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ABSTRACT

In this paper, conditionally optimal star points in central composite designs for
second-order response are considered. The central composite design consists of three
portions: factorial, center and star points. Suppose that factorial design and certain
center points have been conducted, we seek the optimal 2k star points in the sense of
A-optimality. When k is large, a simulated annealing algorithm is used to search the
corresponding A-optimal star points. It is shown that A-optimal star points remain on
the axes, but the distance to the origin depends on the number of center points. These
are very different from the classical central composite designs. Optimal star points for
other optimality criteria are also discussed.
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1. Introduction

The central composite design (CCD), proposed by Box and Wilson (1951), is prob-
ably the most popular second-order designs. It is very eflicient for the sequential exper-
iments especially in response surface methodology (RSM). In the first stage of response
surface methodology, a 2F factorial design (or resolution V design for large k) and
certain center points are used for fitting the first-order polynomial model of £ factor,
ie.

y =00+ Pix1+ -+ Brxk + €,

where y is the response variable, x1, ...,z are the k factors, fg, ..., S are the un-
known parameters, and ¢ is a random variable with mean 0 and variance o?. When
surface curvature does exist, the second-order terms are incorporated to the first-order

polynomial model into a second-order polynomial model, i.e.

k k
y=>PB0+Y Biwi+y Buri+ Y, By +e,

i=1 i=1 1<i<j<k

where f3;; are the unknown parameters for the quadratic and interaction terms. The 2k
star points would be added to form the composite design. These star points are fixed
on the axes and can be represented as (+«,0,...,0),...,(0,...,0,+«), where « is the
distance from the origin.

Two important parameters in central composite design need to be specified, the
number of center points (n.) and the star distance («). To select n., Box and Draper
(1963) used a variance-plus-bias criterion; Lucas (1977) applied the criteria of D-
efficiency and G-efficiency; Draper (1982) proposed the integrated variance criterion,
and Lim and So (2001) used c-efficiency. For suitable value of «, it can be determined
by the rotability property. In Myers and Montgomery (1995) the variance dispersion
graphs were used to compare central composite designs with different a’s. In all of
these studies, all of the star points are fixed on the axes. However, it is not clear why
these 2k star points must be on axis. The goal of this paper is to simultaneously study
both the effect of n, and the “best” location of the star points (including the value of
«) following the two-stage procedure in response surface methodology.

We employ an optimal design approach in achieving this goal. Given a first-order
design with n. center points, we are interested in how to select the additional experi-
mental points (star points). This approach is intuitively sensible especially for response
surface methodology. In the first stage of response surface methodology, little prior in-
formation about the true surface is known. Thus the first-order polynomial model
would appear to be a proper choice, and consequentially a fractional factorial design is
used. If the curvature of the response surface does exist, then a second-order polynomial
model is appropriate for fitting the curvature of the true response surface and addi-
tional experimental points are needed. To obtain a better estimation of the parameters
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in this new second-order polynomial model, we design these additional experimental
points based upon a design optimality criterion conditionally on the first-order design.
We therefore treat our designs as “conditionally optimal designs”. Chen et al. (2008)
used a similar idea to obtain small composite designs based on D-optimality.

In optimal designs, a design & is generally a probability measure over the pre-
specify design space, X'. Given this, the central composite designs considered here can
be represented as

5:{0 T1 ... Ty, S1 ...s%}7 (1)
ne/n 1/n ... 1/n 1/n ... 1/n

where 0 = (0, .. .,0) is the center point, 1, - -+ , xy, are the supports (or design points)
of the first-order design (2* factorial design or resolution V' design for large k), and
$1,...,89; are the additional star points. Thus here the total number of runs (design
points), n, is equal to n.+mn1+2k. Let B be the least-square estimator of the parameter

vector /3 of the second-order polynomial model with uncorrelated error. The covariance
matrix of 3 is then proportional to the information matrix of &, M(¢) = X X/n, i.c.

COU(E) x (%X’X)_l = M),

where X is the model matrix corresponding to the design £. In fact, to find a optimal
design is to optimize this covariance matrix in some senses. Here the A-criterion is
considered (other criteria will be discussed later).

An A-optimal design, ¢, which minimizes the sum of the variances of regression
parameters, is defined as:

& = arg mgin traceM ~1(¢) = arg mﬁin trace(X X)L

This A-optimal criterion is particularly important for the situation when the confidence
ellipsoid of the parameter estimations is appears as long and thin because such a case
would result in comparatively poor estimation of one or more parameters. Miiller (1994)
also showed that A-optimal designs are optimal for the optimal robust estimation in lin-
ear models whose error terms may have differently contaminated normal distributions.
For more details about A-optimal designs, please see Atkinson and Donev (1992), and
Pukelsheim (1993). To compare two designs under the A-optimal criterion, the measure
of the relative A-efficiency of £, and &5 is given by:

trace M~ (&) /traceM (&) = trace(XyXa) ™" /trace(X, X1) ", (2)

where X and X3 are the model matrices for & and &3, respectively.

The goal of our work here is to identify si,...,s9; from the pre-specified design
space, X, according to the A-optimal criterion. It is clear that our composite designs
are not necessarily the optimal designs for the full second-order polynomial model as
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the weights of our composite designs are fixed, and parts of our composite designs
are combined with fractional factorial designs and center point. For example, the D-
optimal design for the second-order polynomial model of k factors on a k-ball was
found in Kiefer (1961), and in this D-optimal design, the weight for the center point
is 2/(k + 1)(k + 2), which might not be equal to n./n. Thus the equivalence theorem
in optimal design cannot be directly applied to enable us to identify the optimal ad-
ditional points, s;’s. The optimal additional points are therefore obtained via a direct
optimization of an objective function, which is the trace of the inverse of the informa-
tion matrix. A simulated annealing algorithm is proposed to find designs numerically.
This is particularly useful when the objective function is too complex.

This paper is organized as follows. In Section 2, our methodology for selecting the
optimal 2k star points from the design space is introduced, and a modified simulated
annealing algorithm is proposed for finding additional design points. The optimal 2k
additional design points for k = 2,...,8 are given in Section 3, followed by a thorough
comparison with spherical cental composite designs by relative A-efficiencies. Finally
a conclusion and a discussion of other criteria are given in Section 4.

2. Selection Method

Spherical central composite designs for k factors, that set o = vk, are commonly
used in practice, because all of the other experimental points are on the boundary of
the ball with radius vk except for the center points. Thus such a design space, X, is
used here. Specifically, our goal is to find the 2k star points, sq, ..., sor, according to
the A-optimal criterion for the k-ball with radius v/%.

Due to spherical design space, it is convenient to represent these additional points
by polar coordinates or spherical coordinates. For example, when k& = 2, this is

(z1,22) = (rcosf,rsinf),

where r = /2% + 23 is the radial distance from the origin, and 6 is the counterclockwise
angle from the x; axis. Following the same structure of the central composite design,
it is desirable that these additional 2k star points satisfy symmetric and orthogonal
properties. We therefore add 2k symmetric design points from each quadrant of the
k-sphere with radius r “uniformly”. The additional points in each half-space, {x =
(z1, -+ ,zk)|wi > 0}, i = 1,--- , k are perpendicular to each other. For k = 2, these
four additional points, s, ..., s4, are denoted by:

(rcos@,rsinf), (—rsiné,rcosf), (rsinf, —rcosf), and (—r cos@, —rsinf),

where 0 < r < \/5, and 0 < 0 < 5. In fact, the four additional points for k = 2 can also
be considered to rotate axial points, whose distances from origin are r, by an angle 6.
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Figure 1: The positions of four additional points when k = 2 and r = /2.

Since two orthogonal vectors rotated through an angle 6 can be performed by multi-
plication with a Givens rotation matrix, the coordinates of these four additional points
can also be written as:

G12(0) (g 2) and — G12(0) (; S) (3)

cosf sinf . . . .
where G12(0) = isa 2 x 2 Givens rotaion matrix for axes x; and
—sinf cosf
x9, and angle 0. Hence generally, the 2k additional points, s, ..., s9, are represented
as:
+ [T Gis(015) Di(r) (4)
i<j

where Dy(b) is a k x k diagonal matrix with the diagonal element, b, and G;;(6;;) is
a k-dimensional Givens rotation matrix which is representing a rotation in the plan
spanned by the i and the j** axes (i < j) through an 6;;. Figure 1 is an illustration
of our approach for the case of two factors.

For the A-optimal criterion, the optimal 2k additional points are found such that
the corresponding trace of the inverse of the information matrix is minimized. Since
all 2k additional points are represented by (4), the objective function, traceM ~1(£), is
a function of r and 6;;, i.e.

traceM_l(g) =da(r, 012, -, 0p_1)k)-
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Therefore, to find the 2k optimal additional points, we minimize the objective function
directly with respect to r and 6;;. The formulation of our objective function would be
complicate for large k, because of the complexity of the information matrix. In such a
case we search for the optimal additional points numerically.

In optimal design problems, an exchange algorithm, such as SAS’s procedure OP-
TEX, can be used for searching the additional design points according to some criteria.
However, here the additional points must satisfy the orthogonal property and such ex-
change algorithms cannot be applied directly. Since the simulated annealing algorithm
is simple, powerful, and has been wildly used in optimal design problems (see, for in-
stance, Fang and Wiens, 2000), we will modify the simulated annealing for our specified

needs.
To minimize the objective function d(r, 61, -- ,8,), define a density
Ty (1, ) o exp(—d(r, 0)/T'(t)),
where 0 = (01,---,0,), and T(t) is the “temperature” at time t and is a function

decreasing from the initial temperature, T(0) > 0, to 0. Following the algorithm in
Liu (2001), our MCMC version simulated annealing algorithm is as follows:

1. Select the initial angles, 62@, i=1,---, p, and initial radius, r°, 0 < 0 < V/k.

2. Run Ny iterations of the Gibbs sampler to sample 7 and 6 from 7p)(0). At each
iteration of the Gibbs sampler,

(1) Sample r from 7y (r|0) and
(2) Draw 0;, i =1,--- , p, from mp)(0;]r,0_;).

3. Set t to t + 1, repeat these steps until ¢ is large enough.

Here 0_; is the set of all angles 0; except the ith angle, i.e. 6_; = (01, ,0i—1,0i11,
-+ ,0p). This algorithm is called as the Best Angles and Radius sampler (BAR sampler
in short). Since the simulated annealing algorithm may be affected by the initial states,
we would repeat the BAR sampler several times with different initial angles and radii
selected at random to make sure the optimum values are found. For each replication,
we also check the trend of the values of d(r,6) at each iteration of the BAR sampler
to make sure that d(r, ) is really close to an extreme value. Note that, for this BAR
sampler, the Metropolis-Hastings algorithm can be used instead of the Gibbs sampler.
We believe that the performance would then be similar to what we have found here.

3. A-optimal Star Points

The 2k A-optimal additional points for the composite design found are shown in
this section. The closed form of the objective function is first attempted. When this is
too complicated, the BAR sampler is applied to obtain the results numerically.
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3.1 Two (k = 2) Factors

When k = 2, the four additional points are represented as (3) with radius » and
angle 615. We then show that these four A-optimal additional points are on the axes by
a straightforward computation of trace(X’X)~!. Based on the 22 factorial design and
n. center points, the trace of the inverse of the information matrix M () is proportional
to

da2n,(r,012) = trace(X'X) ™!
1 <48<6 + ne) 4+ 8(10 — ne)r? + 10(4 + n)rt + (12 + ne)r®
8 (2+7r2)(4(2 = 7r2)2 + ne(4 + 1))

+(1+ %) sec?(2012)).

For any r, the minimum value of d4 2. (7, 612) is attained when 615 = 0. Thus these
four A-optimal star points are all on axes.

Now the A-optimal star points for k = 2 are found by minimizing d 4, (r,0) with
respect to r, 0 < r < /2. Here we consider the cases of n, = 1,2, 3 and 4.

ne = 1: When n, = 1, to minimize da2:(r,0), we take the derivative of ds 2, with
respect to r, and set it to zero. Then we use the “NSolve” function in Mathe-
matica to obtain the solution. The minimum of d4 2 (r,0) is achieved when r =
1.0311. Hence the A-optimal star points are (1.0311,0),(—1.0311,0), (0,1.0311)
and (0,—1.0311). Thus, the A-optimal star points are indeed on the axes, but
not at (£+/2,0) or (0,4+/2) (which are the original star points of spherical CCD
for k = 2).

ne = 2,3,4: When n, > 1, we are only able to show that d 2, (r,0) is a monotone
decreasing function for 0 < r < V2. Therefore, for n. = 2,3 and 4, the A-optimal
star points are (v/2,0), (—v/2,0), (0,4/2) and (0, —v/2), which are the same as
the original star points of the spherical CCD.

3.2 More than Two Factors

Here the number of factors is more than two. The 2k symmetric design points are
represented by (4). For simplicity, we use 61,---,0, (p = (kK — 1)k/2) to index all of
the angles. Since the trace of the inverse of the information matrix is quite compli-
cated, the BAR sampler is applied to find the A-optimal star points for k, 3 < k < 8.
We also set n. = 1,2,3 and 4. Our task now is to minimize the trace of the in-
verse of X’X numerically. The density Tr(e)(r,0) in our BAR sampler is defined as
Ty (1,0) o< exp(—da . (r,0)/T(t)), where dapp.(r,0) = trace(X'X)™'. As previ-
ously mentioned, BAR sampler is repeated several times with different initial states
which are selected randomly to make sure that the minimal value is obtained.

We next show the details for the case of k = 3.
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Figure 2: For k = 3 and n. = 1, the trace of (X’X)~! of the BAR sampler for 100
iterations (4 x 10 x 100 = 4000 steps)

When k = 3, there are one r, 0 < 7 < v/3 and three angles, 61, 02 and 03. We iterate
the BAR sampler 100 times, and set Ny = 10 and T(¢) o t—2.

n. = 1: When n, = 1, the six A-optimal additional points we find are £+(1.2557, —0.0017
,0.0007), £+(0.0017,1.2557,0.0001) and +(—0.0007,—0.0001,1.2557). These A-
optimal additional points are not the original star points in the spherical CCD.
However, the additional points are still on axes at a distance 1.2557 from origin.
Figure 2 displays the trend of the trace of (X X)~! of the BAR sampler. From
this figure, da 3,1(r, #) converges rapidly to the minimum.

ne = 2,3,4: When n, = 2,3 and 4, the numerically A-optimal star points are all close
to the 2k original star points, i.e. (v/3,0,0),(0,++/3,0), (0,0, ++v/3). For exam-
ple, taking n. = 4, these six A-optimal star points are +(1.7321,0.0007, —0.0001),
+(—0.0007,1.7321,0.0001) and +(0.0001, —0.0001, 1.7321).

Thus the A-optimal star points remain on axes, but the distance to the origin depends
on the number of center points, n.. These results are coincident with the case of k = 2.

The BAR sampler is also used for finding the 2k A-optimal star points numerically
for the other cases, k =4,...,8. For k =4,...,8, the A-optimal additional points are
on axes, but the distance from these points to the origin varies with n.. Table displays
the optimal radii found by the BAR sampler (r) and compares with vk by their ratio
r/ Vk. From this table, we see that the more center points, the larger the distance
from origin is and the distance is usually less than Vk with small n.. For example,
when k = 8, the best r for n. = 1,2,3, and 4 are all less than /8 = 2.2824, and the
optimal 7 is close to v/8 when n, is getting larger. When the distance is equal to vk,
the original star points, (£vk,0,...,0),...,(0,...,0,4vk), in the spherical central
composite designs are also the A-optimal additional points.
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Table 1: The best radiuses of A-optimal central composite designs.

Factors (k)| ne=1 | n.=2 | n.=3 | n.=4

2 1.0311 | 1.4142 | 1.4142 | 1.4142
(0.7291) | (1.0000) | (1.0000) | (1.0000)
3 1.2557 | 1.7321 | 1.7321 | 1.7321
(0.7250) | (1.0000) | (1.0000) | (1.0000)
4 1.4420 | 1.5980 | 2.0000 | 2.0000

(0.7210) | (0.7990) | (1.0000) | (1.0000)
1.6040 | 1.7426 | 2.2361 | 2.2361
(0.7173) | (0.7793) | (1.0000) | (1.0000)

<t

6 1.7571 | 1.8665 | 2.0135 | 2.1495
(0.7173) | (0.7620) | (0.8220) | (1.0000)
7 1.8979 | 1.9914 | 2.1025 | 2.6457
(0.7173) | (0.7527) | (0.7947) | (1.0000)
8 2.0233 | 2.1119 | 2.2137 | 2.3438

(0.7153) | (0.7467) | (0.7827) | (0.8287)

Note: Parentheses indicate the ratios of r and V&, i.e. r/V/k.

3.3 Comparison with Spherical Central Composite Designs

To compare our conditionally A-optimal central composite designs with spherical
central composite designs, we use the relative A-efficiency in (2). The relative A-
efficiency of our conditionally A-optimal central composite design and spherical central
composite design is defined as:

traceM ' (€4) /traceM " (éceop),

where £4 is our conditionally A-optimal central composite design and £ccp is the
spherical central composite design. When this relative efficiency is less than 1, our con-
ditionally A-optimal central composite design is better than the corresponding spheri-
cal central composite design. The relative A-efficiencies and the values of the trace of
(X’X)~! are displayed in Table 2. From this table we see that our conditionally A-
optimal central composite designs have better or same performance than the spherical
central composite designs. This is especially true when n. is small (for instance n, = 2
and k =4,...,8). In such cases our conditionally A-optimal central composite designs
are better than the corresponding spherical central composite designs. The relative
efficiencies decrease as k increases, except in the case of k = 8 and n. = 1. Also note
that, for large n., both designs have the similar trace values.
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Table 2: The relative efficiencies of our conditionally A-optimal central composite
designs and the spherical central composite designs. When the relative efficiency is
less than 1, our proposed design is better (and thus different) than the central

Factors (k)| ne=1 | ne.=2 | n.=3 | n.=4
2 0.97522| 1.0000 | 1.0000 | 1.0000
(2.1333) | (1.4375) | (1.1875) | (1.0625)

3 0.8567 | 1.0000 | 1.0000 | 1.0000
(1.7626) | (1.3909) | (1.1687) | (1.0575)

4 0.7556 | 0.9921 | 1.0000 | 1.0000
(1.4324) | (1.2607) | (1.0625) | (0.9583)

composite design. 5 0.7555 | 0.9722 | 1.0000 | 1.0000
(1.5903) | (1.4632) | (1.3050) | (1.2050)

6 0.6655 | 0.9050 | 0.9998 | 1.0000
(1.2278) | (1.1418) | (1.0670) | (0.9700)

7 0.5795 | 0.8342 | 0.9553 | 1.0000
(0.9410) | (0.8779) | (0.8234) | (0.7666)

8 0.5864 | 0.8279 | 0.9421 | 0.9969
(1.0079) | (0.9572) | (0.9126) | (0.8723)

Note: Parentheses indicate trace of (X’X)~! of our conditionally optimal central composite

designs.

4. Conclusion and Discussion

In this paper, we are mainly interested in which 2k additional design points should
be added when the first-order design and center points are given. Following the basic
idea of central composite design, the symmetric and orthogonal star points are found
over the spherical design space according to an optimal criterion. Since the design space
is a k-ball, polar (or spherical) coordinates are used to represent all support points. Be-
cause these star points must satisfy the orthogonal property, the Givens rotation matrix
is applied to rotate orthogonal vectors here. Thus, our objective functions are functions
of rotation angles and radial distance from origin. A simulated annealing algorithm,
the Best Angle and Radius sampler, was then used to optimize the objective functions.
A-optimal star points were obtained and displayed for £k = 2,...,8. It can been seen
that, with the small number of center points, the A-optimal star points are still on the
axes, but may be in the k-ball with radius v/k.
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When more center points are added, a better estimation of the intercept term is an-
ticipated. To see the effect of the intercept term in the newly constructed designs, condi-
tionally As-optimal designs are also studied here. Namely, all parameters except for the
intercept term in the second-order polynomial model, i.e. (Bi,..., Bk, Bi1,-- -, Brk, B2,

-5 B—1)x) are investigated. See Chapter 10.6 of Atkinson and Donev (1992) for de-
tails. It is shown that the original star points are the Ag-optimal star points. This
provides a good reason for why our A-optimal star points are closer to the origin than
Vk when fewer center points are chosen.

Generally the optimal criterion can be represented by the ¢,-criterion, p € (—oo, 1].
The ¢p-optimal design seeks to maximize ¢,(M(£)), where M (&) is a symmetric non-
negative definite h x h matrix, and

_ (%tmce]\ﬁ({))l/f’, for p#£0
P\ (detdr(e)Vn, for p = 0.

In fact, the A-criterion is a special case of the ¢,-criterion with p = —1, and when p = 1,
the ¢-criterion is the D-criterion. For more details regarding the ¢,-criterion, please
see Pukelsheim (1993). Our BAR sampler is easily employed to search the ¢,-optimal
additional points over the spherical design spaces numerically by setting the density,
TT(1), b0 be:

() (r, 0) o exp(¢p(€) /T(t)). (5)

For the D-criterion, (5) becomes mp(r,0) o exp(det(X'X)/T(t)). For k = 2,....8,
the D-optimal star points found by the BAR sampler over the k-ball with radius vk
are (£vk,0,...,0), ..., (0,...,0,£Vk).
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