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Construction of Orthogonal Nearly Latin
Hypercubes
David M. Steinberga and Dennis Linb*†
Orthogonal Latin hypercubes (OLHs) are available for only a limited collection of run sizes. This paper presents a simple
algorithm for constructing orthogonal designs that are nearly Latin hypercubes. The algorithm is based on the approach
developed by Steinberg and Lin for OLH designs and can generate designs for all run sizes for which a Plackett-Burman
design exists. The designs have good univariate projections, although they are not perfectly uniform. They also provide good
spatial coverage in higher dimensions. The great gain in sample size flexibility requires just a small sacrifice in the univariate
spread of points. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

L
atin hypercube designs (LHDs) were proposed by McKay, Beckman, and Conover2 for exploring properties of a computer
simulator subject to uncertainty about the values of its inputs. They are now a popular choice of factorial design for computer
experiments.3–5 An LHD with n runs for a system with k inputs is an n× k matrix D, each of whose columns is uniformly spaced.

The LHDs, by construction, offer good coverage of each univariate axis. However, there are no guarantees of higher-dimensional
properties. Much subsequent research has been devoted to augmenting the basic structure by additional criteria that relate to
multivariate properties. In screening settings, when the goal is to identify the most important among a large number of inputs, first-order
orthogonality may be a useful property for an LHD. Ye6 was the first to develop methods for generating orthogonal LHDs (OLHDs).
Steinberg and Lin1 showed the existence of nearly saturated OLHDs, but only for very special choices of n. A number of subsequent
papers have added further construction algorithms, but still there is no method for quite general values of n and k< n.7–12

Table I lists some of the known cases where an n-run OLHD (n even) can be constructed for as many as k factors. See Sun, Liu, and
Lin12 for some additional cases in which n is larger by 1 than some of the run sizes in Table I. Despite the increasing sophistication of
the construction methods, the collection of sample sizes is still rather limited, and for many sample sizes, only a small number of
factors can be included.

We are convinced that OLHDs will be most useful in factor screening settings, where the goal is to identify the most important among
a rather large number of potential factors. The small number of factors for many current constructions is thus a major limitation.

In this paper, we present a simple method for generating first-order orthogonal designs for any value of n with a known Plackett
and Burman13 (hereafter PB) two-level orthogonal design. The designs can accommodate as many as n-4 orthogonal factors, although
we recommend limiting the number of factors to at most about n/2. The designs have good space-filling properties, at the expense of
a slightly non-uniform spread of points on each factor axis. We call them ‘orthogonal nearly Latin hypercube designs’. PB designs exist
for many multiples of 4 (Hedayat, Sloane and Stufken,14) so this greatly extends the realm of application for orthogonal designs in
computer experiments.
2. Orthogonal designs that are nearly Latin hypercubes

2.1. The construction algorithm

In this section, we present our construction algorithm. As in our previous work1 (hereafter SL), the method is based on rotating sets of
columns from an orthogonal two-level design D to obtain an orthogonal design with all factors in the range [�1, 1]. Here, we apply
this idea to obtain designs with much more flexible run sizes than those in SL. Our construction algorithm has the following steps:
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Table I. Known constructions for orthogonal Latin hypercube designs with
n runs and up to k factors

Runs Maximal factors Source

16 12 SL1

32 16 SLL12

48 12 LBS8

64 32 LMT9

80 12 LBS8

96 24 LBS8

112 12 LBS8

128 48 LBS8

144 24 LBS8

160 24 LBS8

176 12 LBS8

192 48 LBS8

208 12 LBS8

224 24 LBS8

240 12 LBS8

256 248 SL1

512 256 SLL12

1024 512 SLL12

Sources: Steinberg and Lin (SL1); Sun, Liu, and Lin (SLL12); Lin, Mukerjee, and
Tang (LMT9); Lin, Bingham, and Sitter (LBS8).
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• Step 1: Divide the columns of D into B disjoint sets D1,…,DB with tk columns in set Dk.
• Step 2: For an appropriate tk× tk rotationmatrix Rk, map the tk columns inDk into tk new columns byDk↦DkRk. The new design is then

DR ¼ D1R1⋮⋯⋮DBRB½ � (1)

• Step 3: Delete some of the resulting columns if there are more columns than experimental factors. See Section 3.2 for advice on
which columns to delete.

• Step 4: The rotation will result in DR having entries that fall outside [�1, 1]. Divide DR by its largest element (in absolute value) to
scale the design back to the unit hypercube.

As Rk is a rotation matrix, Rk ′Rk= I. Thus, the algorithm generates orthogonal columns, and hence first-order orthogonal designs,
whenever the initial design D is orthogonal. As in SL, we use the sequence of rotation matrices that was proposed by Beattie and
Lin.15–17 These matrices rotate columns in sets of size t=2m and are defined by the following recursive scheme. Let

V0 ¼ 1½ � (2)

Vmþ1 ¼
Vm � 22

m� �
Vm

22
m� �
Vm Vm

" #
(3)

It is easy to check that Vm is orthogonal. The entries of Vm are 1, ± 21,…, ± 2t� 1, where t=2m. Each of these integers, with either a
plus or minus sign, appears exactly once in each column. Simple re-scaling converts Vm into a rotation matrix,

Rm ¼ 1=amð ÞVm (4)

with a0 = 1 and am ¼ ∏m
j¼1 1þ 22j

� �h i1=2
for m= 1, 2,…. For example,

R1 ¼ 1ffiffiffi
5

p 1 �2

2 1

� �
(5)

and

R2 ¼ 1ffiffiffiffiffi
85

p

1 �2 �4 8

2 1 �8 �4

4 �8 1 �2

8 4 2 1

2
6664

3
7775 (6)

SL limited consideration to cases where D was a saturated 2p� q design, and the number of runs n=2p� q can be written in the form

22
m
. For these special run sizes, SL showed that the columns of the original design matrix could be divided into blocks Dk of t=2

m
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columns, with each Dk a single replicate of a full 2t factorial design. When Dk is a full 2t factorial, DkRm is guaranteed to be a Latin
hypercube, and the complete rotated design is an OLHD.
2.2. Rotated Plackett–Burman designs

Here, we extend SL by allowing D to be any PB design. The rotated design will still be orthogonal for first-order effects. The number of
columns in each set Dk will still be a power of 2. However, from the structure of the PB designs, Dk will typically not be full factorial
designs. Rather, Dk will be a subset of a factorial design and might include some replicated rows. Alternatively, it could include all the
factorial points but with partial replication. Consequently, the design columns generated by rotating Dk will not have the uniform
spread that is required in an LHD.

Let PBn denote the PB design with n runs and n-1 orthogonal columns. We can divide the columns into any collection of disjoint
sets whose size is a power of 2. Note that the sets do not have to be all of the same size. Thus, in general, our rotated design can
include up to n-4 first-order orthogonal columns.
2.2.1. Example. Consider generating a 40-run design using sets Dk with eight columns. Each set has 256 possible distinct rows, and
most of the rows in eight-factor projections of PB40 are distinct. However, it is also common to find at least two repeated rows in
eight-factor projections, and these repeat rows will generate repeat rows in DkR3 as well. Therefore, the columns of DkR3 will have
close to 40 distinct values.

The univariate projections of DkR3 will not have the uniform distribution required of an LHD because Dk has only some of the rows
of the full 28 factorial. However, the values obtained will typically have nearly a uniform distribution on [�1,1]. Thus, the design will
maintain the orthogonality with only a small penalty on achieving perfectly uniform one-factor projections. The quality of the one-
factor projections can be seen in Figure 1, which shows Q–Q plots for four factors in a 40-run design rotated in sets of eight. In
the next section, we explore the properties of the design and show how they are related to projection properties of the PB design.

We can allocate the 39 columns of PB40 to four sets of eight columns each, with seven columns ‘left over’. The resulting rotated
design has 32 factors and 40 runs. We could create an additional set using any four of the final seven columns and rotating with R2.
However, the matrix Dk for such a set can have only 16 distinct rows, so the resulting columns of DkR2 will have at most 16 distinct
entries. The additional four design columns will have considerable replication.

Which matrix Rm should be used to rotate the columns of the PB design? With PB40, options are R2, R3, R4, and R5, corresponding to
groups of 4, 8, 16, or 32 columns, respectively. As we will show in the next section, increasing m (say combining two sets of eight into
a single set of 16) leads to only small perturbations in the design points. So it will have a limited effect on most design properties.
However, it will reduce (and typically eliminate) the presence of exact repeat values for any rotated factor. Elimination of repeat values
is often important in computer experiments, so in general, it is desirable to make m the largest integer for which 2m< n.
Figure 1. Uniform Q–Q plots for four factors from a rotated 40-run Plackett–Burman design.
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Using large values of m may leave many ‘unused’ columns. The remaining columns could be rotated in smaller sets. For example,
with a 60-run design, our recommendation would be to rotate groups of 32 columns, and only one such group could be formed,
leaving 27 columns out of the rotated design. From these columns, one could rotate two additional sets, one with 16 columns and
another with 8 columns, generating a rotated design with 56 columns.
3. Rotation designs and Plackett–Burman projections

The properties of our rotated PB designs are closely related to the projection properties of the original PB design. That relationship
can be exploited to improve the grouping of PB columns into rotation sets and also when selecting which columns from a rotated
design to keep and which to drop.
3.1. Univariate properties

Consider the columns formed from the mapping Dk↦DkRm= (1/am)DkVm. Denote the jth column of DkVm by DV,u. This column is a
linear combination of the 2m columns in Dk with weights given by the jth column of Vm, which are the numbers 1, 2,…, 2t� 1,
(t=2m), possibly multiplied by �1. Sorting the columns of Dk by the corresponding powers of 2, we can write

DV;j ¼
Xt

i¼1

si2
t�ici (7)

where ci is a column in Dk and si is either 1 or �1. Note that the sum is organized so that c1 is the column that is multiplied by the
highest power of 2.

The binary expansion shows that the sign of each entry in DV,u is completely determined by the value of c1. Similarly, whether the
entry is in the first versus second (or third versus fourth) quartile of DV,u is determined by c2. The orthogonality of the PB design thus
guarantees that exactly 1/4 of the entries of DV,u will be in each quartile. In general, if we divide the DV,u axis into 2r bins of equal width
(r ≤ t), the number of design points in each bin will be determined by the projection of the PB design on the columns c1, c2,…, cr. For
example, the first four columns determine how many points will be in each of 16 equal-width bins. For many practical design sizes,
this should be sufficient resolution for looking at uniform spread of a rotated design column. Thus, a natural objective is to arrange
the PB columns in sets for which each group of four columns has a ‘balanced’ four-factor projection, with nearly equal numbers of
repetitions of each of the 16 factorial points.

In a rotation set with eight factors, there are 256 possible values. So each entry of DV,u is determined to the nearest 2� 8 of the
range of possible values. Using sets of 16 columns rather than eight can affect the resolution only at higher levels, shifting points
within these 256 bins, but not moving any points to another bin. The eight columns with the largest entries in the corresponding
row of R4 will dominate the entries in DV,u. Hence, our comment in the previous section that using sets of 16 columns with PB40
rather than sets of eight columns will achieve distinct values for the levels of each factor but will leave previously identical levels
close together.
3.2. Bivariate properties

The relationship between pairs of rotated columns is also determined by projection properties of the PB design. Consider a second
rotated column of DkVm and write it as

DV;j ¼
Xt

i¼1

si2
t�idi (8)

Look at the scatterplot ofDV;j′ versus DV,u, divided into four quadrants. The quadrant of each point on the DV,u axis is determined by

c1 and on the DV;j′ axis by d1. By construction, these are different columns of the PB design, so we are assured that exactly 1/4 of the

points will fall in each quadrant.
We can divide the plot into 16 squares by using four intervals on each axis. The number of points in each square will be determined

by the projection of the PB design onto the columns c1, c2, d1, and d2. Thus, balanced projections are also desirable to achieve rotated
designs with good spatial coverage in each two-factor projection.

The least balanced two-factor projections occur for adjacent columns in the rotated design. From the construction of Vm, each such
pair of columns in DkVm will have c1 = d2 and c2 = d1. Although these two columns are orthogonal, this two-factor projection will have
points in only four of the 16 squares. If columns can be dropped from the rotated design, we recommend deleting one column from
each of these pairs.

Figure 2 shows scatterplots from a rotated PB40 design. The first two plots show good spatial coverage. The third plot shows factor
1 with factor 4. The column with the highest power of 2 for factor 1 (4) has the fourth highest power of 2 for factor 4 (1). This plot
shows some ‘clumping’ of the points. Factor 1 and factor 2 are adjacent columns, and the points are limited to four squares.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 1397–1406



Figure 2. Scatterplots for four pairs of factors from a rotated 40-run Plackett–Burman design.
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4. Four-factor projections of Plackett–Burman designs

Section 3 shows that the properties of rotated PB designs depend on the underlying projection properties of the PB design. The
spread of values in a rotated column reflects the pattern of points in the three or four PB columns that lead its expansion. The
bivariate projection of two rotated columns depends strongly on four PB columns, the two columns that lead the expansion of each
of the rotated columns. Thus, properties of four-factor projections of PB designs are relevant to determining the properties of our
rotated designs. Moreover, knowledge of four-factor projections could be instrumental in grouping the PB columns prior to rotation
so as to create rotated designs with better properties.

Only limited research has been carried out on the projection properties of PB designs and most of that has been limited to three-
factor projections. Moreover, the research has focused primarily on whether or not projections include all possible level combinations,
without regard to whether each one appears roughly the same number of times. See Cheng18 and Tyssedal19 for good summaries.

We have carried out some initial empirical investigation on the properties of four-factor projections of PB designs. In our work, we
have used the 40-run, 44-run and 48-run designs corresponding to the Hadamard matrices provided by N. J. A. Sloane on his web site
(www.research.att.com/njas/hadamard/index.html). These designs were constructed by the Paley20 method. We used the 52-run
design generated by JMP.21 We give a brief summary here.

With the 40-run design, there are 835 four-factor projections that are fivefold replications of a 24� 1 design with only eight distinct
points. A further 1140 projections have only 12 distinct points, five repeated twice, six repeated four times, and one occurring six
times. Another 2736 projections have 15 distinct runs, 10 repeated twice and five repeated four times. All the other projections
include all 16 points. The most even distribution has two replicates of the 24 design together with a single replicate of a 24� 1 fraction;
this pattern occurs for 36,480 projections. A slightly less balanced projection pattern (two singletons, six each with two and three
replicates and two with four replicates) occurs for 31,920 projections.

For the 44-run design, there are only four distinct projection types. Three of the four include all 16 points, and about 93% of the
projections fall into one of those three types. The most balanced projection pattern has five points duplicated, 10 points in triplicate,
and one point that occurs four times. This design is composed of two replicates of the 24 design together with a single replicate of a
12-run PB design. Of the other patterns that include all the points, one has three singletons, and one point that occurs five times,
whereas the other has just one singleton and no points that occur more than four times.

The 48-run design has seven projection patterns, four of which account for 88% of all four-factor projections. No projections
include three replicates of the 24 factorial design. The most balanced projections have eight points replicated three times, four points
replicated twice, and four points replicated four times; this pattern occurs for nearly 40% of the projections. These designs are
composed of two replicates of the 24 design along with 16 runs from one of the irregular Hadamard matrices. These points follow
one of two patterns. One possibility is that the points replicated three times form a 24� 1 fraction in which a two-factor interaction
is aliased; those replicated four times have two runs at each level for each factor, and all factors are orthogonal except the pair that
was aliased in the first set. In the second option, the points replicated three times form a 23 design with the fourth factor held
constant; those replicated four times have the fourth factor at its opposite level with all other factors at two levels and orthogonal
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 1397–1406
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to one another. Another common projection pattern has six points, rather than eight, replicated three times, with one point replicated
just twice and another five times. In 6% of the projections, one of the 16 factorial points does not occur.

The 52-run design presents a more varied and richer picture. There are nearly 250,000 four-factor projections and 18 distinct
projection patterns. More than 95% of the projections include all 16 points. Only 95 projections have 12 or 13 distinct points, and
one of these patterns has a single run replicated eight times. The best balance is achieved by 21% of the projections and has five
points repeated four times, 10 points repeated three times, and one point repeated twice. The structure of these projections can
be described in terms of the single run with two replicates; the five runs with four replicates are the four runs that differ from it
for exactly one factor and the run that differs from it for all four factors. All other projections have at least one point with at least five
replications.

We have used the aforementioned characterizations to look for good projections sets in rotating PB designs. However, we do not
have a formal algorithm that can be implemented. Further work is needed to explore the four-factor projection properties of PB
designs and to fully exploit them for creating good rotated PB designs.
5. Rotated foldover designs

Orthogonality properties of factorial designs can be enhanced by the foldover technique, in which an n-run design matrix D is
complemented by its mirror image �D. If the columns of D are orthogonal to one another, then in the combined design, with 2n
runs, the columns are also orthogonal to pure quadratic effects and to two-factor interaction columns. As shown in Steinberg and
Lin,1 rotation preserves these additional orthgonalities. One additional factor can be added to the design, which is 1 for all rows in
D and �1 for all rows in �D.
Figure 3. Borehole model illustration.
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6. Case study: borehole model

The borehole model has been studied by a number of different approaches: Harper and Gupta,22 Worley,23 Morris et al.,24 An and
Owen,25 and Fang and Lin26. In this study of flow rate of water from an upper aquifer to a lower aquifer, the aquifers are separated
by an impermeable rock layer, but there is a borehole through that layer connecting them. Illustrated in Figure 3 is a model used to
describe the flow of water through the borehole from the ground surface. The model is based on assumptions of (i) no groundwater
gradient; (ii) steady-state flow from the upper aquifer into the borehole and from the borehole into the lower aquifer; and (iii) laminar,
isothermal flow through the borehole. In this model, the response y is the flow rate through the borehole and can be expressed as

y ¼ 2πTu Hu � Hl½ �
ln r

rw

� �
1þ 2LTu

ln r=rwð Þr2wKw
þ Tu

Tl

h i (9)

where the eight-input variables and their ranges are described in Table II.
For illustration and comparison, the case for a design with run size n= 40 is presented in this section. The proposed orthogonal

nearly LHD (Section 2.2) is displayed in Appendix A. We compared it with two other LHDs—the maximin LHD,27 which maximizes
the minimal distance between any two design points, and the conventional LHD. The maximin LHD is obtained from the R-package
via the command ‘lhs’. For random LHD, 1000 designs were generated by random permutation and evaluated.

For each design, data were generated from the ‘true model’. Then a first-order linear model with eight (8) variables was fitted. Four
comparison criteria were then evaluated: R2, CN= condition number, VIF = the variance inflation factor, and SD= standard deviation of
the estimated parameters.

The results are shown in the succeeding text. Note that the random LHDs generate 1000 values for each criterion and are displayed
via a density curve or an average. The general observations are as follows:

• The R2 for the proposed design is superior to the maximin LHD and greater than most random LHDs, as shown in Figure 4.
• The CN for the proposed design is better (lower) than the maximin LHD and almost all random LHDs, as shown in Figure 5.
• The VIFs for the proposed design always equal the optimal value of 1, because of its orthogonality. The VIFs for the maximin LHD
range from 1.03 to 1.25.

• The SDs for the proposed design are smaller than for the other designs for all parameters, as shown in Table III.
Table II. Borehole study: the variables, their units, and their ranges

Symbol Description Units Lower limit Upper limit

rw Radius of borehole m 0.05 0.15
r Radius of influence m 100 50,000
Tu Transmissivity of upper aquifer m3/yr 63,070 115,600
Tl Transmissivity of lower aquifer m3/yr 63.1 116
Hu Potentiometric head of upper aquifer m 990 1110
Hl Potentiometric head of lower aquifer m 700 820
L Length of borehole m 1120 1680
Kw Hydraulic conductivity of borehole m/yr 9855 12,045
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Figure 4. Comparison on R
2
for random Latin hypercube design (LHD), maximin LHD, and orthogonal nearly LHD.
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Figure 5. Comparison on condition number for random Latin hypercube design (LHD), maximin LHD, and orthogonal nearly LHD.

Table III. Borehole study: the standard errors for each term in the first-order model

Parameters Random LHD Maximin LHD ONLHD

Intercept 78.8 91.9 63.1
rw 63.3 69.3 50.7
r 1.26 × 10� 4 1.42 × 10� 4 1.01 × 10� 4

Tu 1.20 × 10� 4 1.32 × 10� 4 0.97 × 10� 4

Tl 0.0527 0.0581 0.0422
Hu 0.119 0.141 0.096
Hl 0.0527 0.0586 0.0422
L 0.0113 0.0130 0.0091
Kw 0.00289 0.00314 0.00231

For the random LHDs, the average standard error is shown.
LHD: Latin hypercube design; ONLHD: orthogonal nearly Latin hypercube design.

Table IV. Borehole study: correctly and falsely identified factors from fitting a first-order model

Added factors Identified Random LHD Maximin LHD ONLHD

10 Correct 4.8 4 6
10 False 0.54 1 0
20 Correct 3.9 3 6
20 False 0.95 0 3

For the random LHDs, the average numbers are shown.
LHD: Latin hypercube design; ONLHD: orthogonal nearly Latin hypercube design.
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In general, the proposed design outperforms the maximin LHD and the random LHDs, on the basis of these four criteria. We also
compared the designs with respect to their factor screening ability. To do so, we added factors to the design that have no effect
on the outcome. The first set of designs had 10 additional factors and are at the size we advocate, with about n/2 factors. The second
set of designs included 20 additional factors and so had more factors than we recommend for screening with orthogonal nearly LHD
designs. First-order regressions were fitted, and factors were screened on the basis of achieving a p-value of 0.05 or less. We recorded
for each design how many of the eight actual factors were identified and how many of the extra factors were falsely identified. The
results are shown in Table IV. With 10 additional factors, the orthogonal nearly LHD is clearly the most successful. With 20 additional
factors, it continues to identify the most true factors but now also suffers from false identifications. This design cannot avoid having
some pairs of factors with two-factor projections concentrated in just four cells of a 16-cell grid.
7. Concluding remarks

Our orthogonal nearly Latin hypercube designs are rotations of PB designs and greatly extend the class of designs proposed by Steinberg
and Lin.1 These designs have great sample size flexibility and can be appliedwhenever there is a known PB design (almost any sample size
n that is a multiple of 4), whereas the original SL designs could be used for only very special sample sizes. Like SL, the rotated PB designs
6
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are first-order orthogonal. The designs are not Latin hypercubes, but they achieve nearly uniform spread for each factor. The designs are
nearly saturated and can include as many factors as the largest multiple of 4 that is smaller than n. However, we advise using not more
than half this number of factors to avoid bivariate projections with poor spatial coverage. The aforementioned recommendation follows
our results that show how the quality of the two-factor projections is related to projections of the initial PB design. It is also supported by
the screening results of our case study, where including too many factors led to a large number of false identifications.

Acknowledgements

We thank the reviewers for their constructive comments that have led to an improved version and Mr. Weijie Shen, who performed
the computations in Section 6 for us.
References
1. Steinberg DM, Lin DKJ. A construction method for Latin hypercube designs. Biometrika 2006; 93:279–288. DOI: 10.1093/biomet/93.2.279.
2. McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a

computer code. Technometrics 1979; 21:239–245. DOI: 10.2307/1268522.
3. Fang KT, Li R, Sudjianto A. Design and Modeling for Computer Experiments. Chapman and Hall/CRC: Boca Raton, FL., 2006.
4. Levy S, Steinberg DM. Computer experiments: a review. ASTA-Advances in Statistical Analysis 2010; 94:311–324. DOI: 10.1007/s10182-010-0147-9.
5. Santner TJ, Williams BJ, Notz WI. The Design and Analysis of Computer Experiments. Springer, 2003.
6. Ye KQ. Orthogonal column Latin hypercubes and their application in computer experiments. Journal of the American Statistical Association 1998;

93:1430–1439. DOI: 10.1080/01621459.1998.10473803
7. BinghamD, Sitter RR, Tang B. Orthogonal and nearly orthogonal designs for computer experiments. Biometrika 2009; 96:51–65. DOI: 10.1093/biomet/asn057.
8. Lin CD, Bingham D, Sitter RR. A new and flexible method for constructing designs for computer experiments. Annals of Statistics 2010; 38:1460–

1477. DOI: 10.1214/09-AOS757.
9. Lin CD, Mukerjee R, Tang B. Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika 2009; 96:243–247. DOI: 10.1093/biomet/asn064.
10. Pang F, Liu MQ, Lin DKJ. A construction method for orthogonal Latin hypercube designs with prime power levels. Statistica Sinica 2009; 19:1721–1728.
11. Sun F, Liu M-Q, Lin DKJ. Construction of orthogonal Latin hypercube designs. Biometrika 2009; 96:971–974. DOI: 10.1093/biomet/asp058.
12. Sun F, Liu M-Q, Lin DKJ. Construction of orthogonal Latin hypercube designs with flexible run sizes. Journal of Statistical Planning and Inference

2010; 140:3236–3242. DOI: 10.1016/j.jspi.2010.04.023.
13. Plackett RL, Burman PJ. The design of optimum multifactorial experiments. Biometrika 1946; 33:305–325. DOI: 10.1093/biomet/33.4.305.
14. Hedayat AS, Sloane NJA, Stufken J. Orthogonal Arrays. Springer, 1999.
15. Beattie SD, Lin DKJ. Rotated factorial design for computer experiments. Proc. Sec. Phys. Engnr. Sci., American Statistical Association, 1997.
16. Beattie SD, Lin DKJ. Rotated factorial designs for computer experiments. Journal of the Chinese Statistical Association 2004; 42:289–308.
17. Beattie SD, Lin DKJ. A new class of Latin hypercube for computer experiments. In Contemporary Multivariate Analysis and Experimental Designs in

Celebration of Professor Kai-Tai Fang’s 65th Birthday, Edited by Fan J and Li G. World Scientific: Singapore, 2005; 205–26.
18. Cheng CS. Some projection properties of orthogonal arrays. Annals of Statistics 1995; 23:1223–1233. DOI: 10.1214/aos/1176324706.
19. Tyssedal JS. Projectivity. In Encyclopedia of Statistics for Quality and Reliability. John Wiley & Sons, 2007.
20. Paley REAC. On orthogonal matrices. Journal of Mathematics and Physics 1933; 12:311–320.
21. JMP. Version 10. SAS Institute Inc., Cary, NC, 2012, 1989–2012.
22. Harper WV, Gupta SK. Sensitivity/uncertainty analysis of a borehole scenario comparing Latin hypercube sampling and deterministic sensitivity

approaches. OSTI ID: 5355549, 1983.
23. Worley. Deterministic uncertainty analysis. OSTI ID: 6104504. 1987.
24. Morris MD, Mitchell TJ, Ylvisaker D. Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics

1993; 35:243–255.
25. An J, Owen A. Quasi-regression. Journal of Complexity 2001; 17:588–607.
26. Fang KT, Lin DKJ. Uniform experimental designs and their applications in industry. In Handbook of Statistics, Vol 22, Edited by Khatree R. and Rao

CR, Elsevier: Amsterdam, 2003; 131–170.
27. Johnson M, Moore L, Ylvisaker D. Minimax and maximin distance designs. Journal of Statistical Planning and Inference 1990; 26:136–148.
Appendix A
The proposed design for borehole study (n=40 and k=8)
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 �0.498
 �0.671
 0.725
 �0.451
 0.914
 �0.357
 �0.522
 0.161

2
 �0.02
 �0.843
 �0.788
 0.106
 �0.694
 0.388
 �0.49
 �0.686

3
 0.843
 �0.02
 �0.106
 �0.788
 �0.388
 �0.694
 0.686
 �0.49

4
 �0.278
 �0.953
 0.247
 0.545
 �0.584
 0.129
 �0.929
 0.349

5
 0.827
 �0.027
 �0.043
 �0.757
 �0.137
 �0.569
 �0.318
 �0.992

6
 �0.333
 �1
 0.2
 0.6
 0.294
 0.882
 �0.176
 �0.529

7
 �0.184
 �0.514
 �0.263
 �0.945
 �0.075
 �0.851
 �0.835
 0.004

8
 �0.482
 �0.663
 0.663
 �0.482
 0.663
 �0.482
 0.482
 0.663
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 �0.412
 �0.647
 0.647
 �0.412
 �0.467
 �0.733
 0.733
 �0.467
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 0.514
 �0.184
 0.945
 �0.263
 0.851
 �0.075
 �0.004
 �0.835
1
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 0.686
 �0.49
 0.388
 0.694
 0.106
 0.788
 0.843
 �0.02
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0
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 �0.067
 �0.867
 �0.867
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 0.059
 0.765
 0.765
 �0.059
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 �0.467
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 0.733
 �0.647
 0.412
 �0.412
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 �0.012
 �0.82
 �0.82
 0.012
 �0.82
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 0.82
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 �0.224
 �0.553
 �0.373
 �0.922
 0.553
 �0.224
 0.922
 �0.373

17
 0.584
 �0.129
 0.929
 �0.349
 �0.278
 �0.953
 0.247
 0.545

18
 0.741
 �0.443
 0.435
 0.639
 �0.773
 0.035
 0.09
 0.859

19
 0.914
 �0.357
 �0.522
 0.161
 0.498
 0.671
 �0.725
 0.451

20
 0.929
 �0.349
 �0.584
 0.129
 0.247
 0.545
 0.278
 0.953

21
 0.122
 0.796
 0.78
 �0.051
 �0.937
 0.365
 0.616
 �0.192

22
 0.396
 0.718
 �0.718
 0.396
 0.718
 �0.396
 0.396
 0.718
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 �0.718
 0.396
 �0.396
 �0.718
 0.396
 0.718
 �0.718
 0.396
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 0.153
 0.576
 0.255
 0.961
 0.576
 �0.153
 0.961
 �0.255
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 �0.702
 0.404
 �0.459
 �0.749
 0.145
 0.592
 0.286
 0.898

26
 0.208
 0.624
 0.302
 0.906
 �0.302
 �0.906
 0.208
 0.624

27
 0.31
 0.89
 �0.239
 �0.561
 0.082
 0.875
 0.804
 �0.098

28
 0.106
 0.788
 0.843
 �0.02
 �0.686
 0.49
 �0.388
 �0.694

29
 0.035
 0.773
 0.859
 �0.09
 0.443
 0.741
 �0.639
 0.435

30
 �0.89
 0.31
 0.561
 �0.239
 �0.875
 0.082
 0.098
 0.804

31
 �0.812
 0.114
 0.114
 0.812
 �0.114
 �0.812
 �0.812
 0.114

32
 0.443
 0.741
 �0.639
 0.435
 �0.035
 �0.773
 �0.859
 0.09

33
 �0.631
 0.42
 �0.475
 �0.678
 �0.984
 0.341
 0.537
 �0.231

34
 �0.859
 0.09
 0.035
 0.773
 0.639
 �0.435
 0.443
 0.741

35
 0.388
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 �0.686
 0.49
 0.843
 �0.02
 �0.106
 �0.788

36
 0.349
 0.929
 �0.129
 �0.584
 �0.545
 0.247
 �0.953
 0.278

37
 �0.961
 0.255
 0.576
 �0.153
 0.255
 0.961
 �0.153
 �0.576

38
 �0.867
 0.067
 0.067
 0.867
 0.765
 �0.059
 �0.059
 �0.765

39
 �0.537
 0.231
 �0.984
 0.341
 �0.475
 �0.678
 0.631
 �0.42

40
 �0.553
 0.224
 �0.922
 0.373
 �0.224
 �0.553
 �0.373
 �0.922
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