations

To illustrate the CRPS-based method outperforms percentile-based method and yield-based method, respectively, we simulate three
scenarios:

Scenario 1: different process distributions with the same mean and variance;
Scenario 2: different process distributions with the same P0.135, P50 and P99.865;
Scenario 3: different process distributions with the same PNC.

Scenario 1 is presented to illustrate how the CRPS-based method responds to changes of skewness and kurtosis of the distribution.
Scenario 2 and Scenario 3 are special cases that hold percentiles or PNC equal and show that CRPS reflects quality variations that
others cannot detect.

The proposed indices are applied for each scenario to estimate the process capability. The results are compared with the existing
methods which include percentile and yield-based methods. In each scenario, every simulation runs for 10 000 times and the
evaluation result is averaged. For the sake of data fitting, any evaluation result greater than 4 is set as 4.

1 Scenario 1: distributions with the same mean and variance

The Pearson distribution family is used in the simulation part, because it consists of the most commonly used distributions, such as
normal, Gamma, t, F, Beta and log-normal distributions. Pearson distributions have four parameters, mean (μ), standard deviation (σ),
skewness (α3) and kurtosis (α4). In Table I and Table II, 10 kinds of Pearson distributions with the same mean and standard deviation
(μ=3, σ = 1) are generated. The specification limits are [0, 6], and the target value is 3. For all these cases, both Cp and Cpk equal to 1.
Evaluation results given by CRPS, percentile and yield-based indices are shown in Table I and Table II as sample size n, skewness and
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2823–2834



Table II. Cpk(s), Cpk(p) and Cpk(y) of Pearson distributions

N α3 α4
n= 10 n= 50 n=100

n=1 000 000 (known
parameter case)

Cp(s) Cp(p) Cp(y) Cp(s) Cp(p) Cp(y) Cp(s) Cp(p) Cp(y) Cp(s) Cp(p) Cp(y)

(a) 0 3 1.19 2.24 3.95 1.04 1.38 3.77 1.02 1.23 3.58 1.00 1.00 1.00
(b) 0.5 3 1.15 2.07 3.85 0.98 1.23 3.42 0.96 1.09 2.93 0.94 0.89 0.89
(c) 1 3 1.05 1.78 4.00 0.85 1.17 4.00 0.82 1.10 4.00 0.80 1.03 4.00
(d) 0 4 1.29 2.33 3.87 1.11 1.33 3.44 1.09 1.13 3.01 1.07 0.85 0.89
(e) 0.5 4 1.24 2.20 3.77 1.07 1.20 3.04 1.04 1.02 2.41 1.02 0.75 0.83
(f) 1 4 1.15 1.96 3.65 0.98 1.10 2.69 0.95 0.95 1.95 0.93 0.76 0.78
(g) 0 6 1.35 2.41 3.83 1.18 1.29 3.21 1.16 1.08 2.68 1.13 0.75 0.85
(h) 0.5 6 1.34 2.31 3.74 1.15 1.20 2.94 1.12 0.99 2.29 1.10 0.68 0.81
(i) 1 6 1.28 2.18 3.65 1.10 1.11 2.60 1.07 0.92 1.87 1.05 0.64 0.77
(j) 1.5 6 1.22 1.97 3.48 1.02 1.01 2.21 1.00 0.86 1.43 0.97 0.64 0.72

Table I. Cp(s), Cp(p) and Cp(y) of Pearson distributions

N α3 α4
n= 10 n= 50 n=100

n=1 000 000(known
parameter case)

Cp(s) Cp(p) Cp(y) Cp(s) Cp(p) Cp(y) Cp(s) Cp(p) Cp(y) Cp(s) Cp(p) Cp(y)

(a) 0 3 1.13 2.08 3.91 1.02 1.36 3.59 1.01 1.21 3.28 1.00 1.00 1.00
(b) 0.5 3 1.11 2.12 3.87 1.00 1.43 3.43 0.99 1.30 2.99 0.98 1.10 0.96
(c) 1 3 1.17 2.29 4.00 0.99 1.70 4.00 0.97 1.62 4.00 0.95 1.53 4.00
(d) 0 4 1.18 2.11 3.76 1.09 1.29 3.02 1.08 1.11 2.35 1.07 0.85 0.89
(e) 0.5 4 1.17 2.12 3.77 1.08 1.31 3.01 1.07 1.14 2.36 1.05 0.89 0.90
(f) 1 4 1.16 2.20 3.66 1.04 1.45 2.74 1.03 1.30 2.02 1.02 1.08 0.86
(g) 0 6 1.25 2.14 3.64 1.15 1.24 2.68 1.14 1.04 1.95 1.13 0.75 0.85
(h) 0.5 6 1.24 2.16 3.67 1.15 1.25 2.70 1.14 1.06 1.97 1.13 0.77 0.86
(i) 1 6 1.23 2.18 3.65 1.13 1.30 2.66 1.12 1.11 1.90 1.10 0.83 0.85
(j) 1.5 6 1.28 2.31 3.51 1.14 1.44 2.24 1.12 1.26 1.50 1.10 0.99 0.81

L. SHI, H. MA AND D. K. J. LIN

2
8
2
8

kurtosis increase. A total of 1 000 000 data sets are also simulated for each distribution as a known parameter case and the results
given by different methods are estimates of their “actual values”.

Table I and Table II show that:

i All of the indices give different evaluation of process quality to these distributions. Even though they have the same mean and
variance, their process capability can be different, and the choice of indicator matters.

ii When the process parameters are unknown, the results given by CRPS-based method are closer to its actual value than that
given by percentile and yield-based method. CRPS-based method is more stable.

iii For the known parameters case, when only skewness increases, the Cp(s) given by CRPS-based method tends to decrease. While
the Cp(p) given by the percentile-based method increases and Cp(y) given by yield-based method has no clear trend; when only
kurtosis increases, the Cp(s) increases, while Cp(p) and Cp(y) decrease. In measuring the process departure, these methods all have
trends of decreasing with the increase of skewness, while only Cpk(s) has the same trend with the change of kurtosis.

2 Scenario 2: distributions with the same P0.135, P50 and P99.865

In this group of simulations, the 0.135, 50 and 99.865 percentiles of the process distribution remain unchanged and the distribution
shape varies. Normal, Pearson, uniform and bimodal distributions are simulated, as shown in Figure 4. The specification limits is
defined as [14, 36], and the target value is 25. A total of 10 000 data points are generated for each distribution. The evaluation results
are shown in Table III.

In this case, for the four distributions are all symmetric, Cp(s) equals to Cpk(s). So it is with the other two methods. Although the shapes of
distributions (a–d) in Table III are quite different, the percentile-basedmethodgives all of thesedistributions the sameevaluation. As is evident
in Figure 4, (b) is themost concentrated distribution while (c) and (d) are not desired ones; this ranking is identical with the evaluation results
given by CRPS-based method. The CRPS-based method is able to identify the fluctuations in different distribution shapes which have the
same 0.135, 50 and 99.865 percentiles, while the percentile-based method gives out the same result, despite obvious differences in quality.

3 Scenario 3: different distributions with the same PNC
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2823–2834



Figure 4. Histograms of distributions with the same P0.135, P50 and P99.865

Table III. Evaluation results of distributions with the same P0.135, P50 and P99.865
N Distribution Cp(s) Cpk(s) Cp(p) Cpk(p) Cp(y) Cpk(y)

(a) N(25, 3.522) 1.04 1.04 1.04 1.04 1.04 1.04
(b) Pearson(25,2.64,0,6) 1.57 1.57 1.04 1.04 1.02 1.02
(c) U (14.4,35.6) 0.49 0.49 1.04 1.04 4.00 4.00
(d)* Bimodal 0.44 0.44 1.04 1.04 1.07 1.07

Note: *This is a symmetrical bimodal distribution generated by two normal distributions, namely, N(20, 22) and N(30, 22).

L. SHI, H. MA AND D. K. J. LIN
Under this scenario, the PNC of the process distribution is fixed. Three kinds of distributions are simulated, which are normal,
uniform and gamma distributions, as is shown in Figure 5. The specification limits are defined as [0.1, 7.5] and the target value is
3.8. A total of 10 000 data points are generated for each distribution. The evaluation results for each method are shown in Table IV.

In Table IV, yield-based indices give both distribution (a) and (b) the same evaluation. While in Figure 5, distribution (b) has more
marginal products and would be worse than (a) if tighter process capability requirements were needed in the future. CRPS-based
indices can correctly identify the capability of normal and uniform distribution. Two skewed distributions (c) and (d) are symmetrical
with respect to the target value. (c) is right skewed and (d) is left skewed. CRPS-based indices correctly identify that (c) and (d) are
skewed in different directions, while yield-based indices fail.

From the evaluation results given in Tables I-IV, it can be concluded that the CRPS-based method is more stable and effective in
reflecting the process fluctuation than others.
2
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5. An example

In this section, we select an example to illustrate the application of CRPS-based indices.
Mahmoud et al.32 provided data on the manufacture of the rotor shaft with a specified diameter between 7.986 and 7.995mm. The

histogram of the distribution is shown in Figure 6. It is clear that the distribution is non-normal. Evaluation results given by different
methods are shown in Table V.

Table V shows the process capability given by CRPS-based indices is smaller than the result given by percentile-based method. In
Figure 6, many data points fall on the left edge of the distribution, but not the distribution center. For that reason, this process
distribution is worse than condensed distributions that have more observations near the median than near the 0.135 percentile of
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2823–2834



Table IV. The evaluation results of distributions with the same PNC

N Distribution CRPS Percentile Yield

Cp(s) Cpu(s) Cpl(s) Cp(p) Cpu(p) Cpl(p) Cp(y) Cpu(y) Cpl(y)

(a) N(3.8,1.425) 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
(b) U(0.065,7.535) 0.46 0.46 0.46 0.99 0.99 0.99 0.87 0.87 0.87
(c) Gamma(2,1) 0.96 1.26 0.51 0.84 0.81 0.97 0.87 0.87 0.87
(d) 7.6-Gamma(2,1) 0.96 0.51 1.26 0.84 0.97 0.81 0.87 0.87 0.87

Figure 6. Histogram of the shaft diameter

Figure 5. Histograms of distributions with the same PNC
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Table V. Evaluation results using different methods

CRPS-based method Cp(s) Cpl(s) Cpu(s)

0.39 0.22 0.66

Percentile-based method Cp(p) Cpl(p) Cpu(p)

0.64 0.60 0.67

Yield-based method Cp(y) Cpl(y) Cpu(y)

0.39 0.30 0.53

L. SHI, H. MA AND D. K. J. LIN
the distribution. So the result given by CRPS-based method is a better reflection of quality than that given by percentile-based
method. Moreover, yield-based method performs almost as well as CRPS-based method in this case.
6. Discussion

While in the application of CRPS-based method, the evaluation result can be affected by the sample size. When the process
distribution is normal, the requirement for the sample size is consistent with that of the traditional method; for non-normal process
distribution, empirical CDF is recommended to fit the sample in this paper. If the sample size is big enough, the empirical CDF can be
smooth, and the result given by CRPS-based method is much accurate; however, if the sample size is limited, the result given by CRPS-
based method can be unreliable.

Furthermore, CRPS can also be used in constructing indices when the process is off target. Additionally, Burdick et al.33 illustrate the
existence of non-normal system measurement system error in factories. CRPS can also be used in measurement system analysis to
measure the variance of measurement system error whose distribution is normal or non-normal.
7. Conclusions

PCIs Cp and Cpk are usually used to evaluate the process capability when the distribution is normal. When the process distribution is
non-normal, Cp and Cpk are often misleading. PCIs under non-normal distribution are proposed using different methods, such as
percentile and yield-based indices. However, these indices only consider certain features of the process distribution and may not
be appropriate to reflect the process capability when the distribution shape changes.

In this paper, a CRPS-based process capability method is proposed. This method is suitable for any continuous distribution. The
proposed CRPS-based method considers the distance between the process distribution and its median value, so it can effectively
reflect the dispersion degree of the process distribution. Particularly, Cp and Cpk are special cases of CRPS-based indices under normal
conditions. A set of simulation analysis and an example are given and comparisons between the CRPS, percentile and yield-based
method are listed. The results show that the CRPS-based method is better than the others in the identification of process fluctuations
and the true degree of consistency in manufacturing or process control.
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Appendix A. Proof of the minimum CRPS value
of a continuous distribution
According to Equation (8), S F; yð Þ ¼ ∫

y

�∞ F tð Þð Þ2dt þ ∫
þ∞

y F tð Þ � 1ð Þ
2

dt. If y moves Δy (Δy>0 and Δy→0), Then

S F; y þ Δyð Þ ¼ ∫
yþΔy

�∞ F tð Þð Þ2dt þ ∫
þ∞

yþΔy F tð Þ � 1ð Þ
2

dt

¼ ∫
y

�∞ F tð Þð Þ2dt þ ∫
þ∞

y F tð Þ � 1ð Þ
2

dt þ ∫
yþΔy

y F tð Þð Þ2dt � ∫
yþΔy

y 1� F tð Þð Þ
2

dt

¼ S F; yð Þ þ ∫
yþΔy

y F tð Þð Þ2 � 1� F tð Þð Þ2
h i

dt

¼ S F; yð Þ þ ∫
yþΔy

y 2F tð Þ � 1½ �dt:

F is an increasing function and F(m) = 0.5. When y+Δy<m, 2F(t)� 1< 0, so ∫
yþΔy

y 2F tð Þ � 1½ �dt < 0 and S(F, y+Δy)< S(F, y); when

y ≥m, 2F(t)� 1 ≥ 0, So ∫
yþΔy

y 2F tð Þ � 1½ �dt > 0 and S(F, y+Δy)> S(F, y).

So it can be proved that S(F, y) first decreases and then increases. When y=m, S(F, y) reaches its minimum value.
Appendix B. Proof of theorem
According to Equation (9), when the process distribution follows N μ; σ2p

� 	
and m coincides with μ, then

Cp sð Þ ¼ S FN μs; σsð Þ;μsð Þ
S FN μ; σp

� �
;μ

� � ¼
σs 2ϕ 0ð Þ � 1ffiffi

π
p

� 	

σp 2ϕ 0ð Þ � 1ffiffi
π

p
� 	 ¼ USL� LSL

6σp

¼ Cp

Cpu sð Þ ¼ S FN m; σuð Þ;mð Þ
2Su FN μ; σp

� �
;μ

� � ¼ S FN m; σuð Þ;mð Þ
S FN μ; σp

� �
;μ

� � ¼
σu 2ϕ 0ð Þ � 1ffiffi

π
p

� 	

σp 2ϕ 0ð Þ � 1ffiffi
π

p
� 	 ¼ USL� μ

3σp

¼ Cpu:

In the same way, Cpl(s) =Cpl. Then Cpk(s) =min{Cpu, Cpl} = Cpk.
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Appendix C. Calculation of CRPS for empirical
CDF
The formula of an empirical CDF is

Fe xð Þ ¼
0 x < x1
i

n
xi≤x < xiþ1

1 x≥xn

8>><
>>:

where n is the sample size and x1, x2, …, xi, …, xn (i= 1, 2, …,n) are ordered samples. m stands for median value. Then the CRPS value
can be calculated by

a. if n is an odd number (n> 1),

S Fe xð Þ;mð Þ ¼ ∑

n�1

2

i¼1
x iþ1ð Þ � x ið Þ
� � i

n

� �2

þ ∑
n�1

i¼
nþ1

2

x iþ1ð Þ � x ið Þ
� �

1� i

n

� �2

Sl Fe xð Þ;mð Þ ¼ ∑

n�1

2

i¼1
x iþ1ð Þ � x ið Þ
� � i

n

� �2

Su Fe xð Þ;mð Þ ¼ ∑
n�1

i¼
nþ1

2

x iþ1ð Þ � x ið Þ
� �

1� i

n

� �2

b. if n is an even number (n> 2),

S Fe xð Þ;mð Þ ¼ ∑

n

2

i¼1
x iþ1ð Þ-x ið Þ
� � i

n

� �2

þ ∑
n-1

i¼
n

2
þ1

x iþ1ð Þ-x ið Þ
� �

1� i

n

� �2

Sl Fe xð Þ;mð Þ ¼ ∑

n

2
-1

i¼1
x iþ1ð Þ � x ið Þ
� � i

n

� �2

þ m� x n

2

� 	
0
@

1
A 1

2

� �2

Su Fe xð Þ;mð Þ ¼ x n

2
þ 1

� 	 �m

0
@

1
A 1

2

� �2

þ ∑
n-1

i¼
n

2
þ1

x iþ1ð Þ-x ið Þ
� �

1� i

n

� �2
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