A note on the construction of blocked two-level designs with general minimum lower order confounding

Shengli Zhao ${ }^{\text {a }}$, Dennis K.J. Lin ${ }^{\text {b }}$, Pengfei Li ${ }^{\text {c,* }}$
a School of Statistics, Qufu Normal University, Qufu 273165, China
${ }^{\text {b }}$ Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
${ }^{\text {c }}$ Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

ARTICLE INFO

Article history:

Received 25 June 2015
Received in revised form 16 November 2015
Accepted 18 December 2015
Available online 4 January 2016

MSC:

primary 62K15
secondary 62K05
Keywords:
Aliased effect-number pattern
Effect hierarchy principle
Minimum lower order confounding
Resolution
Yates order

Abstract

Blocked designs are useful in experiments. The general minimum lower order confounding (GMC) is an elaborate criterion which was proposed for selecting optimal fractional factorial designs. Zhang and Mukerjee (2009b) extended the GMC criterion to the B-GMC criterion for selecting a $2^{n-m}: 2^{r}$ design, where $2^{n-m}: 2^{r}$ denotes a two-level regular blocked design with $N=2^{n-m}$ runs, n treatment factors and 2^{r} blocks. This paper gives the first construction method of B-GMC $2^{n-m}: 2^{r}$ designs with $5 N / 16+1 \leq n \leq N / 2$. The results indicate that under isomorphism, with suitable choice of the blocking factors, each B-GMC blocked design has a common specific structure. Examples are included to illustrate the developed theory.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fractional factorial designs are widely used in scientific investigations and industrial experiments. When the experimental units are nonhomogeneous, blocking is an effective method for reducing systematic variation. Selecting a good blocked fractional factorial design is a subject of considerable important.

Zhang et al. (2008) introduced the aliased effect-number pattern (AENP) to characterize the two-level regular designs. Based on AENP, they proposed the general minimum lower order confounding (GMC) criterion for assessing the goodness of two-level designs. When the experimenter has some prior information concerning which factors may have much larger effects on the response, the GMC criterion can be used to select most appropriate designs. Zhang and Mukerjee (2009a) proposed the GMC criterion for s-level designs and derived explicit formulae connecting the key terms of the AENPs of the design and its complementary set. Under the GMC criterion, Cheng and Zhang (2010), Zhang and Cheng (2010), Chen and Liu (2011) and Li et al. (2011) completed the construction of the optimal 2^{n-m} designs with $n \geq N / 4+1$, where $N=2^{n-m}$ being run size.

Zhang and Mukerjee (2009b) established a blocked GMC (B-GMC) criterion for selecting s-level regular blocked designs. They also developed a theory on constructing the optimal blocked designs under the B-GMC criterion and their results are

[^0]especially useful when the number of two-level factors is larger than $N-16$, where N is the total number of runs. With a different consideration from that in Zhang and Mukerjee (2009b), Wei et al. (2014) proposed another blocked GMC (B ${ }^{1}$-GMC) criterion for selecting optimal regular blocked designs. Zhao et al. (2013), Zhao and Sun (in press) and Zhao et al. (2016) completed the construction of all the $\mathrm{B}^{1}-\mathrm{GMC} 2^{n-m}: 2^{r}$ designs with $n \geq N / 4+1$.

This paper studies the construction of B-GMC designs. This is clearly the first systematic construction method for B-GMC designs. Section 2 gives the definitions and notation. Section 3 develops the theory on constructing B-GMC $2^{n-m}: 2^{r}$ designs with $5 N / 16+1 \leq n \leq N / 2$. Some examples are provided. Conclusion is given in Section 4 . All lengthy complicated proofs are provided in Appendix A and the supplementary material (see Appendix B).

2. Definitions and notation

$$
\begin{aligned}
& \text { Let } q=n-m \text { and } N=2^{q} \text {. Define the } 2^{q} \times\left(2^{q}-1\right) \text { matrix } \\
& \qquad H_{q}=\{1,2,12,3,13,23,123, \ldots, 123 \cdots q\}_{2^{q}}
\end{aligned}
$$

with entries -1 and 1 and columns arranged in Yates order, where $1_{2 q}=(1, \ldots, 1,-1, \ldots,-1)^{\prime}, 2_{2 q}=$ $(1, \ldots, 1,-1, \ldots,-1,1, \ldots, 1,-1, \ldots,-1)^{\prime}, \ldots$, and $q_{2^{q}}=(1,-1, \ldots, 1,-1)^{\prime}$ stand for its q independent columns, and the other columns are expressed as products of the q independent columns. Here we say q columns are independent if none of them can be expressed as products of other columns. The set of q independent columns may not be unique. Without confusion, we will omit the subscript 2^{q} hereafter. For example, consider $q=4$ and $H_{4}=$ $\{1,2,12,3,13,23,123,4,14,24,124,34,134,234,1234\}$. It can be verified that both $\{1,2,3,4\}$ and $\{24,34,234,124\}$ contain 4 independent columns.

Throughout this paper, we use $D=\left(D_{t}: D_{b}\right)$, taken from H_{q}, to denote a blocked $2^{n-m}: 2^{r}$ design, where D_{t} is a $2^{q} \times n$ matrix with each column representing a treatment factor, and D_{b} is a $2^{q} \times\left(2^{r}-1\right)$ matrix for blocking. Of the n factors in $D_{t}, n-m$ are independent, and the remaining m are expressed as products of the $n-m$ independent factors. Of the $2^{r}-1$ columns in D_{b}, r are considered to be independent block factors, which are also expressed as products of the $n-m$ independent treatment columns. The remaining columns in D_{b} are expressed as the products of the r independent columns, which are considered to be interactions of the r independent block factors.

To illustrate the above concepts, we consider a $2^{6-2}: 2^{2}$ design $D=\left(D_{t}: D_{b}\right)$ with

$$
\begin{align*}
& D_{t}=\left\{a_{1}=24, a_{2}=34, a_{3}=234, a_{4}=124, a_{5}=134, a_{6}=1234\right\} \\
& D_{b}=\left\{b_{1}=1, b_{2}=4, b_{3}=14\right\} \tag{1}
\end{align*}
$$

Here a_{1}, \ldots, a_{6} are the labels for 6 treatment factors and b_{1}, b_{2}, b_{3} are the labels for 3 block factors. In this design, a_{1}, \ldots, a_{4} are four independent treatment factors. The remaining two treatment factors are determined by $a_{5}=a_{1} a_{2} a_{4}$ and $a_{6}=a_{1} a_{3} a_{4}$, which imply

$$
\begin{equation*}
I=a_{1} a_{2} a_{4} a_{5}=a_{1} a_{3} a_{4} a_{6}=a_{2} a_{3} a_{5} a_{6} \tag{2}
\end{equation*}
$$

where I is a $2^{q} \times 1$ column with all elements being 1 and is called the identify element, and $a_{2} a_{3} a_{5} a_{6}$ is the product of $a_{1} a_{2} a_{4} a_{5}$ and $a_{1} a_{3} a_{4} a_{6}$. In (2), $a_{1} a_{2} a_{4} a_{5}, a_{1} a_{3} a_{4} a_{6}$, and $a_{2} a_{3} a_{5} a_{6}$ are called treatment-defining words, in which $a_{1} a_{2} a_{4} a_{5}$ and $a_{1} a_{3} a_{4} a_{6}$ are independent. Among the 3 block factors, the two independent block factors are determined by $b_{1}=a_{1} a_{4}$ and $b_{2}=a_{1} a_{2} a_{3}$ or equivalently

$$
I=a_{1} a_{4} b_{1}=a_{1} a_{2} a_{3} b_{2}
$$

in which $a_{1} a_{4} b_{1}$ and $a_{1} a_{2} a_{3} b_{2}$ are called independent block-defining words. The remaining block factor b_{3} is determined by $b_{3}=b_{1} b_{2}=a_{2} a_{3} a_{4}$.

For a general $2^{n-m}: 2^{r}$ design $D=\left(D_{t}: D_{b}\right), m$ treatment factors are expressed as the products of $n-m$ independent treatment columns, which determine m independent treatment-defining words; r independent block factors are expressed as the products of $n-m$ independent treatment columns, which determine r independent block-defining words. All possible products of the m treatment-defining words constitute an identical subgroup, called the treatment-defining contrast subgroup. Each element in this subgroup is called a treatment-defining word. The number of letters in a treatment-defining word is referred to its length. Let $A_{i 0}$ be the number of treatment-defining words of length i in D_{t}, and $A_{i 1}$ be the number of i th order treatment effects aliased with a block effect with $1 \leq i \leq n$. The design D_{t} is said to have resolution R if its shortest treatment-defining word has length R (Box and Hunter, 1961).

We now review the B-GMC criterion for blocked designs, introduced by Zhang and Mukerjee (2009b). For $1 \leq i \leq n$, let ${ }_{i}^{\#} C_{0}(D)$ denote the number of i th order treatment effects which is neither the treatment-defining words nor aliased with the block effects. Then ${ }_{i}^{\#} C_{0}(D)=K_{i}-A_{i 0}-A_{i 1}$, where $K_{i}=n!/\{i!(n-i)!\}$ is the total number of the i th order treatment effects. Further, among the ${ }_{i}^{\#} C_{0}(D)$ effects which might be estimated, let ${ }_{i}^{\#} C_{j}^{(k)}(D)$ denote the number of those aliased with $k j$ th order effects, and let

$$
{ }_{i}^{\#} C_{j}(D)=\left({ }_{i}^{\#} C_{j}^{(0)}(D),{ }_{i}^{\#} C_{j}^{(1)}(D), \ldots,{ }_{i}^{\#} C_{j}^{\left(K_{j}\right)}(D)\right)
$$

for $1 \leq i, j \leq n$.

The B-GMC criterion for blocked designs aims at sequentially maximizing the components of

$$
{ }^{\#} C(D)=\left({ }_{1}^{\#} C_{2}(D),{ }_{2}^{\#} C_{0}(D),{ }_{2}^{\#} C_{2}(D),{ }_{1}^{\#} C_{3}(D),{ }_{2}^{\#} C_{3}(D),{ }_{3}^{\#} C_{0}(D),{ }_{3}^{\#} C_{2}(D),{ }_{3}^{\#} C_{3}(D), \ldots\right) .
$$

This is called the aliased effect-number pattern of the blocked designs (B-AENP for short). When all the treatment effects involving three or more factors are negligible, the B-AENP ${ }^{\#} C(D)$ is reduced to

$$
\begin{equation*}
{ }^{\#} C(D)=\left\{{ }_{1}^{\#} C_{2}(D),{ }_{2}^{\#} C_{0}(D),{ }_{2}^{\#} C_{2}(D)\right\} . \tag{3}
\end{equation*}
$$

A design D is said to have B-GMC if it sequentially maximizes the components of (3).
We finish this section by defining more notation, which serves as the preparation for next section. We first define some submatrices of H_{q}. Let

$$
H_{1}=\{1\}, \quad H_{r}=\left\{H_{r-1}, r, r H_{r-1}\right\}, \quad \text { for } r=2, \ldots, q,
$$

where $r H_{r-1}=\left\{r d: d \in H_{r-1}\right\}$ and H_{r} consists of the first $2^{r}-1$ columns of H_{q}. Further, let $H_{l, l^{\prime}}$ be the subset of H_{q} which consists of the vectors l, \ldots, l^{\prime} and all their possible products. For example, $H_{2,4}=\{2,3,23,4,24,34,234\}$. When $l=1$, we simplify the notation $H_{l, l^{\prime}}$ as $H_{l^{\prime}}$. Moreover, let $F_{l, 1}=\{l\}$ and $F_{l, l^{\prime}}=\left\{l, l H_{l^{\prime}-1}\right\}$ with $2 \leq l^{\prime} \leq l$. For example, $F_{4,3}=\{4,14,24,124\}$.

For a given set $Q \subset H_{q}$ and a column $d \in H_{q}$, define

$$
B_{i}(Q, d)=\left|\left\{\left(d_{1}, \ldots, d_{i}\right): d_{1}, \ldots, d_{i} \in Q, d_{1} \cdots d_{i}=d\right\}\right|
$$

Hereafter, $|\cdot|$ denotes the cardinality of a set and $d_{1} \cdots d_{i}$ means the interaction of d_{1}, \ldots, d_{i}. By the definition, $B_{i}(Q, d)$ is the number of i th order interactions of Q aliased with d. For example, consider $q=4, Q=\{1,2,13,23,14,24\} \subset H_{4}, i=2$, and $d=12 \in H_{4}$. Among the 15 two-factor interactions in Q, there are three two-factor interactions (between 1 and 2 , between 13 and 23 , and between 14 and 24), which are aliased with d. Hence, $B_{2}(Q, d)=3$.

3. B-GMC $\mathbf{2}^{n-m}: \mathbf{2}^{r}$ designs with $\mathbf{5 N} / \mathbf{1 6}+1 \leq n \leq N / 2$ factors

In the following, both D_{t} and D_{b} are treated as subsets of H_{q}. Two $2^{n-m}: 2^{r}$ designs $D^{(1)}=\left(D_{t}^{(1)}: D_{b}^{(1)}\right)$ and $D^{(2)}=\left(D_{t}^{(2)}: D_{b}^{(2)}\right)$ are said to be isomorphic (or equivalent) if there exists an isomorphism mapping that maps each column of $D_{t}^{(1)}$ to some column of $D_{t}^{(2)}$, and each column of $D_{b}^{(1)}$ to some column of $D_{b}^{(2)}$. Suppose that $D=\left(D_{t}: D_{b}\right)$ is a $2^{n-m}: 2^{r}$ design with $5 N / 16+1 \leq n \leq N / 2$. Zhao et al. (2013) showed that if ${ }_{1}^{\#} C_{2}(D)$ is maximized, then D_{t} must be taken from a saturated resolution 4 design with q independent columns. Up to isomorphism, suppose $D_{t} \subset F_{q, q}$. Then, there are two possible choices for D_{b}, as in Zhao et al. (2013).

Lemma 1 (Zhao et al., 2013). Suppose $D=\left(D_{t}: D_{b}\right)$ is a $2^{n-m}: 2^{r}$ design. If $D_{t} \subset F_{q, q}$, up to isomorphism, then there are two possibilities for the block effects D_{b} : (i) $D_{b}=H_{r}$ and (ii) $D_{b}=H_{r-1} \cup F_{q, r}$.

Let $D^{*}=\left(D_{t}^{*}: D_{b}^{*}\right)$ with $D_{t}^{*}=F_{q, q} \backslash D_{t}$ and $D_{b}^{*}=H_{q-1} \cap D_{b}$. Lemma 2 describes the relation between the B-AENPs of D and D^{*}. The relationship is very helpful for constructing B-GMC designs.

Lemma 2. Suppose $D=\left(D_{t}: D_{b}\right)$ is a $2^{n-m}: 2^{r}$ design with $D_{t} \subset F_{q, q}, q \geq 4$ and $n>N / 4$. Let $D^{*}=\left(D_{t}^{*}: D_{b}^{*}\right)$ with $D_{t}^{*}=F_{q, q} \backslash D_{t}$ and $D_{b}^{*}=H_{q-1} \cap D_{b}$. Then we have
(a) ${ }_{1}^{\#} C_{2}^{(k)}(D)= \begin{cases}n & \text { if } k=0, \\ 0 & \text { if } k \geq 1 .\end{cases}$
(b) ${ }_{2}^{\#} C_{2}^{(k)}(D)= \begin{cases}0 & \text { if } k<n-N / 4-1, \\ (k+1)\left(N / 2-1-f\left(D^{*}\right)\right) & \text { if } k=n-N / 4-1, \\ (k+1) /(k+1-n+N / 4){ }_{2}^{\#} C_{2}^{(k-n+N / 4)}\left(D^{*}\right) & \text { if } k>n-N / 4-1,\end{cases}$
where $f\left(D^{*}\right)=\left|D_{b}^{*}\right|+\left|\left\{d: d \in H_{q} \backslash D_{b}^{*}, B_{2}\left(D_{t}^{*}, d\right)>0\right\}\right|$.
(c) ${ }_{2}^{\#} C_{0}(D)={ }_{2}^{\#} C_{0}\left(D^{*}\right)+(n-N / 4)\left|H_{q-1} \backslash D_{b}^{*}\right|$.

Lemma 2 implies that a design $D=\left(D_{t}: D_{b}\right)$ has B-GMC if and only if $D_{t} \subset F_{q, q}$ and the corresponding D^{*} maximizes

$$
\begin{equation*}
\left({ }_{2}^{\#} C_{0}\left(D^{*}\right)+(n-N / 4)\left|H_{q-1} \backslash D_{b}^{*}\right|,-f\left(D^{*}\right),{ }_{2}^{\#} C_{2}\left(D^{*}\right)\right) . \tag{4}
\end{equation*}
$$

By Lemma 1, there are two classes of blocked designs $D=\left(D_{t}: D_{b}\right)$ with $D_{t} \subset F_{q, q}$. One has $D_{b}=H_{r}$ and the other has $D_{b}=H_{r-1} \cup F_{q, r}$. We will find the B-GMC designs in each class, and then compare the two B-GMC designs to give the B-GMC design among all the $2^{n-m}: 2^{r}$ designs. In each class, $(n-N / 4)\left|H_{q-1} \backslash D_{b}^{*}\right|$ is a constant and (4) can be simplified to

$$
\begin{equation*}
\left({ }_{2}^{\#} C_{0}\left(D^{*}\right),-f\left(D^{*}\right),{ }_{2}^{\#} C_{2}\left(D^{*}\right)\right) . \tag{5}
\end{equation*}
$$

Then we have the following useful theorem for constructing B-GMC $2^{n-m}: 2^{r}$ designs with $5 N / 16+1 \leq n \leq N / 2$.

Theorem 3. Suppose that $D=\left(D_{t}: D_{b}\right)$ is a $2^{n-m}: 2^{r}$ design with $D_{t} \subset F_{q, q}$. Let $D^{*}=\left(D_{t}^{*}: D_{b}^{*}\right)$ with $D_{t}^{*}=F_{q, q} \backslash D_{t}$ and $D_{b}^{*}=H_{q-1} \cap D_{b}$.
(a) When $N / 2-2^{r-1}+1 \leq n \leq N / 2$, D has B-GMC if and only if $D_{b}=H_{r}$ and $D^{*}=\left(D_{t}^{*}: D_{b}^{*}\right.$) maximizes (5);
(b) When $5 N / 16+1 \leq n \leq N / 2-2^{r-1}$, D has $B-G M C$ if and only if $D_{b}=H_{r-1} \cup F_{q, r}$ and $D^{*}=\left(D_{t}^{*}: D_{b}^{*}\right)$ maximizes (5).

For ease of presentation, we need some new notation. Let $\alpha_{0}=\beta_{0}=I$, the column with all entries 1 ,

$$
H_{r+1, q-1}=\left\{\alpha_{1}, \ldots, \alpha_{2 q-r-1}\right\}, \quad \text { and } \quad H_{r, q-1}=\left\{\beta_{1}, \ldots, \beta_{2^{q-r}-1}\right\}
$$

Further assume that the elements α_{i} and β_{j} are in Yates order, respectively. For example, $\alpha_{1}=r+1, \alpha_{2}=r+2$, $\alpha_{3}=(r+1)(r+2), \beta_{1}=r, \beta_{2}=r+1$ and $\beta_{3}=r(r+1)$. Then, we can express $F_{q, q}$ as

$$
F_{q, q}=\bigcup_{i=0}^{2^{q-r-1}-1} \alpha_{i} F_{q, r+1}=\bigcup_{j=0}^{2^{q-r}} \beta_{j} F_{q, r}
$$

Arrange the elements of $\alpha_{i} F_{q, r+1}$ and $\beta_{j} F_{q, r}$ in Yates order, we have the following theorem.
Theorem 4. Suppose that $D=\left(D_{t}: D_{b}\right)$ is a $2^{n-m}: 2^{r}$ design.
(a) When $N / 2-2^{r-1}+1 \leq n \leq N / 2$, if D_{t} consists of the last $n_{1}-1$ columns of $\alpha_{i} F_{q, r+1}$ for $i=0,1, \ldots, J_{1}-1$, the last n_{1} columns of $\alpha_{i} F_{q, r+1}$ for $i=J_{1}, \ldots, 2^{q-r-1}-1$, and $D_{b}=H_{r}$, then D has B-GMC. Here, $n_{1}=\left\lceil\frac{n}{2^{q-r-1}}\right\rceil, J_{1}=2^{q-r-1} n_{1}-n$ and $\lceil x\rceil$ denotes the smallest integer which is larger than or equal to x.
(b) When $5 N / 16+1 \leq n \leq N / 2-2^{r-1}$ and $\left\lceil\frac{N / 2-2^{r-1}-n}{2^{q-r}-1}\right\rceil$ is odd (or even), if D_{t} consists of the last n_{2} (or $n_{2}-1$) columns of $\beta_{j} F_{q, r}$ for $j=1, \ldots, J_{2}$, the last $n_{2}-1$ (or n_{2}) columns of $\beta_{j} F_{q, r}$ for $j=J_{2}+1, \ldots, 2^{q-r}-1$, and $D_{b}=H_{r-1} \cup F_{q, r}$, then D has B-GMC. Here $n_{2}=\left\lceil\frac{n}{2^{q-r}-1}\right\rceil$ and $J_{2}=n-\left(2^{q-r}-1\right)\left(n_{2}-1\right)\left(\right.$ or $\left.J_{2}=\left(2^{q-r}-1\right) n_{2}-n\right)$.

The next examples show the usefulness of Theorem 4 for the construction of B-GMC designs.
Example 1. We first consider the construction of B-GMC $2^{6-2}: 2^{2}$ design. Here $n=6, m=2, r=2, q=4$, and $N=16$. Then $5 N / 16+1 \leq n \leq N / 2-2^{r-1}$ and $\left\lceil\frac{N / 2-2^{r-1}-n}{2^{q-r}-1}\right\rceil=\left\lceil\frac{8-2-6}{2^{4-2}-1}\right\rceil=0$ is even. Recall that $\beta_{0}=I$, $H_{r, q-1}=H_{2,3}=\left\{\beta_{1}, \ldots, \beta_{3}\right\}=\{2,3,23\}$, and $F_{q, r}=F_{4,2}=\{4,14\}$. Then

$$
F_{q, q}=F_{4,4}=\bigcup_{j=0}^{3} \beta_{j} F_{q, r}=\left\{\begin{array}{rr}
4 & 14 \\
24 & 124 \\
34 & 134 \\
234 & 1234
\end{array}\right\}
$$

Note that $n_{2}=\left\lceil\frac{n}{2^{q-r}-1}\right\rceil=\left\lceil\frac{6}{2^{4-2}-1}\right\rceil=2$ and $J_{2}=\left(2^{q-r}-1\right) n_{2}-n=0$. By (b) of Theorem $4, D=\left(D_{t}: D_{b}\right)$ with

$$
D_{t}=\left\{\begin{array}{rr}
24 & 124 \\
34 & 134 \\
234 & 1234
\end{array}\right\}
$$

and $D_{b}=H_{r-1} \cup F_{q, r}=\{1,4,14\}$, which is exactly the design in (1), has B-GMC among all $2^{6-2}: 2^{2}$ designs.
Suppose that we still use b_{1} and b_{2} to label the first two block factors 1 and 4 , as we have done in (1). After rearranging its rows, the B-GMC $2^{6-2}: 2^{2}$ design is presented in Table 1, in which the 16 runs are divided into four blocks I, II, III, IV, according to $\left(b_{1}, b_{2}\right)=(-1,-1),(-1,1),(1,-1)$, and $(1,1)$.

Example 2. We next consider the construction of B-GMC $2^{n-m}: 2^{r}$ designs with $q=6, N=64, r=3$, and $5 N / 16+1 \leq$ $n \leq N / 2$.

If we take $n=29$, then $N / 2-2^{r-1}+1 \leq n \leq N / 2$. We have

$$
H_{r}=H_{3}=\{1,2,12,3,13,23,123\} \quad \text { and } \quad H_{r+1, q-1}=H_{4,5}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=\{4,5,45\}
$$

Note that $\alpha_{0}=I$ and $F_{q, r+1}=F_{6,4}=\{6,16,26,126,36,136,236,1236\}$. Then

$$
F_{6,6}=\bigcup_{i=0}^{3} \alpha_{i} F_{6,4}=\left\{\begin{array}{rrrrrrrr}
6 & 16 & 26 & 126 & 36 & 136 & 236 & 1236 \\
46 & 146 & 246 & 1246 & 346 & 1346 & 2346 & 12346 \\
56 & 156 & 256 & 1256 & 356 & 1356 & 2356 & 12356 \\
456 & 1456 & 2456 & 12456 & 3456 & 13456 & 23456 & 123456
\end{array}\right\}
$$

Table 1
The B-GMC $2^{6-2}: 2^{2}$ design $D=\left(D_{t}: D_{b}\right)$ with $D_{t}=\left\{a_{1}=24, a_{2}=34, a_{3}=234, a_{4}=124, a_{5}=134, a_{6}=1234\right\}$ and $D_{b}=\left\{b_{1}=1, b_{2}=4, b_{3}=14\right\}$.

Treatment factors						Block factors			Blocks
a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b_{1}	b_{2}	b_{3}	
-1	-1	-1	-1	-1	-1	1	-1	-1	III
-1	-1	-1	1	1	1	-1	-1	1	I
-1	-1	1	-1	-1	1	1	1	1	IV
-1	-1	1	1	1	-1	-1	1	-1	II
-1	1	-1	-1	1	-1	1	1	1	IV
-1	1	-1	1	-1	1	-1	1	-1	II
-1	1	1	-1	1	1	1	-1	-1	III
-1	1	1	1	-1	-1	-1	-1	1	I
1	-1	-1	-1	1	1	-1	1	-1	II
1	-1	-1	1	-1	-1	1	1	1	IV
1	-1	1	-1	1	-1	-1	-1	1	I
1	-1	1	1	-1	1	1	-1	-1	III
1	1	-1	-1	-1	1	-1	-1	1	I
1	1	-1	1	1	-1	1	-1	-1	III
1	1	1	-1	-1	-1	-1	1	-1	II
1	1	1	1	1	1	1	1	1	IV

Further, $n_{1}=\left\lceil\frac{n}{2^{q-r-1}}\right\rceil=\left\lceil\frac{29}{2^{6-3-1}}\right\rceil=8$ and $J_{1}=2^{q-r-1} n_{1}-n=4 \times 8-29=3$. By (a) of Theorem 4, $D_{1}=\left(D_{t 1}: D_{b 1}\right)$ with

$$
D_{t 1}=\left\{\begin{array}{rrrrrrrr}
& 16 & 26 & 126 & 36 & 136 & 236 & 1236 \\
& 146 & 246 & 1246 & 346 & 1346 & 2346 & 12346 \\
& 156 & 256 & 1256 & 356 & 1356 & 2356 & 12356 \\
456 & 1456 & 2456 & 12456 & 3456 & 13456 & 23456 & 123456
\end{array}\right\}
$$

and $D_{b 1}=H_{3}$ has B-GMC among the $2^{29-23}: 2^{3}$ designs.
If we take $n=23$, then $5 N / 16+1 \leq n \leq N / 2-2^{r-1}$ and $\left\lceil\frac{N / 2-2^{r-1}-n}{2^{q-r}-1}\right\rceil=\left\lceil\frac{32-4-23}{2^{5-3}-1}\right\rceil=1$ is odd. Recall that

$$
H_{r-1}=H_{2}=\{1,2,12\} \quad \text { and } \quad H_{r, q-1}=H_{3,5}=\left\{\beta_{1}, \ldots, \beta_{7}\right\}=\{3,4,34,5,35,45,345\},
$$

and note that $\beta_{0}=I$ and $F_{q, r}=F_{6,3}=\{6,16,26,126\}$. Then

$$
F_{6,6}=\bigcup_{j=0}^{7} \beta_{j} F_{6,3}=\left\{\begin{array}{rrrr}
6 & 16 & 26 & 126 \\
36 & 136 & 236 & 1236 \\
46 & 146 & 246 & 1246 \\
346 & 1346 & 2346 & 12346 \\
56 & 156 & 256 & 1256 \\
356 & 1356 & 2356 & 12356 \\
456 & 1456 & 2456 & 12456 \\
3456 & 13456 & 23456 & 123456
\end{array}\right\} .
$$

Note that $n_{2}=\left\lceil\frac{n}{2^{q-r}-1}\right\rceil=\left\lceil\frac{23}{2^{6-3}-1}\right\rceil=4$ and $J_{2}=n-\left(2^{q-r}-1\right)\left(n_{2}-1\right)=2$. By (b) of Theorem 4, $D_{2}=\left(D_{t 2}: D_{b 2}\right)$ with

$$
D_{t 2}=\left\{\begin{array}{rrrr}
36 & 136 & 236 & 1236 \\
46 & 146 & 246 & 1246 \\
& 1346 & 2346 & 12346 \\
& 156 & 256 & 1256 \\
& 1356 & 2356 & 12356 \\
& 1456 & 2456 & 12456 \\
& 13456 & 23456 & 123456
\end{array}\right\}
$$

and $D_{b 2}=H_{2} \cup F_{6,3}=\{1,2,12,6,16,26,126\}$ has B-GMC among the $2^{23-17}: 2^{3}$ designs.

4. Conclusion

B-GMC criterion proposed by Zhang and Mukerjee (2009b) is an improvement over the conventional GMC and minimum aberration criteria. Our paper is clearly the first study on the systematic construction method of the B-GMC designs. Of course, Zhang and Mukerjee (2009b) also construct few B-GMC design as examples. Here, we provide all B-GMC designs with all n between $5 N / 16+1$ and $N / 2$, although other n are also available upon request.

Acknowledgments

The authors would like to thank the associate editor and two referees for constructive suggestions and comments that led to a significant improvement of the article. This work was supported by the National Natural Science Foundation of China grant Nos. 11171165,11171188 and 11371223, Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province, Program for Scientific Research Innovation Team in Applied Probability and Statistics of Qufu Normal University (No. 0230518), the Natural Sciences and Engineering Research Council of Canada grant No. RGPIN-2015-06592, and National Security Agent grant No. H98230-15-1-0253.

Appendix A

A.1. Proof of Lemma 2

Parts (a) and (b) are results of Lemma 2 in Zhao et al. (2013). We need only to prove (c). According to the definition of ${ }_{2}^{\#} C_{0}(D)$, we have

$$
{ }_{2}^{\#} C_{0}(D)=\sum_{k>0} k \cdot\left|\left\{d: d \in H_{q} \backslash D_{b}, B_{2}\left(D_{t}, d\right)=k\right\}\right| .
$$

Zhao et al. (2013) showed that $B_{2}\left(D_{t}, d\right)=B_{2}\left(D_{t}^{*}, d\right)+n-N / 4$ if $d \in H_{q-1}$ and 0 otherwise. Combining the fact that $d_{1} d_{2} \in H_{q-1}$ for any pair $\left(d_{1}, d_{2}\right)$ in $D_{t}\left(\subset F_{q, q}\right)$, we get

$$
\begin{aligned}
{ }_{2}^{\#} C_{0}(D) & =\sum_{k>0} k \cdot\left|\left\{d: d \in H_{q-1} \backslash D_{b}^{*}, B_{2}\left(D_{t}^{*}, d\right)=k-n+N / 4\right\}\right| \\
& =\sum_{k \geq n-N / 4} k \cdot\left|\left\{d: d \in H_{q-1} \backslash D_{b}^{*}, B_{2}\left(D_{t}^{*}, d\right)=k-n+N / 4\right\}\right| .
\end{aligned}
$$

Changing $k-n+N / 4$ to h, we obtain

$$
\begin{aligned}
{ }_{2}^{\#} C_{0}(D) & =\sum_{h \geq 0}(h+n-N / 4)\left|\left\{d: d \in H_{q-1} \backslash D_{b}^{*}, B_{2}\left(D_{t}^{*}, d\right)=h\right\}\right| \\
& =\sum_{h>0} h \cdot\left|\left\{d: d \in H_{q-1} \backslash D_{b}^{*}, B_{2}\left(D_{t}^{*}, d\right)=h\right\}\right|+(n-N / 4)\left|H_{q-1} \backslash D_{b}^{*}\right| .
\end{aligned}
$$

By the fact that $B_{2}\left(D_{t}^{*}, d\right)=0$ for any $d \in F_{q, q}$, we have

$$
\begin{aligned}
{ }_{2}^{\#} C_{0}(D) & =\sum_{h>0} h \cdot\left|\left\{d: d \in H_{q} \backslash D_{b}^{*}, B_{2}\left(D_{t}^{*}, d\right)=h\right\}\right|+(n-N / 4)\left|H_{q-1} \backslash D_{b}^{*}\right| \\
& ={ }_{2}^{\#} C_{0}\left(D^{*}\right)+(n-N / 4)\left|H_{q-1} \backslash D_{b}^{*}\right| .
\end{aligned}
$$

This completes the proof.

A.2. Proof of Theorem 3

For (a). By Lemma 1, there are two classes of blocked designs. One class contains designs with $D_{b}=H_{r}$ and the other one contains those with $D_{b}=H_{r-1} \cup F_{q, r}$. Note that when $N / 2-2^{r-1}+1 \leq n \leq N / 2$, the number of columns of $F_{q, q} \backslash F_{q, r}$, which is $N / 2-2^{r-1}$, is smaller than that of D_{t}, the second class does not exist, we only need to consider the case that $D_{b}=H_{r}$. Then (a) follows directly.

For (b). Suppose that $\tilde{D}=\left(\tilde{D}_{t}: D_{b}\right)$ has B-GMC among the designs $D=\left(D_{t}: D_{b}\right)$ with $D_{t} \subset F_{q, q}$ and $D_{b}=H_{r-1} \cup F_{q, r}$, and $\tilde{E}=\left(\tilde{E}_{t}: E_{b}\right)$ has B-GMC among the designs $E=\left(E_{t}: E_{b}\right)$ with $E_{t} \subset F_{q, q}$ and $E_{b}=H_{r}$. To prove Part (b), it suffices to show that ${ }_{2}^{\#} C_{0}(\tilde{D})>{ }_{2}^{\#} C_{0}(\tilde{E})$. By the definition of ${ }_{2}^{\#} C_{0}$, we have

$$
{ }_{2}^{\#} C_{0}(\tilde{D})=n(n-1) / 2-A_{21}(\tilde{D}) \quad \text { and } \quad{ }_{2}^{\#} C_{0}(\tilde{E})=n(n-1) / 2-A_{21}(\tilde{E}) .
$$

So, we need only to show $A_{21}(\tilde{D})<A_{21}(\tilde{E})$.
From the definition of $A_{21}, A_{21}(D)$ is the number of pairs $\left(d_{1}, d_{2}\right)$ in D_{t} such that $d_{1} d_{2} \in D_{b}$. When $D_{t} \subset F_{q, q}$ and $D_{b}=H_{r-1} \cup F_{q, r}$, we have $D_{t} \cap F_{q, r}=\emptyset$, the empty set, and hence

$$
D_{t} \subset F_{q, q} \backslash F_{q, r}=\bigcup_{j=1}^{2^{q-r}-1} \beta_{j} F_{q, r}
$$

Let $D_{t j}=D_{t} \cap\left(\beta_{j} F_{q, r}\right)$ for $j=1, \ldots, 2^{q-r}-1$. For a pair $\left(d_{1}, d_{2}\right)$ of $D_{t}, d_{1} d_{2} \in D_{b}$ if and only if both d_{1} and d_{2} are in the same $D_{t j}$ for some j. Thus, we have

$$
A_{21}(D)=\sum_{j=1}^{2 q-r}\left|D_{t j}\right|\left(\left|D_{t j}\right|-1\right) / 2=\sum_{j=1}^{2^{q-r}-1}\left|D_{t j}\right|^{2} / 2-n / 2 .
$$

Note that $E_{t} \subset F_{q, q}=\bigcup_{i=0}^{2 q-r-1}-1 \alpha_{i} F_{q, r+1}$. Let $E_{t i}=E_{t} \cap\left(\alpha_{i} F_{q, r+1}\right)$ for $i=0,1, \ldots, 2^{q-r-1}-1$. For a pair $\left(d_{1}, d_{2}\right)$ of E_{t}, $d_{1} d_{2} \in E_{b}$ if and only if both d_{1} and d_{2} are in the same $E_{t i}$ for some i. Thus, we have

$$
A_{21}(E)=\sum_{i=0}^{2^{q-r-1}-1}\left|E_{t i}\right|\left(\left|E_{t i}\right|-1\right) / 2=\sum_{i=0}^{2^{q-r-1}-1}\left|E_{t i}\right|^{2} / 2-n / 2 .
$$

Since \tilde{D} has B-GMC among the designs with $D_{t} \subset F_{q q}$ and $D_{b}=H_{r-1} \cup F_{q r}, A_{21}(\tilde{D})$ is equal to the minimum value of $A_{21}(D)$ among this class of blocked designs. Thus, the values $\left|\tilde{D}_{t j}\right|$ differ at most one with each other for $j=1, \ldots, 2^{q-r}-1$. Similarly, $A_{21}(\tilde{E})$ is equal to the minimum value of $A_{21}(E)$ among the designs with $E_{t} \subset F_{q, q}$ and $E_{b}=H_{r}$. So, the values $\left|\tilde{E}_{t i}\right|$ also differ at most one with each other for $i=0,1, \ldots, 2^{q-r-1}-1$. Under the condition that

$$
\sum_{j=1}^{2^{q-r}-1}\left|\tilde{D}_{t j}\right|=\sum_{i=0}^{2^{q-r-1}-1}\left|\tilde{E}_{t i}\right|=n
$$

we have

$$
\sum_{j=1}^{2^{q-r}-1}\left|\tilde{D}_{t j}\right|^{2}<\sum_{i=0}^{2^{q-r-1}-1}\left|\tilde{E}_{t i}\right|^{2}
$$

which implies that $A_{21}(\tilde{D})<A_{21}(\tilde{E})$. The result of (b) follows.

Appendix B. Supplementary material

Supplementary material, which contains the proof of Theorem 4, can be found online at http://dx.doi.org/10.1016/j.jspi. 2015.12.007.

References

Box, G.E.P., Hunter, J.S., 1961. The 2^{k-p} fractional factorial designs. Technometrics 3, 311-351 and 449-458.
Chen, J., Liu, M.Q., 2011. Some theory for constructing general minimum lower order confounding designs. Statist. Sinica 21, $1541-1555$.
Cheng, Y., Zhang, R.C., 2010. On construction of general minimum lower order confounding 2^{n-m} designs with $N / 4+1 \leq n \leq 9 N / 32$. J. Statist. Plann. Inference 140, 2384-2394.
Li, P.F., Zhao, S.L., Zhang, R.C., 2011. A theory on constructing 2^{n-m} designs with general minimum lower order confounding. Statist. Sinica 21, 1571-1589.
Wei, J.L., Li, P., Zhang, R.C., 2014. Blocked two-level regular designs with general minimum lower order confounding. J. Stat. Theory Pract. 8, 46-65.
Zhang, R.C., Cheng, Y., 2010. General minimum lower order confounding designs: An overview and a construction of theory. J. Statist. Plann. Inference 140, 1719-1730.
Zhang, R.C., Li, P., Zhao, S.L., Ai, M.Y., 2008. A general minimum lower-order confounding criterion for two-level regular designs. Statist. Sinica 18, 1689-1705.
Zhang, R.C., Mukerjee, R., 2009a. Characterization of general minimum lower order confounding via complementary sets. Statist. Sinica 19, $363-375$.
Zhang, R.C., Mukerjee, R., 2009b. General minimum lower order confounding in block designs using complementary sets. Statist. Sinica 19, 1787-1802.
Zhao, S.L., Li, P.F., Zhang, R.C., Karunamuni, R., 2013. On the construction of blocked two-level designs with general minimum lower order confounding. J. Statist. Plann. Inference 143, 1082-1090.

Zhao, S.L., Sun, Q., 2015. On constructing general minimum lower order confounding two-level block designs. Comm. Statist. Theory Methods in press.
Zhao, Y.N., Zhao, S.L., Liu, M.Q., 2016. A theory on constructing blocked two-level designs with general minimum lower order confounding. Front. Math. China 11, 207-235.

[^0]: * Corresponding author.

 E-mail address: pengfei.li@uwaterloo.ca (P. Li).

