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Uniform sliced Latin hypercube designs

Hao Chena, Hengzhen Huangb, Dennis K. J. Linc*† and Min-Qian Liud

Sliced Latin hypercube designs (SLHDs) achieve maximum stratification in each dimension, but neither the full designs nor their
slices can guarantee a good uniformity over the experimental region. Although the uniformity of the full SLHD and that of its slices
are related, there is no one-to-one correspondence between them. In this paper, we propose a new uniformity measure for SLHDs
by combining the two kinds of uniformity. Based on such a combined uniformity measure, the obtained uniform SLHDs have the
design points evenly spread over the experimental region not only for the whole designs but also for their slices. Numerical simulation
shows the effectiveness of the proposed uniform SLHDs for computer experiments with both quantitative and qualitative factors.
Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Computer experiments are widely used in modern business, engineering, and sciences. Latin hypercube designs (LHDs)
proposed by McKay, Beckman, and Conover [1] are commonly used for computer experiments because of their appealing
marginal property. An m×q matrix is called an LHD, denoted by L(m, q), if each of its q columns includes m equally spaced
levels, say 1,… ,m. Such a design achieves the maximum stratification when projected onto any univariate dimension.
Many improvements on LHDs have been investigated [2, 3], where all the factors are typically quantitative.

Recently, computer experiments with both quantitative and qualitative factors have raised increasing interests. To suit
such a computer experiment, Qian [4] first proposed a general method for constructing sliced Latin hypercube designs
(SLHDs). An n× q matrix S is called an SLHD with s slices, denoted by SL(n, q, s), if S is an L(n, q) and can be partitioned
into s slices each of which is an L(m, q) with m = n∕s after the n levels are collapsed to m equally spaced levels according
to ⌈i∕s⌉ for level i, where ⌈a⌉ means the smallest integer greater than or equal to a. SLHDs inherit the good property of
LHDs, that is, they possess maximum stratification in any one dimension as well as their slices. Further studies on SLHDs
include some constructions ensuring good projection in more than one dimension or orthogonality between columns, that
is, Yang, Lin, Qian, and Lin [5]; Huang, Yang, and Liu [6]; Cao and Liu [7]; and Yang, Chen, Lin, and Liu [8] proposed
methods to construct orthogonal and nearly orthogonal SLHDs. Yin, Lin, and Liu [9] constructed SLHDs with an attractive
low-dimensional stratification via orthogonal arrays, and Yang, Chen, and Liu [10] obtained SLHDs based on resolvable
orthogonal arrays.

There is another disadvantage of SLHDs that remains to be addressed: SLHDs usually do not possess a good uniformity
over the experimental region. In fact, the design points of an SLHD can be distributed along the diagonal or off-diagonal
line of the experimental region. The following SL(12, 2, 2), denoted by A, is a good example:

A =
(

11 8 1 6 4 10 7 12 3 2 9 5
1 3 11 7 9 6 4 2 8 10 12 5

)T

.

The scatter plot of A is presented in Figure 1, in which the symbols ‘*’ and ‘+’ denote the design points of the first slice
and the second slice, respectively.
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Figure 1. Scatter plot of A.

Figure 2. Scatter plots of B and C.

Obviously, design A achieves the maximum stratification when projected onto any one dimension, but its points are
spread almost on the off-diagonal line in the two-dimensional region. Such a disadvantage goes against the space-filling
principle and is undesirable for computer experiments. Although Yang, Chen, and Liu [10] considered such a problem, the
existence of their designs depend heavily on the existence of the resolvable orthogonal arrays, whose numbers of runs and
factors are constrained.

Note that in applications of computer experiments with both qualitative and quantitative factors, each slice of an SLHD
corresponds to one level combination of the qualitative factors. Thus, the design points under each level combination of
the qualitative factors should spread evenly over the experimental region when the response surfaces at different level
combinations of the qualitative factors are similar [11]. However, there is no one-to-one correspondence between the
uniformity of a whole SLHD and that of its slices. Two SL(12, 2, 2)’s, B and C, are displayed in Figure 2 as an example.

B =
(

9 1 5 8 12 4 2 3 10 11 7 6
10 4 6 8 11 2 9 12 5 1 7 3

)T

and

C =
(

1 7 12 4 9 6 5 10 2 8 3 11
10 12 7 1 3 6 5 4 9 11 2 8

)T

.

It is clear that B has a good uniformity for the whole design, but poor for each slice; while C has a poor uniformity
for the whole design, but good for each slice. In order to avoid the possible inconsistency between the uniformity of the
whole design and that of its slices, it is desirable to develop a method to systematically generate a uniform SLHD in terms
of both the whole design and its slices. To achieve such a goal, Ba, Brenneman, and Myers [12] obtained space-filling
SLHDs by proposing a weighted average measure of the 𝜙r values of the whole design and its slices, where 𝜙r is the
average reciprocal inter-point distance of a design. For more details, please refer to [12]. In this paper, we propose a new
optimization criterion by combining the two uniformity measures of the whole design and its slices. The design obtained
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under such a combined measure, called a uniform sliced Latin hypercube design (USLHD), not only has good uniformity
in terms of the whole design but also spreads the points of each slice evenly over the experimental region.

The remainder of this paper is organized as follows. Section 2 develops a new criterion that jointly considers the uni-
formity of the whole design and that of its slices, and then generates USLHDs based on such a new criterion. Section 3
conducts two simulated examples to illustrate the performance of USLHDs for computer experiments with both quantita-
tive and qualitative factors. Concluding remarks and discussion are provided in Section 4. Some USLHDs with small sizes
are tabulated in the Appendix.

2. Generation of uniform sliced Latin hypercube design

In this section, we first develop a combined uniformity measure in Section 2.1; in Section 2.2, algorithms for generating
USLHDs are proposed; and finally, the proper weight in the combined measure is discussed in Section 2.3.

2.1. A combined uniformity measure

Among the commonly used space-filling criteria [13], the centered L2-discrepancy
(
CD2

)
proposed by [14] is used here

for evaluating the uniformity of SLHDs because of its appealing properties, such as invariance under reordering the runs,
relabeling the factors, or reflecting the points about any plane passing through the center of the unit cube [3]. The CD2
value of a design D =

(
dij

)
with N runs and q factors in [0, 1]q, denoted by CD2(D), can be calculated by ([3])

CD2(D) =

[(13
12

)2

− 2
N

N∑
k=1

q∏
l=1

(
1 + 1

2
∣ dkl − 0.5 ∣ −1

2
∣ dkl − 0.5 ∣2

)
+ 1

N2

N∑
k=1

N∑
j=1

q∏
i=1

(
1 + 1

2
∣ dki − 0.5 ∣ +1

2
∣ dji − 0.5 ∣ −1

2
∣ dki − dji ∣

)] 1
2

.

(1)

Note that before calculating the CD2 value of a design E = (eij) with levels 1,… ,N, one should scale the levels into
[0, 1] by the following transformation

dij =
eij − 0.5

N
. (2)

For example, after scaling the levels into [0, 1] by (2), the CD2 values of A, B, and C can be easily computed through
(1), that is, CD2(A) = 0.0833, CD2(B) = 0.0498, and CD2(C) = 0.0560. Comparing these three CD2 values with the
corresponding scatter plots illustrates a fact that a design with a smaller CD2 value has a better uniformity. Thus, it is
possible to find a USLHD by looking for an SLHD with the smallest CD2 value.

For an SLHD D =
(

DT
(1),… ,DT

(s)

)T
, let CD2(D) and CD2

(
D(i)

)
be the CD2 values of D and D(i), respectively, where

D(1),… ,D(s) are the s slices of D. A combined uniformity measure can be of the following form:

CD2(D, 𝜉) = 𝜉CD2(D) + (1 − 𝜉) s

√√√√ s∏
i=1

CD2

(
D(i)

)
, (3)

where 0 ⩽ 𝜉 ⩽ 1 is a real weighting parameter and s

√∏s
i=1 CD2

(
D(i)

)
is the geometric mean of CD2

(
D(i)

)
’s. Note

that CD2(D) and CD2

(
D(i)

)
’s may have different magnitudes, which may bring unfair comparison for the two kinds of

uniformity and difficulty for determining the proper value of 𝜉. Instead of directly using the CD2 values as in (3), we need
a measure that not only has the same magnitude order for the whole design and its slices but also can reflect the uniformity
of designs. For this purpose, we introduce the uniformity efficiency (U-efficiency for short) of D, which is defined as

EU(D) =
CD2(U)
CD2(D)

, (4)

where U is a uniform design with the same parameters as D under the CD2. Many uniform designs can be found on website
http://uic.edu.hk/isci/UniformDesign/UniformDasign.html. The uniform design tables in the website were constructed by
Professor Fang, the co-founder of the uniform designs, and his collaborators via various combinatorial and computational
methods, and they are universally recognized as the ‘optimal’ uniform designs with the smallest discrepancies. It is clear
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that 0 < EU(D) ⩽ 1 and EU(D) has the same order as EU

(
D(i)

)
’s, where EU(D) and EU

(
D(i)

)
’s are the U-efficiencies of D

and D(i) for i = 1,… , s, respectively. The proposed combined uniformity measure is then of the following form:

EU(D, 𝜔) = 𝜔EU(D) + (1 − 𝜔) s

√√√√ s∏
i=1

EU

(
D(i)

)
, (5)

where 0 ⩽ 𝜔 ⩽ 1. Because CD2(U) is fixed, the larger the EU(D) is, the smaller the CD2(D) is. Thus, for a fixed 𝜔, the
objective is to find a design D∗ ∈  such that

EU(D∗, 𝜔) = max
D∈

(
EU(D, 𝜔)

)
. (6)

Here, D∗ is called a USLHD. Optimization algorithms for finding a D∗ are given in the next subsection.

2.2. Optimization algorithms

As a stepping stone to USLHDs, the neighbor of an SLHD is an important concept that will be used in the proposed
optimization procedure. Let  be the set consisting of all the SL(n, q, s)’s, then a neighbor of an SLHD D0 ∈  can be
constructed by the following algorithm.

Algorithm 1

Step 1. Randomly choose one column of D0, then from each slice of this column, choose one element such that these s
elements, say a1,… , as, are ‘equal’ in the sense that ⌈a1∕s⌉ = · · · = ⌈as∕s⌉.

Step 2. Randomly choose two elements among a1,… , as, say ai1
and ai2

, exchange their positions in the column.
Step 3. Randomly choose one of ai1

and ai2
, say ai1

, and select an element from the same column in the same slice of ai1
,

say b1

(
b1 ≠ ai1

)
, exchange their positions.

The resulting design is one neighbor of D0. It is obvious that such an exchanging procedure does not change the sliced
structure of an SLHD. This is necessary for a design to be a neighbor of an SLHD.

To search USLHDs, we use the threshold accepting (TA) algorithm first described by Dueck and Scheuer [15]. The TA
algorithm overcomes the problem of stopping in local minima for the classical local search by also accepting new solutions
that lead to slightly worse objective function values. In addition, the TA algorithm is a modification of the simulated
annealing algorithm [16] and has been shown to be simpler and more efficient than the simulated annealing algorithm in
many applications [3]. The step-by-step guidelines for the proposed optimization algorithm are given as follows.

Algorithm 2

Step 1. Give n, q, s, 𝜔, randomly generate an SL(n, q, s) as the initial design D0 using the method in [4], and calculate
EU(D0, 𝜔). Set a non-positive sequence of threshold parameters T1 < · · · < TL = 0. Denote the iteration number
by I under each Tl for l = 1,… ,L. Set two indexes l = 1, i = 1.

Step 2. Randomly construct a neighbor of D0 by Algorithm 1, denoted by Dc, and calculate EU(Dc, 𝜔).
Step 3. If EU(Dc, 𝜔) − EU(D0, 𝜔) ⩾ Tl, replace D0 by Dc; else leave D0 unchanged.
Step 4. Update i = i + 1, if i ⩽ I, go to Step 2.
Step 5. Update l = l + 1, if l ⩽ L, reset i = 1 and go to Step 2; else output Dbest = D0.

Remark 1
Setting the sequence of T1,… ,TL is a critical step. Several candidate sequences can be tried, and the one that can bring a
quicker convergence and a more remarkable improvement is adopted.

The design obtained by Algorithm 2 is called a USLHD in terms of the combined uniformity with weight 𝜔, denoted
by USL(n, q, s, 𝜔). It jointly considers the uniformity of the whole SLHD and that of its slices, so the design points of both
the whole design and each slice are distributed evenly over the experimental region.

The resulting design Dbest may be locally optimal depending on the selection of initial design. Hence, it is strongly
recommended to run the algorithm a number of times with different initial designs and then select the best one among the
resulting designs. Moreover, for an SL(n, q, s), determining what a particular value 𝜔0 should be assigned to 𝜔 so that the
USL(n, q, s, 𝜔0) is the most effective one among SL(n, q, s, 𝜔)’s is another important issue. This will be discussed next.
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2.3. Determination of the weight 𝜔

From (5) and (6), as 𝜔 decreases from 1 to 0, EU(D∗) decreases, while s

√∏s
i=1 EU

(
D∗

(i)

)
increases, where D∗

(1),… ,D∗
(s)

are the s slices of D∗. For such a trade-off, it is appropriate to avoid a low EU(D∗). So we impose a lower threshold lu on

EU(D∗), meanwhile maximizing s

√∏s
i=1 EU

(
D∗

(i)

)
, and this leads to the following multi-objective optimization problem

max
𝜔

s

√√√√ s∏
i=1

EU

(
D∗

(i)

)
, subject to EU(D∗) ⩾ lu. (7)

To solve (7), we introduce a tool called ‘𝜔-trace’, which plots EU(D∗) and s

√∏s
i=1 EU

(
D∗

(i)

)
as functions of 𝜔. For

convenience, we take a sequence of values {0, 0.05, 0.1,… , 1} for 𝜔. As 𝜔 decreases from 1 to 0, EU(D∗) will decrease to

the lower threshold lu at some 𝜔0, and at the same time, s

√∏s
i=1 EU

(
D∗

(i)

)
takes the maximum value among all the 𝜔’s at

which EU(D∗) is larger than lu. That is, 𝜔0 is just the value of 𝜔 we are looking for. The following is an illustrative example.

Example 1
Suppose S0 is a randomly generated SL(18, 3, 3), then we carry out Algorithm 2 with 21 values of 𝜔 from 0 to 1 by 0.05
to search for the desired design, that is, 𝜔i = 0.05(i − 1) for i = 1,… , 21. In the algorithm, set the threshold parameters
T1,… ,T11 to be Ti = −10−5 + 10−6(i − 1) for i = 1,… , 11. For each 𝜔i, we obtain a USL

(
18, 3, 3, 𝜔i

)
, denoted by

Si for i = 1,… , 21, and compute EU(Si) and 3

√∏3
j=1 EU

(
Si(j)

)
, where Si(j) for j = 1, 2, 3 are the three slices of Si. To

obtain the U-efficiencies, the CD2 values of the corresponding uniform designs U18

(
183

)
and U6

(
63
)
, which are 0.0506

and 0.1365, respectively, can be found from the website http://uic.edu.hk/isci/UniformDesign/UniformDasign.html, where

Un (nq) denotes a uniform design with n runs and q n-level factors. Then EU(Si) and 3

√∏3
j=1 EU

(
Si(j)

)
for i = 1,… , 21

and j = 1, 2, 3 can be computed through (4). Now, we plot the ‘𝜔-trace’, which is presented in Figure 3. As for the lower
threshold of the U-efficiency for the whole design, we take the upper five percent quartile of the U-efficiencies of 10,000
randomly generated SL(18, 3, 3)’s, which is 0.7314, that is, lu = 0.7314. Such a threshold can ensure that the obtained
USL(18, 3, 3, 𝜔) has a CD2 smaller than about 95% randomly generated SL(18, 3, 3)’s when considering the uniformity of
the whole design. From Figure 3, we find that as 𝜔 decreases to 0.45, the lower threshold has been reached; thus, we can
assign 𝜔 = 0.45 for this example.

Remark 2
Taking the upper five percent quartile of the U-efficiencies of a large number of randomly generated SL(n, q, s)’s as the
lower threshold of the U-efficiency of the whole design is not the essence; some other values can also be taken according

Figure 3. Plot of ‘𝜔-trace’, where the broken line with ‘◦’ corresponds to the U-efficiencies of the whole designs; and the broken line
with ‘∗’ corresponds to the geometric means of the U-efficiencies of the slices.
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to the user’s need, such as the upper two percent quartile, which can ensure that the obtained USLHD has a CD2 smaller
than about 98% of the randomly generated SL(n, q, s)’s when considering the uniformity of the whole design.

Remark 3
From Figure 3, we find that the lower threshold of the U-efficiency of the whole design is reached coincidentally at 𝜔 =
𝜔10 = 0.45, which is just among the initial values taken for 𝜔, that is, 𝜔1,… , 𝜔21, in Example 1. In general, we suggest
taking 𝜔 to be the smallest value among the initial 𝜔i’s that are larger than the one at which the lower bound lu is reached. To
obtain a USLHD for any given size, we suggest 0.5 for 𝜔 if we cannot afford so much computational burden to determine
the value of 𝜔. In fact, the case of 𝜔 = 0.5 gives approximately equal importance to both the uniformity of the whole
design and that of its slices, which appears to be a fair choice.

3. Simulation

In this section, we provide two simulated examples to illustrate the performance of USLHDs when used for building
Gaussian process (GP) models for computer experiments with both quantitative and qualitative factors. The computation
is implemented by MATLAB toolbox DACE [17]. Before the simulation is conducted, we briefly introduce the GP model
with both quantitative and qualitative factors. For more details, please refer to [18].

Assume that there are I quantitative factors x1,… , xI and J qualitative factors z1,… , zJ . Let 𝐱 = (x1,… , xI), 𝐳 =
(z1,… , zJ), then 𝐰 = (𝐱, 𝐳) is the input vector. The GP model assumes the true function y(𝐰) is a realization from a
stochastic process

y(𝐰) = 𝐟 (𝐰)′𝜷 + 𝜀(𝐰), (8)

where 𝐟 (𝐰) =
(
f1(𝐰),… , fp(𝐰)

)′
is a vector of pre-specified regression functions, 𝜷 =

(
𝛽1,… , 𝛽p

)′
is a vector of unknown

coefficients, and the residual 𝜀(𝐰) is assumed to be a stationary GP with mean 0 and variance 𝜎2. Because 𝐟 (𝐰) is rarely
known before the experiment, a constant 𝜇 is frequently used instead of 𝐟 (𝐰)′𝜷. Using a constant for the regression part
of the GP model is referred to as ordinary kriging (OK). Suppose zj has mj levels, j = 1,… , J. Then there are s =

∏J
j=1 mj

level combinations for the qualitative factors, say c1,… , cs. For two input values 𝐰1 =
(
𝐱1, 𝐳1

)
=

(
𝐱1, cu

)
and 𝐰2 =(

𝐱2, 𝐳2

)
=

(
𝐱2, cv

)
, 1 ⩽ u, v ⩽ s, the correlation function between 𝜀

(
𝐰1

)
and 𝜀

(
𝐰2

)
can be defined as

R(𝐰1,𝐰2) = cor(𝜀(𝐰1), 𝜀(𝐰2)) = 𝜏cu,cv
exp

{
−

I∑
i=1

𝜃i|x1i − x2i|2} , (9)

where 𝜏cu,cv
∈ (−1, 1) is the cross correlation between responses corresponding to level combinations cu and cv, and

𝜃i ∈ (0,+∞) is called a scale parameter. All these parameters are estimated by maximum likelihood. Qian, Wu, and Wu
[18] argued that the correlation function (9) is valid under the condition that the s × s matrix 𝐓 =

(
𝜏cu,cv

)
is a positive

definite matrix with unit diagonal elements, 1 ⩽ u, v ⩽ s. Several choices of the 𝜏cu,cv
in the literature satisfy this condition

[19–21]. Empirical evidence suggests using the method of [21] for modeling the cross correlation [11, 22]. Here, we will
adopt this method as well.

In a computer experiment, the output is observed at N input values given by the rows of 𝐖 =
(
𝐰1,… ,𝐰N

)T
. This yields

an N × 1 vector 𝐘 of observed outputs. Based on the data, the best linear unbiased predictor of the OK model at an untried
site 𝐰∗ can be constructed via ([2])

ŷ (𝐰∗) = �̂� + 𝐫T𝐑−1
(
𝐘 − 𝟏N �̂�

)
, (10)

where 𝐫 =
(
R
(
𝐰∗,𝐰1

)
,… ,R

(
𝐰∗,𝐰N

))T
, 𝐑 =

(
R
(
𝐰i,𝐰j

))
N×N

, 𝟏N is an N ×1 vector of ones, and �̂� =
(
𝟏T

N𝐑
−1𝟏N

)−1

𝟏T
N𝐑

−1𝐘. To assess the accuracy of the best linear unbiased predictor in (10), the root mean squared prediction error
(RMSPE) is used. For N0 testing points 𝐰∗

1, … ,𝐰∗
N0

, the RMSPE is defined as

RMSPE =

√√√√ 1
N0

N0∑
u=1

(
y
(
𝐰∗

u

)
− ŷ

(
𝐰∗

u

))2
. (11)

Example 2
In this example, we explore how the weight 𝜔 in (5) affects the prediction performance of the USLHDs with different
parameters generated by Algorithm 2. Suppose the true response surfaces for different levels of the qualitative factor are
similar to each other as follows:
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f1(x1, x2, x3, z) =
⎧⎪⎨⎪⎩

exp
(
1 + 2x1

)
+ sin

(
3𝜋

(
x2 + x3

))
, if z = 1,

exp
(
1 + 2x1

)
+ sin

(
5𝜋

(
x2 + x3

))
, if z = 2,

exp
(
1 + 3x1

)
− cos

(
7𝜋

(
x2 + x3

))
, if z = 3.

To generate USLHDs, the threshold parameters in Algorithm 2 are set to range from −10−5 to 0 by 10−6, and the iteration
number I is set to be 10,000. Before carrying out the experiment, the levels of x1, x2, x3 should be scaled into [0, 1]3 by
(2). For building the GP model, we use the OK model and the cross correlation method in [21] for (9). For validation, we
repeat 100 times for generating USLHDs from random initial SLHDs; building GP models and predicting at 300 Latin
hypercube sample points that can be generated in [0, 1]3 for x1, x2, and x3 by a function lhsdesign in MATLAB. Such 300
points are randomly divided into three groups, each of which having 100 points corresponds to one of the three levels 1,
2, 3 of z. The mean and standard deviation (SD) values of RMSPEs are provided in Table I, as well as the averaged CD2
values of the whole designs and their slices, denoted by CD2(D), and CD2

(
D(i)

)
for i = 1, 2, 3, respectively.

From Table I, we can see that USLHDs with 𝜔 = 0, that is, only focusing on the uniformity of the slices, have the
smallest mean and SD values of RMSPEs. In addition, the mean and SD values of RMSPEs show an increasing trend as
the weight ranging from 0 to 1.

Next, how about the performance of the USLHDs when the true response surfaces have significant differences? Suppose
the true response surfaces for different levels of the qualitative factor are given as follows:

f2
(
x1, x2, x3, z

)
=

⎧⎪⎨⎪⎩
sin

(
x1 + x2 + x3

)
, if z = 1,

exp
(
x1 + x2 − x3

)
, if z = 2,(

1 + 3x1

)2 + x4
2 − x3

3, if z = 3.

Table II shows a different trend of RMSEs as 𝜔 ranging from 0 to 1, and obviously, USLHDs with 𝜔 = 1, that is, only
focusing on the uniformity of the whole design, perform the best this time.

From Tables I and II, it is observed that for similar response functions corresponding to different slices, a smaller 𝜔
value brings a smaller mean of RMSPEs, that is, it is more important that the individual slices be space filling, but less
important that the overall design be space filling; while for dissimilar response functions corresponding to different slices,
a larger 𝜔 value brings a smaller mean of RMSPEs, that is, it is more important that the overall design be space filling and
less important that the individual slices be space filling. Note that this is only a conjecture/observation based on the two
cases of f1 and f2; additional study is needed to confirm this.

It should be pointed out that the real response functions are usually unknown in practice, so we suggest again to use
USLHDs with 𝜔 = 0.5 for the sake of robustness. In the next example, we will compare the prediction performance of
USLHDs with 𝜔 = 0.5, optimal SLHDs (OptSLHDs, [12]) and ordinary SLHDs [4]. Denote OptSLHDs with n rows, q
columns, and s slices by OptSL(n, q, s).

Remark 4
The boxplots of the estimated cross correlations among the responses under z = 1, 2, 3 for f1 and f2 are presented in
Figure 4(a) and (b), respectively. They will help to visualize how similar the curves are for different values of z.

Table I. RMSPEs and CD2 values for the uniform sliced Latin hypercube designs with
different parameters under f1.

RMSPEs CD2 values

Mean SD CD2(D) CD2

(
D(1)

)
CD2

(
D(2)

)
CD2

(
D(3)

)
USL(18, 3, 3, 0) 1.6287 0.2896 0.0644 0.1567 0.1566 0.1579
USL(18, 3, 3, 0.45) 1.7879 0.4909 0.0546 0.1652 0.1647 0.1648
USL(18, 3, 3, 1) 2.0513 0.6851 0.0535 0.1785 0.1787 0.1790

USL(24, 3, 3, 0) 1.3885 0.2823 0.0522 0.1206 0.1215 0.1216
USL(24, 3, 3, 0.5) 1.5944 0.4370 0.0428 0.1307 0.1303 0.1307
USL(24, 3, 3, 1) 1.7833 0.4940 0.0421 0.1436 0.1439 0.1426

USL(27, 3, 3, 0) 1.3268 0.2353 0.0474 0.1088 0.1090 0.1096
USL(27, 3, 3, 0.5) 1.5381 0.3707 0.0391 0.1180 0.1178 0.1173
USL(27, 3, 3, 1) 1.7543 0.5233 0.0384 0.1320 0.1316 0.1321

RMSPEs, root mean squared prediction errors; SD, standard deviation.
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Table II. RMSPEs and CD2 values for the uniform sliced Latin hypercube designs with
different parameters under f2.

RMSPEs CD2 values

Mean SD CD2(D) CD2

(
D(1)

)
CD2

(
D(2)

)
CD2

(
D(3)

)
USL(18, 3, 3, 0) 1.5511 1.3046 0.0644 0.1590 0.1558 0.1550
USL(18, 3, 3, 0.45) 1.0854 1.1367 0.0542 0.1634 0.1643 0.1628
USL(18, 3, 3, 1) 0.9420 0.9665 0.0528 0.1789 0.1814 0.1778

USL(24, 3, 3, 0) 0.9520 1.1629 0.0520 0.1202 0.1210 0.1218
USL(24, 3, 3, 0.5) 0.5651 0.7514 0.0425 0.1309 0.1304 0.1301
USL(24, 3, 3, 1) 0.4103 0.2905 0.0419 0.1446 0.1442 0.1448

USL(27, 3, 3, 0) 0.5290 0.8000 0.0473 0.1087 0.1092 0.1087
USL(27, 3, 3, 0.5) 0.4147 0.5385 0.0387 0.1172 0.1173 0.1176
USL(27, 3, 3, 1) 0.3050 0.1033 0.0381 0.1295 0.1303 0.1302

RMSPEs, root mean squared prediction errors; SD, standard deviation.

(a) (b)

Figure 4. (a) Boxplots of the estimated cross correlations among the responses under z = 1, 2, 3 for f1; (b) boxplots of the estimated
cross correlations among the responses under z = 1, 2, 3 for f2.

Table III. RMSPEs and CD2 values for uniform SLHDs, optimal SLHDs, and SLHDs under f3.

RMSPEs CD2 values

Mean SD CD2(D) CD2

(
D(1)

)
CD2

(
D(2)

)
CD2

(
D(3)

)
USL(18, 3, 3, 0.5) 1.8109 0.8853 0.0541 0.1655 0.1669 0.1664
OptSL(18, 3, 3) 1.8689 1.0055 0.0603 0.1634 0.1634 0.1633
SL(18, 3, 3) 1.9570 0.8261 0.0802 0.1812 0.1820 0.1811

USL(24, 3, 3, 0.5) 1.5071 0.5834 0.0427 0.1299 0.1296 0.1299
OptSL(24, 3, 3) 1.6290 0.7999 0.0489 0.1278 0.1283 0.1283
SL(24, 3, 3) 1.7051 0.5140 0.0684 0.1480 0.1469 0.1458

USL(27, 3, 3, 0.5) 1.4683 0.2482 0.0390 0.1177 0.1178 0.1179
OptSL(27, 3, 3) 1.4616 0.5711 0.0448 0.1155 0.1160 0.1159
SL(27, 3, 3) 1.6368 0.4197 0.0643 0.1348 0.1344 0.1335

RMSPEs, root mean squared prediction errors; SD, standard deviation; SLHDs, sliced Latin hypercube designs.

Example 3
Suppose the true response surfaces for different levels of the qualitative factor are

f3(x1, x2, x3, z) =
⎧⎪⎨⎪⎩

exp
(
1.5x1

)
+ cos

(
3𝜋

(
x2 + x3

))
, if z = 1,(

1 + 2.5x1

)
− sin

(
5𝜋

(
x2 + x3

))
, if z = 2,

exp
(
1 + 2x1

)
+ cos

(
7𝜋x2

)
− sin

(
7𝜋x3

)
, if z = 3.
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Figure 5. Boxplots of the estimated cross correlations among the responses under z = 1, 2, 3 for f3.

The methods for building GP models and predicting are just the same as those in Example 2. The mean and SD values of
RMSPEs are provided in Table III, as well as the averaged CD2 values of the whole designs and their slices, denoted by
CD2(D), and CD2

(
D(i)

)
for i = 1, 2, 3, respectively.

It can be seen from Table III that both USLHDs and OptSLHDs outperform the random SLHDs, and USLHDs are
comparable with OptSLHDs except that OptSLHDs have a little larger SD values.

Remark 5
The boxplot of the estimated cross correlations among the responses under z = 1, 2, 3 for f3 is presented in Figure 5.

4. Concluding remarks and discussion

In this paper, we proposed a combined uniformity measure by combining the uniformity of the whole SLHD and that of
its slices together, with a weighting parameter. This is a compromise between the two kinds of uniformity. Based on such
a criterion, we constructed USLHDs by Algorithm 2. The obtained designs not only have good uniformity for the whole
designs but also spread the design points of the slices evenly over the experimental region. To determine the proper value
for the weighting parameter 𝜔 in the combined uniformity measure, a concept U-efficiency and a tool called ‘𝜔-trace’ were
provided.

Yang, Lin, Qian, and Lin [5]; Huang, Yang, and Liu [6]; and Cao and Liu [7] mainly constructed orthogonal and nearly
orthogonal SLHDs, but orthogonality does not guarantee a good uniformity. Yang, Chen, Lin, and Liu [8] generated orthog-
onal SLHDs and improved their overall space-filling property under the maximin distance criterion, but the uniformity of
the slices was not considered. Yin, Lin, and Liu [9] only focused on low-dimensional projective stratification, and Yang,
Chen, and Liu [10] only considered the uniformity of the whole SLHDs. Ba, Brenneman, and Myers [12] obtained space-
filling SLHDs, which share some similarities with the proposed USLHDs. For example, not only the uniformity of the
whole design but also the uniformity of their slices are considered. However, the uniformity measures are not the same, that
is, 𝜙r extended from maximin distance measure in [12] and U-efficiency based on CD2 in this paper, respectively. In addi-
tion, we also presented the ‘𝜔-trace’ method to determine the proper weight value for a USLHD, while they determined
the weight subjectively.

The simulations indicated that USLHDs with better uniformity in terms of whole design tend to have better performance
when the real response functions have big differences from each other, and USLHDs with better uniformity in terms of
slices probably result in smaller RMSPEs when the real response functions are similar to each other. Thus, we suggest
adopting 𝜔 = 0.5 for the sake of robust application because the real response functions are usually unknown. The results in
Example 3 showed that USL(n, q, s, 0.5)’s are comparable with OptSLHDs [12], and both of them outperform the random
SLHDs [4]. The implementation of the proposed method and all examples in this paper are conducted by MATLAB codes,
which are available from the authors upon request.

Appendix: Design tables of some uniform sliced Latin hypercube designs

Given subsequently are some USLHDs with small sizes because the limited space and long computing time. For more
designs, we can provide the MATLAB codes.
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USL(12, 2, 2, 0.5) =
(

3 12 1 10 5 8 7 9 6 2 11 4
6 4 9 7 1 12 5 2 8 3 10 11

)T

,

USL(12, 3, 2, 0.5) =
⎛⎜⎜⎝

2 10 4 6 7 11 3 5 9 1 8 12
5 11 7 1 10 3 2 12 9 8 4 6
2 10 12 8 3 5 4 6 1 9 11 7

⎞⎟⎟⎠
T

,

USL(18, 2, 3, 0.5) =
(

7 2 11 14 18 5 8 12 6 1 13 17 9 3 10 15 16 4
10 15 18 2 9 5 1 6 17 8 11 14 13 3 7 16 4 12

)T

,

USL(18, 3, 3, 0.5) =
⎛⎜⎜⎝

5 9 17 3 12 14 6 13 11 8 18 2 10 1 7 16 15 4
8 1 6 17 14 12 13 2 18 7 10 5 9 11 15 16 4 3
18 12 3 4 9 15 2 5 17 8 11 14 1 10 13 7 16 6

⎞⎟⎟⎠
T

,

USL(24, 2, 3, 0.5) =
(

11 17 3 14 22 6 9 21 1 19 13 24 12 18 7 4 20 8 10 16 2 23 5 15
15 7 3 4 22 16 21 10 11 2 18 14 9 20 6 23 17 13 1 12 19 5 8 24

)T

,

USL(24, 3, 3, 0.5) =
⎛⎜⎜⎝

17 10 22 6 2 21 7 13 24 5 18 19 9 1 14 12 23 4 3 20 8 11 15 16
8 17 3 19 11 23 6 14 16 2 5 12 24 15 20 9 10 7 22 18 13 4 1 21
5 1 18 15 23 10 8 20 13 3 22 7 21 11 4 17 2 19 6 24 14 9 12 16

⎞⎟⎟⎠
T

,

USL(27, 2, 3, 0.5) =
(

24 20 10 14 27 2 5 8 16 3 19 9 4 23 26 18 11 15 25 12 22 6 13 7 21 1 17
24 5 2 20 11 25 8 15 17 4 14 23 18 7 19 26 12 1 3 27 16 21 10 6 22 13 9

)T

,

USL(27, 3, 3, 0.5) =
⎛⎜⎜⎝

3 19 12 6 26 9 13 23 17 14 4 22 25 2 21 7 11 18 10 8 27 1 15 24 5 20 16
25 1 18 8 10 4 13 19 24 2 20 14 26 7 6 22 11 17 27 12 15 16 23 5 3 21 9
7 10 19 24 18 14 5 2 25 23 21 26 15 16 6 9 1 11 17 27 8 13 4 20 3 22 12

⎞⎟⎟⎠
T

.
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