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a b s t r a c t 

Ridge analysis allows the analyst to explore the optimal operating conditions of the experimental factors. 

A confidence region is desirable for the estimated ridge path. Most literature concentrates on the uni- 

variate response situation. Little is known for the confidence region of the ridge path for the multivariate 

response; only a large-sample confidence interval for the ridge path is available. The simultaneous cov- 

erage rate for the existing interval is typically too conservative in practice, especially for small sample 

sizes. In this paper, the ridge path (via desirability function) is estimated based on the seemingly unre- 

lated regression (SUR) model as well as standard multivariate regression (SMR) model, and a conservative 

confidence interval suitable for small sample sizes is proposed. It is shown that the proposed method 

outperforms the existing methods. Real-life examples and simulative study are given for illustration. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Ridge analysis, first introduced by Hoerl (1959) , is used to ex-

lore the optimal setting of the experimental variables. Consider

he response surface model y = f (x, θ ) + ε, where y is the re-

ponse variable, x is the vector of input variables, θ is the vector

f model parameters, and ε is the error. Without loss of gener-

lity, suppose that maximization of the response is desirable. Let

(θ, r) = max x ′ x = r 2 f (x, θ ) represent the constrained optimal mean

esponse value, where r is the distance from the center of the ex-

eriment region. A ridge path is the locus of the g ( θ , r ) on differ-

nt radii ( r ) of the surface. The typical output of a ridge analysis

s presented as two two-dimensional plots: a plot of g ( θ , r ) vs. r

nd an overlay plot of x ir vs. r (i = 1 , . . . , l) , where l is the number

f input variables. These are typically used to locate the optimal

perating conditions. 

The true value of the model parameter θ is unknown in prac-

ice, and the estimated value ˆ θ is used. Thus, the plot of g( ̂  θ, r)

s. r is only a statistical point estimate of the true ridge path.

o construct the confidence region of the ridge path is obviously

mportant since it can measure the accuracy of the estimation.

arter, Chinchilli, Myers, and Campbell (1986) proposed the use

f simultaneous confidence bounds for a ridge path. Peterson
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1993) gave a general approach to ridge analysis with confidence

ntervals. Both of them are limited to univariate responses. When

ultiple responses are involved in experiments, the common

pproach converts the multiple responses into a univariate index.

uch a conversion is intentionally biased, however. Thus, it is

esirable to investigate the standard error of the fitted parameters

nd their effects on optimization indices (See Hunter, 1999 ).

urthermore, the ridge path is well defined in univariate cases, but

s by Lin (1999) it is hard to extend those ideas from univariate to

ultivariate cases straightforwardly. How to appropriately apply

idge analysis to multivariate cases deserves further study. 

Ding, Lin, and Peterson (2005) applied the standard multivariate

egression (SMR) model to fit the response surface model (RSM)

nd developed a large-sample simultaneous confidence interval for

 multi-response ridge path based on the desirability function.

owever, their method may not be appropriate when the sample

ize is small. When the SMR model is used, it likely leads to over-

tting for some responses because the design matrix is identical

or each response in SMR but the significant terms for each re-

ponse may be different. Here, a new approach to construct con-

dence intervals with multiple response surfaces is proposed. The

eemingly unrelated regressions (SUR) model ( Zellner, 1962 ) is em-

loyed in our method. The SUR model could fit the model with

ifferent experimental factors for each response, meanwhile it es-

imates the correlations among all responses. Compared with the

xisting methods, the proposed method using the SUR model, re-

ults in a smoother and more reliable confidence interval when the

http://dx.doi.org/10.1016/j.ejor.2016.01.037
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sample size is small. This will help experimenters to locate the op-

timal setting in an efficient manner. 

The paper is organized as follows. In Section 2 , a brief review of

ridge analysis is presented. Estimating a ridge path based on SUR

model and a conservative confidence approach are then proposed

in Section 3 . Section 3 also provides the algorithm of the proposed

method and its general properties. In Section 4 , the tire tread ex-

ample (with small sample size) is used for illustration with com-

parisons to previous works, as well as a large sample case. A fur-

ther simulation study is also provided. The conclusion is given in

Section 5 . 

2. Statistical inference for the ridge path 

2.1. Confidence intervals for a single response ridge path 

Peterson (1993) took f ( x , θ ) as z ( x ) ′ θ , where z ( x ) is a p ×
1 vector-valued function of a k × 1 vector of factors. Thus,

the response surface model y = f (x, θ ) + ε can be represented

as y = z(x ) ′ θ + ε. Then, the ridge path g ( θ , r ) becomes g(θ, r) =
max x ′ x = r 2 z(x ) ′ θ . Carter et al. (1986) proposed the simultaneous

confidence bounds of the optimal responses for various r , and the

form of the confidence bounds can be written as [ 
min 

θ∈ C 
{ max 

x ′ x = r 2 
z(x ) ′ θ} , max 

θ∈ C 
{ max 

x ′ x = r 2 
z(x ) ′ θ} 

] 
, (1)

where C is a 100(1 − α)% confidence region for θ . The con-

fidence region C is defined as C = { θ : (θ − ˆ θ ) ′ V −1 (θ − ˆ θ ) ≤
c 2 α} , where ˆ θ is an estimate of θ , V is an estimate of

v ar( ̂  θ ) , and c 2 α = pF (1 − α, p, n − p) , with n being the sam-

ple size and F (1 − α, p, n − p) is the 100(1 − α) th percentile

of the F distribution with p and (n − p) degrees of free-

dom. Peterson (1993) proposed an alternative confidence bound

as 
[
max x ′ x = r 2 { min θ∈ C z(x ) ′ θ} , max x ′ x = r 2 { max θ∈ C z(x ) ′ θ} ]. Because

z ( x ) ′ θ is linear in θ , the confidence interval can be written as

max x ′ x = r 2 { z(x ) ′ ˆ θ ± c α(z(x ) ′ V z(x )) 
1 
2 } . For a rotatable design, this

can be further simplified as max x ′ x = r 2 { z(x ) ′ ˆ θ} ± c α ˆ σv (r) 
1 
2 , where

ˆ σ 2 is the sample-error mean square and v (r) = z(x ) ′ (Z ′ Z) −1 z(x ) ,

with x ′ x = r 2 . Z is the regression model matrix. 

Note that the Carter et al. (1986) approach requires a nonlinear

optimization solver for max z ( x ) ′ θ subject to x ′ x = r 2 to obtain x ∗,

such that it maximize z(x ∗) ′ ˆ θ . One then applies another nonlinear

solver for min or max { z ( x ∗) ′ θ} subject to θ ∈ C . Peterson (1993)

argued that solving max x ′ x = r 2 { z(x ) ′ ˆ θ ± C α(z(x ) ′ V z(x )) 
1 
2 } in reality

is much more manageable than solving Eq. (1) . However, his ap-

proach utilizes the property that z ( x ) ′ θ is linear in θ which is an

unrealistic assumption for multivariate response problems in many

situations. It is usually highly nonlinear in both θ and x in the de-

sirability function. 

2.2. Confidence intervals for a multi-response ridge path 

A general multi-response problem can be written as 

y i = f (x, θi ) + ε i (2)

for i = 1 , 2 , . . . , p, where y i is the response vector, x =
(x 1 , x 2 , . . . , x k ) is input variable vector, θ i is the vector of model

parameters, and the ε i is random error term, typically assumed to

be N (0, σ 2 ). The model function f ( x , θ i ) represents the functional

relation between the i th response and the input variables. 

The parameters θ are usually estimated by fitting multivariate

linear regression models in the matrix form (see, e.g., Arnold, 1981 ,

p. 349), 

 ∼ N n,p (X �, �) , (3)
here n is the number of independent experiment runs, and m is

he number of response variables in each run, with a fixed covari-

nce matrix �. The matrices Y , X and � are the response matrix

 n × p ), design matrix ( n × m ) and parameter matrix ( m × p ), re-

pectively. 

The optimization for a multi-response issue is to find a set of

perating conditions x ∗ that optimizes all responses in the given

anges. Many methods have been proposed for optimization of

ultiple responses ( Bera & Mukherjee, 2015; Kim & Lin, 2006 ).

ee, for examples, the generalized distance measure ( Khuri & Con-

on, 1981 ), and the squared error loss approach ( Ames, Mattucci,

acdonald, Szonyi, & Hawkins, 1997; Pignatiello, 1993; Vining,

998 ). The most popular approach is probably the desirability func-

ion. The desirability function ( Derringer & Suich, 1980; Harring-

on, 1965; He, Zhu, & Park, 2012; Jeong & Kim, 2009 ) transforms

n estimated response y i to a scale free value d i ( ·) ∈ [0, 1], called a

esirability. The overall desirability function is then defined as the

eometric mean 

 (x, θ ) = 

( 

m ∏ 

i =1 

d i ( ̂  y i ) 

) 1 /m 

. (4)

im and Lin (20 0 0) used an exponential form of the desirability

unction and illustrated its application to the simultaneous opti-

ization of mechanical properties of steel. This approach also con-

idered the predictive of every individual response surface model.

n general, any reasonable desirability function can be used here,

s long as it is continuous and differentiable. Following Ding et al.

2005) , we adapt the desirability functions of Gibb, Carter, and My-

rs (2001) , 

 i ( ̂  y i ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ 
1 + e 

− E(y i ) −a i 
b i 

] −1 

if y i is LTB ;

e 
−0 . 5 

(
E(y i ) −a i 

b i 

)2 

if y i is NTB ;[ 
1 + e 

E(y i ) −a i 
b i 

] −1 

if y i is STB . 

(5)

or the nominal-the-best (NTB) case, a i is the target value of re-

ponse, and b i = 

δi √ 

−2 ln (γi ) 
is to control the spread of the func-

ion, where γ i ∈ (0, 1). For the larger-the-better (LTB) or the

maller-the-better (STB) case, a i = 

y max 
i 

−y min 
i 

2 and b i = 

y max 
i 

−y min 
i 

2 ln ( 
1 −γi 
γi 

) 
,

here y max 
i 

> y min 
i 

, and γ i ∈ (0, 1). The values of δi and γ i can

e determined via the guideline given by Gibb et al. (2001) . 

Ding et al. (2005) developed a large-sample simultaneous con-

dence interval for a multi-response ridge path based on the de-

irability function. They defined the multi-response ridge path as

he plot of g ( θ , r ) vs. radius r , where 

(θ, r) = max 
x ′ x = r 2 

D (θ, x ) , (6)

ssuming that x 0 = x 0 (θ, r) = arg max x ′ x = r 2 D (x, θ ) is unique for

ach r , Ding et al. (2005) construct 100(1 − α)% asymptotic simul-

aneous confidence intervals for g ( θ , r ) which have the form of 

e L 

1 + e L 
, 

e U 

1 + e U 

]
, (7)

here [ L, U] = log it (g( ̂  θ, r)) ± z α/ 2 q ̂  c (r) , where z α/2 q is the upper

/2 q critical value of standard normal distribution, q is the num-

er of radii. ˆ c (r) is the estimated standard error of logit (g( ̂  θ, r)) ,

nd ˆ c (r) 2 = 

D θ ( ̂ x 0 , ̂
 θ ) ′ ( ̂ �⊗(X ′ X ) −1 ) D θ ( ̂ x 0 , ̂

 θ ) 

(D ( ̂ x 0 , ̂
 θ )(1 −D ( ̂ x 0 , ̂

 θ )) 2 
, in which ˆ x 0 = x 0 ( ̂  θ, r) . Lo-

istic regression is popularly used in many areas, especially in bio-

cience (see Hosmer and Lemeshow (2005) , for example). This re-

ults a Bonferroni’s z type confidence band, since the critical value

s based on Bonferroni’s inequality. 
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One immediate question, however, is how to construct a con-

dence band of a path ridge of multiple responses for the small

ample case. Here, we propose a new method to construct a confi-

ence region for ridge path of multiple responses, and it is shown

o be reliable when the sample size is small. 

. A conservative confidence region for multi-response ridge 

ath 

.1. Seemingly unrelated regression (SUR) model 

Since SMR model is likely to overfit for one or more of the re-

ponses, a SUR model proposed by Zellner (1962) is believed to be

uch more appropriate here. Suppose X j (for j = 1 , . . . , p) is an n ×
 j design matrix which includes all the selected significant terms.

hese significant terms can be identified from fitting the univariate

odel for the j th response. If we also assume that the X j have full

olumn rank q j ( j = 1 , . . . , p) , a SUR model can be written as 

 = Gθ + ε (8) 

here y = v ec(Y ) , cov (y ) = � ⊗ I n , θ = (θ1 , . . . , θm 

) ′ , ε =
(ε 1 , . . . , ε p ) 

′ , G is the block-diagonal design matrix which can

e written as 

 np×q = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

X 1 0 . . . 0 

0 X 2 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . X p 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

nd q = q 1 + q 2 + · · · + q p . The estimation of θ in Eq. (8) can be

btained by Maximum Likelihood (ML) estimate as, 

ˆ = (G 

′ (
) −1 G ) −1 G 

′ 
−1 y, (9)

here 
 = � ⊗ I n . However, the true covariance matrix � is gen-

rally unknown. The solution for this problem is a feasible gener-

lized least squares (FGLS) estimation. Zellner and Huang (1962)

stimated � via ˆ � = S = [ s i j ] , where s i j = 

ˆ ε ′ 
i ̂
 ε j 

n −q i −q j + q i j 
and q i j =

race [(X ′ 
i 
X i ) 

−1 X ′ 
i 
X j (X ′ 

j 
X j ) 

−1 X ′ 
j 
X i ] . Substituting ˆ � for � in Eq. (9) ,

he FGLS estimator of θ is 
ˆ ˆ θ = (G 

′ ( ̂  � ⊗ I n ) 
−1 G ) −1 G 

′ ( ̂  � ⊗ I n ) 
−1 y .

herefore, a two-stage process is applied to estimate θ : � is firstly

stimated with 

ˆ � such that ˆ �
p → �, and then 

ˆ ˆ θ is obtained. The

L estimate is obtained by iterating the process. The 
 = � ⊗ I n 

an be re-estimated with 

ˆ ˆ θ as ˆ 
2 = (y − G 

ˆ ˆ θ1 )(y − G 

ˆ ˆ θ1 ) 
′ , where 

ˆ ˆ θ1 

s the two stage estimate. Then a revised estimate of θ is 
ˆ ˆ θ2 =

(G 

′ ( ̂  
2 ) 
−1 G ) −1 G 

′ ˆ 
−1 
2 

y . Continuing in this manner, the i th iteration

s ˆ 
i = (y − G 

ˆ ˆ θi −1 )(y − G 

ˆ ˆ θi −1 ) 
′ , and 

ˆ ˆ θi = (G 

′ ( ̂  
i −1 ) 
−1 G ) −1 G 

′ ˆ 
−1 
i −1 

y .

he process stops when 

ˆ ˆ θi converges such that ‖ ˆ ˆ θi − ˆ ˆ θi −1 ‖ 2 < δ for

ome δ > 0. Such a δ is typically pre-specified. 

.2. The confidence intervals of the multi-response ridge path 

We define the ridge path for the multiple response model based

n the desirability function. A multi-response ridge path g ( θ , r )

an be defined on desirability function D as in Eq. (6) . It should

e noticed that the desirability function D ( x , θ ) is usually highly

onlinear in both θ and x : thus Peterson’s (1993) approach may

ot be appropriate. Following Carter et al. (1986) , a conservative

00(1 − α)% confidence band for max x ′ x = r 2 D (x, θ ) can be defined

s 
 

min 

θ∈ C 
{ max 

x ′ x = r 2 
D (x, θ ) } , max 

θ∈ C 
{ max 

x ′ x = r 2 
D (x, θ ) } 

] 
, (10) 

here C is a 100(1 − α)% confidence region for θ . 
The important next step is to find a closed form of C . From

imm (2002) , a test of the hypothesis H 0 : θ = θ ∗ for SUR model

 Eq. 8) can be conducted using the approximate F-test statistic

f F ∗ = (W/ v h ) /MSe, where MSe = 

(y −G 
ˆ ˆ θ ) ′ ˆ 
−1 (y −G 

ˆ ˆ θ ) 
v e , and W = ( 

ˆ ˆ θ −
∗) ′ [ G 

′ ( ̂  � ⊗ I n ) −1 G ]( 
ˆ ˆ θ − θ ∗) . Henningsen and Hamann (2007) rec-

mmend using the degrees of freedom v e = np − q and v h = q .

ere, v h = 2 is suggested instead of q . The rationale for using v h =
 in ridge analysis was given by Peterson (1993) as follows. Define

 as the factor variable space. As the radius value r goes from 0,

he optimal vector x 0 produces a ridge trace in Z extending from

he origin. Suppose this ridge trace is a ray with only moderate

urvature, a 100(1 − α)% confidence band about a mean-response

ine corresponding to a straight line in Z uses a critical value of

 F (2 , v e ) . This is because this one-dimensional straight-line ray is

ssociated with a two-dimensional linear subspace of the Z-space

 Miller, 1981 ). Simulation studies by Peterson (1993) and Peterson

nd Kuhn (2005) found that the 2 F (2 , v e ) critical value worked

ell for all their ridge analysis examples. The close form of C can

e created by F ∗ as C = { θ ∗ : F ∗ ≤ F 1 −α(v h , v e ) } . Namely, 

 = 

{ 

θ ∗ : 
( 

ˆ ˆ θ − θ ∗) ′ 
[
G 

′ ( ̂  � ⊗ I n ) −1 G 

]
( 

ˆ ˆ θ − θ ∗) 

MSe 
≤ v h F 1 −α(v h , v e ) 

} 

. 

(11) 

.3. Algorithm for confidence interval 

The ridge path and its confidence bands can be constructed

tep-by-step. Basically it consists of three steps: (1) Model fitting;

2) Ridge path estimation; and (3) Confidence interval estimation. 

tep 1. Fitting the model via SUR. There may exist some insignif-

cant terms. The R 2 
i 

and R 2 ∗ ( McElroy, 1977 ) criteria are recom-

ended to select the final SUR model. R 2 
i 

is to measure the good-

ess of fit for each y i = f (x, θi ) + ε i , while R 2 ∗ is to measure the

oodness of fit for the entire SUR model. They are defined as fol-

ows: 

 

2 
i = 1 − ˆ ε ′ 

i ̂
 ε i 

(y i − y i ) 
′ (y i − y i ) 

, (12) 

nd 

 

2 
∗ = 1 − ˆ ε ′ ˆ 
−1 ˆ ε 

y ′ [ ̂  �−1 ⊗ (I n − 1 1 ′ 
n 

)] y 
, (13) 

here y i is the mean value of y i . 1 is a column vector of n ones.

ote that R 2 ∗ takes into account the correlation structure for the

UR model. 

tep 2. Estimating the ridge path. Choose the desirability function

s the optimization measure for multiple responses. Estimate the

idge path by solving Eq. (6) . The set x : x ′ x = r 2 can be converted

nto a set of angles by using a polar-coordinate transformation A =
 

a : −π/ 2 < a i ≤ π/ 2(i = 1 , . . . , k − 2) , −π < a k −1 ≤ π} , such that 

e can obtain in polar coordinates x = rt(a ) , where a is a (k −
) × 1 vector of A . The form of t ( a ) given by Peterson (1993) is:

 

 

 

x 1 = r sin a 1 ;
x i = r 

{∏ i −1 
j=1 cos a j 

}
sin a i , i = 2 , . . . , k − 1 ;

x k = r 
∏ k −1 

j=1 cos a j . 

(14) 

Then, the optimal desirability function with the constraints

ax a ∈ A D ( rt ( a ), θ ) can be obtained by grid search once the desir-

bility function is specified. As a result, two ridge path plots, i.e.,

ax a ∈ A D ( rt ( a ), θ ) vs. r and x vs. r , can be drawn. Due to many ap-

ealing theoretical properties, we choose Gibb’s desirability func-

ion as the optimization measure Eq. (5) . 
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4

Step 3. Estimating the confidence interval. Through the ridge path,

find x 0 = x 0 ( ̂  θ, r) = arg max a ∈ A D (rt(a ) , θ ) for each r . A closed form

of region C can be estimated by Eq. (11) , then the confidence

bands min θ ∈ C {max a ∈ A D ( rt ( a ), θ )} and max θ ∈ C {max a ∈ A D ( rt ( a ),

θ )} can be obtained. Note that both min θ ∈ C {max a ∈ A D ( rt ( a ), θ )}

and max θ ∈ C {max a ∈ A D ( rt ( a ), θ )} are optimized under nonlinear

constraints. The sequential quadratic programming (SQP) approach

is proposed because it is known to be the most effective method

for the nonlinearly constrained optimization ( Nocedal & Wright,

2006 ). SQP generates steps by solving quadratic subproblems,

which are the optimization problems with a quadratic objective

function and linear constraints. Boggs and Tolle (1995) describe

the most popular manifestations of SQP, discuss their theoretical

properties and comment on their practical implementations. The

algorithm of SQP for nonlinear programming can refer to Nocedal

and Wright (2006 , page 546). 

4. Case studies and simulations 

4.1. The tire-tread example 

Derringer and Suich (1980) described the following tire-tread

example. The objective of this study is to determine the best com-

bination of three chemical components in a tire such that all four

responses are optimized. The three chemical components are: hy-

drated silica level ( x 1 ), silane coupling agent level ( x 2 ) and sulfur

level ( x 3 ), denoted by x = { x 1 , x 2 , x 3 } . The four responses taken into

account are: PICO abrasion index ( y 1 ), 200 modulus ( y 2 ), elonga-

tion at break ( y 3 ) and hardness ( y 4 ), denoted by y = { y 1 , y 2 , y 3 , y 4 } .
The directions of optimization of those four responses are not the

same, however. Among them, y 1 and y 2 are the larger-the-better

(LTB), with their target values 170 and 1300, respectively, while y 3 
and y 4 are the nominal-the-best (NTB), and the target values are

500 and 67.5. 

A central composite design (CCD) with six center runs was con-

ducted, and the design matrix and the result of this experiment

are displayed in Table 1 . Following Derringer and Suich (1980) , we

assume that the true response functions are quadratic in x , 

E(y i ) = θi, 0 + 

3 ∑ 

l=1 

θi,l x l + 

3 ∑ 

l, m = 1 

l � = m 

θi,lm 

x l x m 

+ 

3 ∑ 

l=1 

θi,ll x 
2 
l . 

where i = 1 , 2 , 3 , 4 . To estimate the ridge path, we follow the steps
mentioned in algorithm section. 
Table 1 

Data set of the experiments. 

No . x 1 x 2 x 3 y 1 y 2 y 3 y 4 

1 −1 −1 1 102 900 470 67 .5 

2 1 −1 −1 120 860 410 65 

3 −1 1 −1 117 800 570 77 .5 

4 1 1 1 198 2294 240 74 .5 

5 −1 −1 −1 103 490 640 62 .5 

6 1 -1 1 132 1289 270 67 

7 −1 1 1 132 1270 410 78 

8 1 1 −1 139 1090 380 70 

9 −1.633 0 0 102 770 590 76 

10 1.633 0 0 154 1690 260 70 

11 0 −1.633 0 96 700 520 63 

12 0 1.633 0 163 1540 380 75 

13 0 0 −1.633 116 2184 520 65 

14 0 0 1.633 153 1784 290 71 

15 0 0 0 133 1300 380 70 

16 0 0 0 133 1300 380 68 .5 

17 0 0 0 140 1145 430 68 

18 0 0 0 142 1090 430 68 

19 0 0 0 145 1260 390 69 

20 0 0 0 142 1344 390 70 

 

a  

o  

“  

“  

p  

a  

a  

o  

l  

(  

p

y

y

T

�

tep 1. Apply SUR to fit the whole model. Each of equations ini-

ially evaluated by p -values from SUR model fits, and all significant

erms are kept in the model. The resulting model is obtained by

atlab with R 2 
1 

= 96 . 91% , R 2 
2 

= 67 . 33% , R 2 
3 

= 97 . 37% , R 2 
4 

= 95 . 28%

nd R 2 ∗ = 95 . 48% . Note that the goodness of fit for y 2 is relatively

ow. 

ˆ 
 1 = 137 . 9 + 16 . 5 x 1 + 17 . 9 x 2 + 10 . 9 x 3 + 5 . 2 x 1 x 2 + 7 . 0 x 1 x 3 

+ 8 . 2 x 2 x 3 − 3 . 8 x 2 1 − 3 . 4 x 2 2 , 

ˆ 
 2 = 1195 . 2 + 268 . 2 x 1 + 246 . 5 x 2 + 139 . 5 x 3 − 119 . 7 x 2 2 + 209 . 3 x 2 3 , 

ˆ 
 3 = 406 . 3 − −99 . 7 x 1 − 31 . 4 x 2 − 73 . 9 x 3 + 16 . 8 x 2 2 , and 

ˆ 
 4 = 68 . 7 − −1 . 4 x 1 + 4 . 3 x 2 + 1 . 6 x 3 − 1 . 6 x 1 x 2 + 1 . 6 x 2 1 . 

he estimated covariance matrix under SUR model can be obtained

s 

ˆ = 

⎛ 

⎜ ⎝ 

31 . 69 49 . 04 −4 . 48 1 . 70 

49 . 04 97814 . 22 −930 . 89 21 . 17 

−4 . 48 −930 . 89 399 . 43 −1 . 10 

1 . 70 21 . 17 −1 . 10 1 . 29 

⎞ 

⎟ ⎠ 

. 

tep 2. Choosing a desirability function of Gibb et al. (2001) with

i = 0 . 025 , i = 1 , 2 , 3 , 4 , we can obtain the maximal desirability

alue for each r , max a ∈ A D ( rt ( a ), θ ). The ridge path and the con-

trained optimal coordinates are shown in Figs. 1 and 2 , respec-

ively. From Fig. 1 , the ridge path shows that the overall desirability

alue is maximized when r is around 1.0. The corresponding set-

ing is found to be x = [ −0 . 045 , 0 . 318 , −0 . 947] as shown in Fig. 2 . 

tep 3. This step constructs the confidence bounds for the ridge

ath. The 95% confidence region of ˆ θ, C , can be obtained through

q. (11) , where v h = 2 and v h = 10 . SQP is employed to solve

in θ ∈ C {max a ∈ A D ( rt ( a ), θ )} and max θ ∈ C {max a ∈ A D ( rt ( a ), θ )}.

he resulting ridge path is shown on Fig. 1 , with a 95% conser-

ative confidence band. 

This is a typical multiple response surface methodology prob-

em to locate the optimal treatment combinations. We use the

ibb et al. (2001) desirability function to measure overall op-

imal response, then follow the proposed algorithm to draw a

esirability-based multi-response ridge path step by step. From the

idge path, we can see that the overall optimum desirability value

ill be achieved when r is around 1.0. 

.2. The SOVRING example 

The SOVRING example by Eriksson, Johansson, Kettaneh-Wold,

nd Wold (2001) is discussed below to show a typical performance

f the proposed method when the sample size is large. The term

SOVRING” was used by Tano (1996) –it is a Swiss word, meaning

screening”. The data originated from a mineral sorting plant. The

urpose of the experiment is to test the effect of three input vari-

bles, raw material input Tonin ( x 1 ), magnetic grinder speed vari-

bles HS1 ( x 2 ) and HS2 ( x 3 ). Two response variables of product

utput in a mine are PAR ( y 1 ) and FAR ( y 2 ). Both responses are

arger-the-better. This data have been investigated by Ding et al.

2005) and their results will be served as a benchmark for com-

arison. 

The models for both responses fitted by SUR are: 

ˆ 
 1 = 283 . 2 + 115 . 2 x 1 + 6 . 2 x 2 + 22 . 1 x 3 + 13 . 6 x 1 x 2 + 30 . 7 x 1 x 3 

+ 18 . 4 x 2 x 3 + 24 . 7 x 2 1 − 7 . 4 x 2 2 + 10 . 1 x 2 3 , 

ˆ 
 2 = 689 . 8 + 244 . 1 x 1 + 29 . 8 x 2 − 46 . 5 x 3 + 1 . 1 x 1 x 2 − 61 . 5 x 1 x 3 

− 55 . 8 x 2 x 3 + 6 . 8 x 2 1 − 9 . 5 x 2 2 − 35 . 4 x 2 3 . 

he estimated covariance matrix under SUR model is 

ˆ = 

(
195 . 13 101 . 91 

101 . 91 1063 . 35 

)
. 
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Fig. 1. Ridge path of the tire-tread responses. 

Fig. 2. Constrained optimal coordinate plot. 
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Fig. 3. The ridge path and confidence intervals of SOVRING example. 

Fig. 4. The simulated ridge path and simultaneous coverage of proposed confidence interval. 
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Fig. 5. Simulation study: comparing the performance of different CI in different scenarios. 
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Fig. 3 shows the ridge path, the confidence band via Bonferroni

 Ding et al., 2005 ) as well as confidence band via the proposed

ethod. It is shown that the confidence band of both approaches

re nearly identical with the Bonferroni type confidence being a

ittle bit wider (especially as r increases). This indicates that the

roposed method also performs well when sample size is large. 

.3. Simulation study and comparison 

To asses the performance of the proposed method in general, a

horough simulation study is employed. The general observations

rom the simulation are: (1) the proposed confidence region

rovides approximately 95% coverage; (2) the performance of

he proposed method is more appropriate than the large-sample

ethod for small sample situations; (3) the estimators which

nclude confidence interval construction of the multiple response

idge path are instructive and meaningful for locating the optimal

etting of experiments. 

Assuming the fitted model and the related covariance in the

ire-tread example as the true model, 1,0 0 0 simulated samples are

enerated in each setting where the error follows a multivariate

ormal distribution with the same mean and covariance structure.

he ridge path and its confidence region can be easily obtained by
ollowing the proposed procedure. The simulation result is shown

n Fig. 4 . 

In Fig. 4 , the ridge path and its 95% confidence bands are plot-

ed and they are used as the benchmark. Each simulated ridge path

as estimated for each simulation sample and shown in the figure.

he simultaneous coverage proportion of proposed confidence re-

ion is about 93.4%. 

We compare our method with the large-sample method under

hree different scenarios: Scenario 1 includes all of the four re-

ponses, i.e. y = (y 1 , y 2 , y 3 , y 4 ) ; Scenario 2 has three responses, i.e.

 = (y 1 , y 2 , y 3 ) ; while Scenario 3 has two responses of y 1 and y 3 .

ote that y 1 and y 2 are the LTB type responses, and y 3 as well as

 4 are NTB type responses. The simulation results of these scenar-

os are shown in Fig. 5 . Fig. 5 (a)–(c) are for Scenario 1, 2 and 3,

espectively. 

For each sub-figure in Fig. 5 , the ridge path and its 95%

onfidence interval were obtained with the relative data set in

able 1 . Both the Bonferroni type confidence and the proposed

ype confidence are displayed; 1,0 0 0 simulated ridge paths for

ach scenario are shown in the figure. Note that both of the

arge-sample method and the proposed approach are based on

he SUR model, while the ridge path is estimated based on both

he SUR and the SMR models. It is shown that the Bonferroni

 -type confidence are much more conservative than the proposed
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ones, and the proposed method provides much smoother con-

fidence bands. Specifically, the coverage probability of the Bon-

ferroni z -type intervals are 94.2%, 99.8% and 99.6%, respectively

for Scenarios 1, 2 and 3, while the corresponding coverage prob-

abilities of conservative confidence bands are 93.4%, 96.8% and

94.9%. Though the coverage probability of both approaches are

almost same in Scenario 1, it is clearly shown in Fig. 5 (a) that

the confidence region from the large-sample approach is wider

than that of the proposed method especially when radius ranges

from 0.1 to 0.8. It also can be observed that the two types of

estimated ridge paths are different in all scenarios. This indicates

that including the non-significant terms in the model will result in

a different prediction. For example, the maximal desirability value

exists on the ridge path based on SUR model at r = 1 . 4 in Scenario

2 ( Fig. 5 b), while it appears around at r = 1 . 6 on the ridge path

based on SMR model. Although the estimated ridge paths are

different in each scenario, they are not very different from each

other. That is, using the typical multivariate regression model

versus SUR does not seem to give drastically differing results. 

Through the estimate of the ridge path and its confidence inter-

val, it is desirable that experimenters can locate the optimal com-

bination of treatments within the experimental space or decide to

run more experiments along certain directions. In Fig. 5 (a), the op-

timal treatment combination takes place at r = 1 . 0 in Scenario 1.

Fig. 5 (b) shows that the maximal desirability value is obtained at

about r = 1 . 4 in Scenario 2. For a ridge path in Fig. 5 (c), it is mono-

tone increasing along the radius and the confidence region gets

wider, it can be expected that the optimal treatment combination

may exist at a certain farther radius, which is beyond the current

experimental space. To seek the potential optimal location, exper-

imenters may conduct some experiments along the ridge path di-

rection. Furthermore, it is shown that the optimal location is differ-

ent in each scenario. This brings up another important issue that

the experimenter must be cautious in choosing the number of re-

sponses, because different numbers of responses can produce very

different ridge paths. The effects of this variation depend on the

process of interest. This is mainly in the knowledge domain and

should be explored by the practitioners. 

5. Conclusions 

A new approach for construction of a confidence region for

multiple responses with small sample size is proposed. The pro-

posed approach employs the SUR (seemingly unrelated regres-

sions) model to estimate parameters and covariance, as opposed

to the SMR (standard multivariate regression) model used in the

large-sample case. The SMR model usually over-fits for some re-

sponses. The coverage rate is too conservative for small samples.

The Gibb’s desirability function (to represent the overall desirabil-

ity for all responses) uses a quadratic region for ˆ θ by the Lawley–

Hotelling test, and conducts a three-step algorithm for constructing

the desirability function-based ridge path confidence region. Gibb’s

desirability function is merely one of these many to be applied. In

fact, any continuous and differentiable desirability function can be

applied to the proposed algorithm directly. Through real-life exam-

ples in the literature (both small and large sample cases) as well as

decent simulations, the proposed approach performs significantly

better than the existing method which is limited to large samples. 

A confidence region for the ridge path had been studied in

the literature, but mainly for univariate response problems. Lit-

tle had been known about confidence regions for the ridge path

for multiple response cases. The proposed method given here al-

lows us to construct a (relatively tight) confidence region for the

ridge path for multiple responses under small sample sizes. This

will help experimenters to locate the optimal setting in an efficient

manner. 
cknowledgments 

This research was supported by National Natural Science Foun-

ation of China (Project No. 71102140 ), National Science Foun-

ation for Distinguished Young Scholars of China (Project No.

1225006) and National Security Agent via Grant H98230-15-1-

253. We are grateful to the editor and referees, whose sharply

ocused comments were extremely helpful. 

eferences 

mes, A. E. , Mattucci, N. , Macdonald, S. , Szonyi, G. , & Hawkins, D. (1997). Qual-

ity loss functions for optimization across multiple response surfaces. Journal of
Quality Technology, 29 , 339–346 . 

rnold, S. F. (1981). The theory of linear models and multivariate analysis . New York,
NY: Wiley . 

era, S. , & Mukherjee, I. (2015). A multistage and multiple response optimization
approach for serial manufacturing system. European Journal of Operational Re-

search, 248 , 4 4 4–452 . 
oggs, P. T., & Tolle, J. W. (1995). Sequential quadratic programming. Acta Numerica,

4 , 1–51. doi: 10.1017/S096249290 0 0 02518 . 

arter, W. H. , Chinchilli, V. M. , Myers, R. H. , & Campbell, E. D. (1986). Confidence
intervals and an improved ridge analysis of response surfaces. Technometrics, 28 ,

339–346 . 
erringer, G. , & Suich, R. (1980). Simultaneous optimization of several response vari-

able. Journal of Quality Technology, 12 , 214–219 . 
ing, R. , Lin, D. K. J. , & Peterson, J. J. (2005). A large-sample confidence band for

a multi-response ridge path. Quality And Reliability Engineering International, 21 ,

669–675 . 
riksson, I. , Johansson, E. , Kettaneh-Wold, N. , & Wold, S. (2001). Multi- and

megavariate data analysis: Part I-Basic principles and applications. Umetrics
Academy, Umeå, Sweden. ISBN 91-973730-1-X . 

ibb, R. D. , Carter, W. H. , & Myers, R. H. (2001). Incorporating experimental vari-
ability in the determination of desirable factor levels. Unpublished Manuscript . 

arrington, E. C. J. (1965). The desirability function. Industrial Quality Control, 21 ,

4 94–4 98 . 
e, Z. , Zhu, P.-F. , & Park, S.-H. (2012). A robust desirability function method for

multi-response surface optimization considering model uncertainty. European
Journal of Operational Research, 221 , 241–247 . 

Henningsen, A. , & Hamann, J. (2007). A package for estimating systems of simulta-
neous equations in r. Journal of Statistical Software, 23(4) , 1–40 . 

oerl, A. E. (1959). Optimum solution of many variables equations. Chemical Engi-

neering Progress, 55 , 69–78 . 
Hosmer, D. W. , & Lemeshow, S. (2005). Applied Logistic Regression (2nd). New York,

NY: Wiley . 
unter, J. S. (1999). Discussion on “response surface methodology–current status

and future directions” by Myers, Raymond H. Journal of Quality Technology,
31 (1), 54–57 . 

eong, I.-J. , & Kim, K.-J. (2009). An interactive desirability function method to mul-

tiresponse optimization. European Journal of Operational Research, 195(2) , 412–
426 . 

huri, A. I. , & Conlon, M. (1981). Simultaneous optimization of multiple responses
represented by polynomial regression functions. Technometrics, 23(4) , 363–375 . 

im, K.-J. , & Lin, D. K. J. (20 0 0). Simultaneous optimization of mechanical proper-
ties of steel by maximizing exponential desirability functions. Applied Statistics,

49(3) , 311–325 . 
im, K.-J. , & Lin, D. K. J. (2006). Optimization of multiple responses considering both

location and dispersion effects. European Journal of Operational Research, 169(1) ,

133–145 . 
in, D. K. J. (1999). Discussion on “response surface methodology–current status and

future directions”. Journal of Quality Technology, 31 , 61–66 . 
cElroy, M. (1977). Goodness of fit for seemingly unrelated regressions. Journal of

Econometrics, 6 , 381–387 . 
Miller, R. (1981). Simultaneous Statistical Inference (2nd). Springer: New York . 

Nocedal, J. , & Wright, S. J. (2006). Numerical optimization. Springer Series in Opera-

tions Research (2nd). Springer Verlag . 
eterson, J. (1993). A general approach to ridge analysis with confidence intervals.

Technometrics, 35 (2), 204–214 . 
eterson, J. J. , & Kuhn, A. M. (2005). Ridge analysis with noise variables. Technomet-

rics, 47(3) , 274–283 . 
ignatiello, J. J. (1993). Strategies for robust multi-response quality engineering. IIE

Transanction, 25(3) , 5–15 . 

ano, K. (1996). Multivariate modelling and monitoring of mineral processes using
partial least square regression. Licentiate Thesis No. 1996:36L , Luleå University

of Technology, ISSN: 0280-8242 . 
imm, N. H. (2002). Applied multivariate analysis . Springer-Verlag . 

Vining, G. G. (1998). A compromise approach to multiresponse optimization. Journal
of Quality Technology, 30(4) , 309–313 . 

ellner, A. (1962). An efficient method of estimating seemingly unrelated regres-

sions and tests for aggregation bias. Journal of the American Statistical Associa-
tion, 57 , 34 8–36 8 . 

Zellner, A. , & Huang, D. (1962). Further properties of efficient estimators for seem-
ingly unrelated regression equations. International Economic Review, 3 , 300–313 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0002
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0002
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0003
http://dx.doi.org/10.1017/S0962492900002518
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0020
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0020
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0021
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0021
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0022
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0022
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0024
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0024
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0026
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0026
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0028
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0028
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0029
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0029
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0031
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0031
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0031
http://refhub.elsevier.com/S0377-2217(16)00082-5/sbref0031

	A confidence region for the ridge path in multiple response surface optimization
	1 Introduction
	2 Statistical inference for the ridge path
	2.1 Confidence intervals for a single response ridge path
	2.2 Confidence intervals for a multi-response ridge path

	3 A conservative confidence region for multi-response ridge path
	3.1 Seemingly unrelated regression (SUR) model
	3.2 The confidence intervals of the multi-response ridge path
	3.3 Algorithm for confidence interval

	4 Case studies and simulations
	4.1 The tire-tread example
	4.2 The SOVRING example
	4.3 Simulation study and comparison

	5 Conclusions
	 Acknowledgments
	 References


