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Screening designs are frequently used to identify active e↵ects from a large number of factors. Small
size designs are preferred when the experiments are costly. Two-level or three-level minimal-point screening
designs have been well studied in the literature. However, minimal-point mixed-level designs have not been
thoroughly explored. In this paper, a new class of minimal-point mixed-level designs is constructed using
conference matrices. The constructed designs can be used to estimate the main e↵ects and quadratic
e↵ects with a good performance of D-e�ciency and variance of estimates.
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1. Introduction

SCREENING designs are often used to identify the
most important factors during the early stages

of an experimentation process that typically involves
a large number of factors. When the experimenta-
tion is expensive, time-consuming or di�cult, small
size designs are preferred. A minimal-point design is
a saturated design in which the number of runs is
the same as the number of the parameters to be esti-
mated. It makes use of the minimal e↵ort to estimate
all the parameters. For experiments with two-level
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factors, it is a desirable choice to use D-optimal
designs as the screening designs. For experiments
with three-level factors, a new type of definitive
screening designs was developed by Jones and Nacht-
sheim (2011). These designs have desirable proper-
ties for screening factors. Xiao et al. (2012) pro-
posed a systematic method to construct such defini-
tive screening designs via conference matrices. How-
ever, minimal-point designs with mixed two-level and
three-level factors are lacking. In this paper, the con-
struction of mixed-level screening designs with min-
imal points is provided and the properties of the de-
signs are discussed.

Consider the following linear model with m + p
factors:

y = �0 +
mX

i=1

�ixi +
mX

i=1

�iix
2
i +

pX
i=1

↵izi + ✏, (1)

where xi is a three-level factor (i = 1, . . . ,m), zi is
a two-level factor (i = 1, . . . , p), and ✏ is the error
term with zero mean and a finite variance �2. This
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model has a constant term, m+p first-order terms, m
quadratic terms, and thus has a total of 2m+p+1 pa-
rameters. A new type of design with desirable prop-
erties based on conference matrices will be proposed
for such a model.

This paper is organized as follows. The construc-
tion of the minimal-point mixed-level designs and
examples are proposed in Section 2. Section 3 dis-
cusses the design properties, while applications are
illustrated in Section 4. Conclusions are given in Sec-
tion 5.

2. Design Construction and Examples

In this section, the construction of mixed-level de-
signs with m three-level factors and p two-level fac-
tors is presented. First, we introduce the definitions
of conference matrix and maximal determinant ma-
trix. The existence of these designs will be discussed
in Section 5.

Definition 1 (Goethals and Seidel (1967))

An m-order square matrix C = (cij) is called a
conference matrix (also called a C-matrix) if it satis-
fies CTC = (m�1)Im, with cii = 0 (i = 1, 2, . . . ,m),
cij 2 {1,�1} (i 6= j, i, j = 1, 2, . . .m), where Im is
the m-order identity matrix.

Definition 2

An n⇥ n matrix is called an n-order maximal de-
terminant matrix if it has the largest possible deter-
minant among the n ⇥ n matrices whose entries are
±1.

D-optimal designs are good choices for two-level
screening designs, and P = (CT,0m, �CT)T is a
desirable structure for three-level screening designs,
where 0m is an m ⇥ 1 column vector with all el-
ements zero and C is an m-order conference ma-
trix (see Jones and Nachtsheim (2011)). This fold-
over structure can guarantee that the estimates of all
the main e↵ects are uncorrelated with the estimates
of quadratic e↵ects and two-factor interactions. We
thus propose the following design D for the mixed-
level screening problem in model (1):

D =
✓

P B
A M

◆
,

where P is (CT,0m,�CT)T, M is a two-level max-
imal determinant matrix, A is a p ⇥m matrix with
entries 0 and ±1, and B is a (2m+1)⇥p matrix with
entries ±1. Note that matrices A and B can be ob-

tained by computer search once the design optimality
is specified. In this paper, we focus on constructing
A and B systematically. Here we propose the forms
of A and B that result in good performance in terms
of design e�ciencies.

Considering the fold-over structure (CT,�CT)T
in P, it is wise to take matrix B with the form
(HT,g,HT)T, where g is a p ⇥ 1 column vector, H
is an m⇥ p matrix with entries ±1. Such a structure
guarantees PTB = 0m⇥p, where 0m⇥p is an m ⇥ p
matrix with entries zero. Namely,

D =
✓

P B
A M

◆
=

0
B@

C H
0T

m gT

�C H
A M

1
CA .

According to the di↵erent sizes of m and p, the de-
signs are constructed in four cases as shown in Table
1. Basically, matrices A and H are chosen to have
low correlation between any two columns. Because
C is an orthogonal matrix and the correlation be-
tween any two distinct columns of matrix M is low,
a natural choice for matrices A and H is a portion of
matrices C and M, respectively. Here we make use
of the first few rows of C and M (other rows can be
used as well, although our experiences indicate that
the choice of these rows is not critical at all). Take
m = 4 as an example, various designs for various p
are given below.

Case 1

For m = p, take B = (�MT,1p,�MT)T, A = C,
where 1p is a p ⇥ 1 column vector with all elements
unity; then the design for m = p = 4 is

D =

0
BBB@

C �M
0T

m 1T
p

�C �M

C M

1
CCCA

=

0
BBBBBBBBBBBBBBBBBBB@

0 1 1 1 �1 �1 �1 �1
�1 0 �1 1 �1 1 �1 1
�1 1 0 �1 �1 �1 1 1
�1 �1 1 0 �1 1 1 �1

0 0 0 0 1 1 1 1
0 �1 �1 �1 �1 �1 �1 �1
1 0 1 �1 �1 1 �1 1
1 �1 0 1 �1 �1 1 1
1 1 �1 0 �1 1 1 �1

0 1 1 1 1 1 1 1
�1 0 �1 1 1 �1 1 �1
�1 1 0 �1 1 1 �1 �1
�1 �1 1 0 1 �1 �1 1

1
CCCCCCCCCCCCCCCCCCCA

.
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TABLE 1. Proposed Design Structure

Choice of Choice of Resulting
Condition matrix A matrix B design D Remark

m = p A = C B =

0
@�M

1T
p

�M

1
A D =

0
B@

C �M
0T

m 1T
p

�C �M
C M

1
CA a

m > p A = C1 B =

0
@ E

1T
p

E

1
A D =

0
B@

C E
0T

m 1T
p

�C E
C1 M

1
CA b

m = p� 1 A =
✓

C
0T

m

◆
B =

0
@�M2

�r
�M2

1
A D =

0
B@

C �M2

0T
m �r

�C �M2

A M

1
CA c

m < p� 1 A =
✓

C
C2

◆
B =

0
@�M2

1T
p

�M2

1
A D =

0
B@

C �M2

0T
m 1T

p

�C �M2

A M

1
CA d

a. D =
✓

P B
A M

◆
with P = (CT,0m,�CT)T, where C is a conference matrix and M is a p ⇥ p maximal

determinant matrix.
b. C1 is composed of the first p rows of C; E = (NT,MT

1 )T, where N = lbm/pc ⌦M, lk is a k ⇥ 1 matrix
of which the (2i� 1)th element is �1, for i = 1, . . . , dk/2e and the other elements are 1; ⌦ denotes Kronecker
product, bac stands for the largest integer not greater than a, and dbe is the smallest integer not less than b;
and M1 is a matrix of which the rows are the first m� bm/pc ⇥ p rows of M.

c. M2 is composed of the first m rows of M and r is the last row of M .
d. C2 is composed of the first p�m rows of C.

Case 2

For m > p, take B = (ET
m⇥p,1p,ET

m⇥p)T, E =
(NT,MT

1 )T, and A = C1, where N = lbm/pc ⌦ M,
lk is a k ⇥ 1 matrix whose (2i� 1)th element is �1,
for i = 1, . . . , dk/2e and the other elements are 1, ⌦
denotes Kronecker product, bac stands for the largest
integer not greater than a and dbe is the smallest
integer not less than b; M1 is a matrix for which the
rows are the first m� bm/pc ⇥ p rows of M; and C1

is composed of the first p rows of C. Then the design
for p = 3 is

D =

0
BBB@

C E
0T

m 1T
p

�C E

C1 M

1
CCCA

=

0
BBBBBBBBBBBBBBBBB@

0 1 1 1 1 �1 �1
�1 0 �1 1 �1 1 �1
�1 1 0 �1 �1 �1 1
�1 �1 1 0 �1 1 1

0 0 0 0 1 1 1
0 �1 �1 �1 1 �1 �1
1 0 1 �1 �1 1 �1
1 �1 0 1 �1 �1 1
1 1 �1 0 �1 1 1

0 1 1 1 �1 1 1
�1 0 �1 1 1 �1 1
�1 1 0 �1 1 1 �1

1
CCCCCCCCCCCCCCCCCA

.

Case 3

For m = p � 1, take B = (�MT
2 ,�rT,�MT

2 )T
and A = (CT,0m)T, where M2 is composed of the
first m rows of M and r is the last row of M. Then
the design for p = 5 is
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D =

0
BBB@

C �M2

0T
m �r

�C �M2

A M

1
CCCA =

0
BBBBBBBBBBBBBBBBBBBBB@

0 1 1 1 1 �1 �1 �1 �1
�1 0 �1 1 �1 1 �1 �1 �1
�1 1 0 �1 �1 �1 1 �1 �1
�1 �1 1 0 �1 �1 �1 1 �1

0 0 0 0 �1 �1 �1 �1 1
0 �1 �1 �1 1 �1 �1 �1 �1
1 0 1 �1 �1 1 �1 �1 �1
1 �1 0 1 �1 �1 1 �1 �1
1 1 �1 0 �1 �1 �1 1 �1

0 1 1 1 �1 1 1 1 1
�1 0 �1 1 1 �1 1 1 1
�1 1 0 �1 1 1 �1 1 1
�1 �1 1 0 1 1 1 �1 1

0 0 0 0 1 1 1 1 �1

1
CCCCCCCCCCCCCCCCCCCCCA

.

Case 4

For m < p � 1, take A = (CT,CT
2 )T and B =

(�MT
2 ,1p,�MT

2 )T, where C2 is composed of the
first p � m rows of C. Then the design for p = 6
is

D =

0
BBB@

C �M2

0T
m 1T

p

�C �M2

A M

1
CCCA =

0
BBBBBBBBBBBBBBBBBBBBBB@

0 1 1 1 1 �1 �1 �1 �1 �1
�1 0 �1 1 �1 1 �1 �1 �1 �1
�1 1 0 �1 �1 �1 1 �1 �1 �1
�1 �1 1 0 1 1 1 1 �1 �1

0 0 0 0 1 1 1 1 1 1
0 �1 �1 �1 1 �1 �1 �1 �1 �1
1 0 1 �1 �1 1 �1 �1 �1 �1
1 �1 0 1 �1 �1 1 �1 �1 �1
1 1 �1 0 1 1 1 1 �1 �1

0 1 1 1 �1 1 1 1 1 1
�1 0 �1 1 1 �1 1 1 1 1
�1 1 0 �1 1 1 �1 1 1 1
�1 �1 1 0 �1 �1 �1 �1 1 1

0 1 1 1 �1 �1 �1 1 �1 1
�1 0 �1 1 �1 �1 �1 1 1 �1

1
CCCCCCCCCCCCCCCCCCCCCCA

.

3. Design Properties

Here we discuss the properties of the proposed
designs. We first adopt the D-e�ciency criterion to
evaluate the performance of the designs,

De↵(D) =
kXT(D)X(D)k1/k

n
,

where X(D) is the model matrix of design D, n is the
run size of D, and k is the number of parameters to
be estimated in the model. For the first-order model,
the model matrix is X1 = (1n,x1, . . . ,xm, z1, . . . , zp)
and for the pure-quadratic model, the model ma-
trix is X2 = (1n,x1, . . . ,xm,x2

1, . . . ,x2
m, z1, . . . , zp).

The D-e�ciencies for the proposed designs for m =

4, 6, . . . , 12 (with p = 0, 1, . . . ,m + 4) are given in
Appendix A. The special cases of m = p are dis-
played in Table 2 for illustration. The orthogonal ar-
rays (OAs) in Table 2 are taken from Hedayat et
al. (1999). Mixed-level OAs are good choices for the
mixed-level screening problem of model (1), but the
run sizes of the OAs are not minimal. As a com-
parison, we evaluate the D-e�ciencies if the smallest
OAs are used with specific numbers of m and p. We
define the D-e�ciency ratio as

D-e�ciency ratio =
De↵(DP)
De↵(OA)

,

where DP is the proposed design.
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TABLE 2. D-E�ciencies for the Cases of m = p

1st-order Pure-quadratic
m p n = 2m + p + 1 OA size D-e�ciency ratio (%) D-e�ciency ratio (%)

4 4 13 36 93.3 (0.7794/0.8351) 82.6 (0.4592/0.5557)
6 6 19 36 94.3 (0.7820/0.8293) 77.6 (0.4244/0.5472)
8 8 25 36 102.7 (0.8491/0.8263) 75.8 (0.4115/0.5428)

10 10 31 72 101.5 (0.8367/0.8244) 70.5 (0.3806/0.5401)
12 12 37 72 107.3 (0.8828/0.8231) 68.6 (0.3684/0.5383)

From Table 2, it is obvious that the first-order D-
e�ciencies of the proposed designs are comparable
with the ones of OAs. In some cases, the proposed
designs are superior to OAs in terms of the first-
order D-e�ciency. The pure-quadratic D-e�ciency
ratios are between 68.6% and 82.6%, while the sizes
of the proposed designs are much smaller than the
ones of OAs. For other m and p, the D-e�ciencies
of the proposed designs have a similar performance
(see Appendix A).

The D-e�ciencies of the designs are also plot-
ted in Figure 1: Fig. 1(a) displays the first-order D-
e�ciencies (y-axis) versus the values of p (x-axis)
for various values of m, while Fig. 1(b) displays the
pure-quadratic D-e�ciencies. In Fig. 1(a), for any
fixed p, as m increases, the D-e�ciency for the first-
order model increases. For given m, the D-e�ciencies
when “m < p” are in general smaller than the val-
ues when “m � p”. In Fig. 1(b), in most cases, for
any fixed p, as m increases, the D-e�ciency for the
pure-quadratic model decreases. For given m, when
p increases, the value increases in most cases.

Next, we calculate the variances of the two-level
main e↵ects and three-level main and quadratic ef-
fects for model (1): Var(�̂) = (XT

2 X2)�1�2, where
�̂ = (�̂0, �̂1, . . . , �̂m, �̂11, . . . , �̂mm, ↵̂1, . . . , ↵̂p)T, and
�2 = Var(✏). For the proposed designs, Var(�̂i) is a
constant and this is stated as Theorem 1 below (the
proof of which is given in Appendix B). It is obvious
that there is a negative relationship between m and
the variance value.

Theorem 1

For the proposed designs with model (1), Var(�̂i)
has a constant value of �2/[2(m � 1)], for all i =
1, . . . ,m, where m is the number of the three-level
factors.

The variances of the designs are plotted in Figure
2: Fig. 2(a) displays the average variances of two-level
main e↵ects (y-axis) versus the values of p (x-axis)
for various values of m. Fig. 2(b) displays the vari-
ances of three-level main e↵ects. In Fig. 2(a), given
p and m, the average variance of two-level main ef-
fects equals

Pp
i=1 Var(↵̂i)/p. For p  5, the aver-

age variances are nearly the same for di↵erent m.
The average variance decreases dramatically as p in-
creases, especially for small p. For the same m, the
average variance decreases when p increases from 1
to m + 1 and the average variance increases slightly
as p increases from m+2 to m+4. For p > 3, the av-
erage variances of two-level main e↵ects are smaller
than 0.2�2 for all m, and for p > 4, the values are
smaller than 0.1�2 for all m but m = 4. These values
are reasonably low. In Fig. 2(b), Var(�̂i) is a con-
stant of �2/[2(m� 1)]; thus, as m increases, Var(�̂i)
decreases dramatically. For all m but m = 4, the
variances of three-level main e↵ects are not larger
than 0.1�2. Fig. 2(c) displays the average variances of
three-level quadratic e↵ects. Given p and m, the av-
erage variance of three-level quadratic e↵ects equalsPp

i=1 Var(�̂ii)/p. For given m, the average variance
decreases dramatically for p  m + 1. In most cases,
the average variance is no more than 0.7�2. The val-
ues are smaller than 0.5�2 for p � m except for the
case of m = 4.

Now we calculate the correlation coe�cients for
the proposed designs. The performance of the cor-
relation structure is described by ⇢min, ⇢max, and
⇢ave. The correlation coe�cient of vectors u =
(u1, . . . , un)T and v = (v1, . . . , vn)T is

⇢ =
Pn

i=1(ui � ū)(vi � v̄)pP
(ui � ū)

P
(vi � v̄)

,

where ū = n�1
P

ui and v̄ = n�1
P

vi. For the
(2m + p + 1) ⇥ (2m + p) model matrix (x1, . . . , xm,
x2

1, . . . , x
2
m, z1, . . . , zp), the correlation matrix is
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FIGURE 1. D-E�ciencies of the Proposed Designs.

0
BBB@

⇢11 ⇢12 · · · ⇢1(2m+p)

⇢21 ⇢22 · · · ⇢2(2m+p)

...
...

. . .
...

⇢(2m+p)1 ⇢(2m+p)2 · · · ⇢(2m+p)(2m+p)

1
CCCA ,

where ⇢ij is the correlation coe�cient between
the ith and jth columns of the model matrix.
⇢min = mini6=j |⇢ij |, ⇢max = maxi6=j |⇢ij |, and ⇢ave =P

i6=j |⇢ij |/((2m + p)2� 2m� p). The values of ⇢min,
⇢max and ⇢ave are listed in Appendix C. It is obvious
to see that most values of ⇢ave are smaller than 0.1,
and all the values of ⇢min are 0. Thus, only a few
of the correlation coe�cients are a little large, and
most of them are rather small.

Recently, Jones and Nachtsheim (2013) proposed
a new class of definitive screening designs with added
two-level categorical factors (called DSD-augment
designs and ORTH-augment designs). It is interest-
ing to compare the design e�ciencies (mainly based
on D-e�ciency here) between the proposed designs
(with minimal point) and their designs (not of min-
imal point). The comparisons on D-e�ciencies are
given in Appendix D, because the D-e�ciencies for
the ORTH-augment designs are similar to that for
the DSD-augment designs, only the D-e�ciencies for
the DSD-augment designs are listed there. The gen-
eral observation from the comparisons is that the

proposed designs are comparable with the DSD-aug-
ment designs in terms of the D-e�ciency of the first-
order and the pure-quadratic models. The proposed
designs outperform the DSD-augment designs in
some cases (in terms of the first-order D-e�ciency).

4. Simulation Study

Two examples are given here to illustrate the anal-
ysis procedure. R software is used to generate the re-
sponses and analyze the data. An experiment with 6
two-level factors and 6 three-level factors is consid-
ered in the examples. The design is displayed in Table
3. It is a minimal-point design for the pure-quadratic
model. As will be shown in Example 1, the analy-
sis of the proposed design is straightforward if only
the main e↵ects of all factors and quadratic e↵ects
of three-level factors are active. A multiple regres-
sion model including main e↵ects and pure-quadratic
e↵ects can be employed. However, when both two-
factor interactions and pure-quadratic e↵ects are ac-
tive, the analysis becomes more challenging—some
e↵ects may be correlated. For example, Figure 3
displays the absolute values of the column correla-
tions for the design shown in Table 3. Most of the
second-order e↵ects have nonzero correlations with
each other for this design. This is inevitable, because
the proposed design is a minimal-point design. Any

Journal of Quality Technology Vol. 46, No. 3, July 2014



mss # 1707.tex; art. # 05; 46(3)

CONSTRUCTION OF MINIMAL-POINT MIXED-LEVEL SCREENING DESIGNS 257

FIGURE 2. Variances of the Proposed Designs.

interaction e↵ect has to be correlated with some main
e↵ects or pure-quadratic e↵ects.

Example 1

In this example, only main e↵ects and pure-
quadratic e↵ects are active. The underlying model
is

y = �0 +
6X

i=1

�ixi +
6X

i=1

�iix
2
i +

6X
i=1

↵izi + ✏.

The random error is distributed as N(0, 1). The de-
sign matrix is chosen as the design in Table 3. Two
di↵erent models are considered.

I. Four active e↵ects for which the coe�cient vec-
tor is � = (�0, �k, �kk, ↵q)T = (3, 5,�8, 10)T,
where k and q are randomly chosen from {1,
. . . , 6};

II. Six active e↵ects for which the coe�cient
vector is � = (�0, �k1 , �k2 , �k3 , �ll, ↵q)T =

Vol. 46, No. 3, July 2014 www.asq.org
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TABLE 3. The Proposed Design and the Simulative Data

Run x1 x2 x3 x4 x5 x6 z1 z2 z3 z4 z5 z6 y

1 0 1 1 1 1 1 1 �1 �1 �1 �1 �1 �9.93
2 1 0 1 1 �1 �1 �1 1 �1 �1 �1 �1 3.74
3 1 1 0 �1 �1 1 �1 �1 1 �1 �1 �1 �10.09
4 1 1 �1 0 1 �1 1 1 1 1 �1 �1 �2.78
5 1 �1 �1 1 0 1 1 1 1 �1 1 �1 �8.54
6 1 �1 1 �1 1 0 1 1 1 �1 �1 1 �5.49
7 0 0 0 0 0 0 1 1 1 1 1 1 19.58
8 0 �1 �1 �1 �1 �1 1 �1 �1 �1 �1 �1 �38.70
9 �1 0 �1 �1 1 1 �1 1 �1 �1 �1 �1 �8.09

10 �1 �1 0 1 1 �1 �1 �1 1 �1 �1 �1 �27.30
11 �1 �1 1 0 �1 1 1 1 1 1 �1 �1 �6.06
12 �1 1 1 �1 0 �1 1 1 1 �1 1 �1 20.40
13 �1 1 �1 1 �1 0 1 1 1 �1 �1 1 �2.63
14 0 1 1 1 1 1 �1 1 1 1 1 1 21.01
15 1 0 1 1 �1 �1 1 �1 1 1 1 1 12.26
16 1 1 0 �1 �1 1 1 1 �1 1 1 1 19.10
17 1 1 �1 0 1 �1 �1 �1 �1 �1 1 1 7.24
18 1 �1 �1 1 0 1 �1 �1 �1 1 �1 1 �35.18
19 1 �1 1 �1 1 0 �1 �1 �1 1 1 �1 2.42

(�7, 18,�10, 12, 15, 4)T, where k1, k2, k3, and
q are randomly chosen from {1, . . . , 6} and l is
randomly chosen from {k1, k2, k3}.

The coe�cient of any inactive e↵ect is zero. For each

model, we perform 1000 simulations independently
using the stepwise approach. The candidate terms for
the stepwise procedure are {�0, �1, . . . , �6, �11, . . . ,

�66, ↵1, . . . , ↵6}.

FIGURE 3. Absolute Correlation Map.
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TABLE 4. Simulation Results of Example 1

Model TMIR SEIR AEIR IEIR MFac

I 96.6% 100% 100% 0.39% 3.03
II 95.2% 100% 100% 0.78% 5.04

The simulation results are displayed in Table 4,
where TMIR is the rate of the selected model that is
the same as the true model, SEIR is the rate of the
selected model that includes the true model, AEIR
is the rate at which active e↵ects are correctly iden-
tified, IEIR is the rate at which inactive e↵ects are
identified and MFac is the average of the number
of the selected e↵ects (the intercept is not included
here). The TMIR is no less than 95%, SEIR and
AEIR are all 100%. This indicates that all the active
e↵ects are selected into the model for all the simu-
lations. The IEIR is no more than 0.8%. The design
performs very well.

Example 2

In this example, besides main e↵ects and pure-
quadratic e↵ects, one interaction e↵ect is also as-
sumed to be active. It is shown that our de-
sign/analysis works well with active interactions.
Specifically, the response column y in Table 3 is gen-
erated by the model

y = 3 + 8x2 + 6x3 + 5z2 + 10z5 � 7x2
2 � 4x2x3 + ✏,

where ✏ is distributed as N(0, 1).

We perform Dantzig selector (Candes and Tao
(2007)) to select e↵ects considering all the main and
pure-quadratic e↵ects and interactions of two three-
level factors and one three-level factor with one two-
level factor. The result is shown in Table 5.

Then a multiple regression is adopted to estimate
the coe�cients for the selected variables. The result
is listed in Table 6. It is obvious that x2, x3, z2,
z5, x2x3, and x2

2 are active. The analysis perfectly
identifies the same active e↵ects as the true model.

In general, we recommend first using a variable-
selection strategy, such as the Dantzig selector for the

TABLE 5. Sequence of Dantzig Selector Moves

Variable z5 x2 x3 z2 x2x2 x4x4 x6x6 x2x3

Step 1 2 3 4 5 6 7 8

TABLE 6. Estimates of the Coe�cients

Std. t
Estimate error value Pr(> |t|)

(Intercept) 4.35 0.60 7.27 2.68e-05 ***
x2 8.02 0.16 49.07 2.98e-13 ***
x3 5.99 0.16 37.12 4.80e-12 ***
z2 5.40 0.15 36.90 5.08e-12 ***
z5 9.80 0.15 64.83 1.86e-14 ***

x2x2 �6.87 0.34 �20.17 1.98e-09 ***
x4x4 �1.58 0.42 �3.77 0.00364 **
x6x6 �0.11 0.42 �0.26 0.79797
x2x3 �3.54 0.24 �14.55 4.69e-08 ***

Note: Significance levels are coded as 0 (***) 0.001
(**) 0.01 (*) 0.05 (.) 0.1.

analysis of these designs; then using multiple regres-
sion or a model-selection tool for the estimation. The
Dantzig selector is used here, upon the suggestion of
the editor; other methods, such as Lasso (Tibshirani
(1996)), could be used as well. For Example 2 here,
the results via Lasso are similar to the results pre-
sented in Table 6.

5. Conclusions

A new class of minimal-point designs for mixed
two-level and three-level factors is presented. The
proposed designs can be used to estimate the main
e↵ects of all factors and quadratic e↵ects of three-
level factors. These designs have minimal experimen-
tal points with good performance of D-e�ciency and
variance.

The maximal determinant matrices have been well
developed. They can be found on the website http://
www.indiana.edu/⇠maxdet/. The method proposed
in this paper only works when the number of three-
level factors m is even (such that a conference ma-
trix exists). When m is odd, we suggest using the
(m+1)-order conference matrix without the last col-
umn. However, the number of runs will not be min-
imal in this case. For saturated cases, the designs
in Jones and Nachtsheim (2011) are recommended
to replace the conference matrices in the proposed
designs. The conference matrix is a special class of
weighing matrix (Raghavarao (1959)). A weighing
matrix may be used to replace the conference matrix
in the presented design and generate a design with
desirable properties. This deserves further study.
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Appendix A

D-E�ciencies of the Proposed Designs for m = 4, 6, 8, 10, 12 and p = 0, 1, . . ., m + 4

1st-order Pure-quadratic
m p n = 2m + p + 1 OA size D-e�ciency ratio (%) D-e�ciency ratio (%)

4 0 9 9 100.0 (0.7320/0.7320) 100.0 (0.4280/0.4280)
4 1 10 18 98.6 (0.7524/0.7631) 83.0 (0.3866/0.4659)
4 2 11 36 96.5 (0.7657/0.7932) 80.1 (0.3999/0.4994)
4 3 12 36 92.9 (0.7585/0.8165) 77.2 (0.4082/0.5291)
4 4 13 36 93.3 (0.7794/0.8351) 82.6 (0.4592/0.5557)
4 5 14 36 87.6 (0.7453/0.8503) 83.7 (0.4848/0.5795)
4 6 15 36 80.0 (0.6727/0.8629) 70.9 (0.4263/0.6010)
4 7 16 36 77.2 (0.6806/0.8736) 67.3 (0.4177/0.6204)
4 8 17 36 77.7 (0.6860/0.8827) 69.4 (0.4428/0.6381)

6 0 13 18 113.1 (0.7986/0.7064) 94.8 (0.3927/0.4142)
6 1 14 18 105.3 (0.7770/0.7378) 81.3 (0.3584/0.4411)
6 2 15 36 106.9 (0.8157/0.7631) 77.6 (0.3614/0.4659)
6 3 16 36 102.7 (0.8049/0.7841) 74.2 (0.3625/0.4887)
6 4 17 36 101.0 (0.8095/0.8016) 77.1 (0.3929/0.5097)
6 5 18 36 97.2 (0.7940/0.8165) 77.1 (0.4075/0.5291)
6 6 19 36 94.3 (0.7820/0.8293) 77.6 (0.4244/0.5472)
6 7 20 36 90.9 (0.7643/0.8405) 78.5 (0.4425/0.5639)
6 8 21 36 90.3 (0.7676/0.8503) 74.0 (0.4287/0.5795)
6 9 22 36 82.9 (0.7123/0.8589) 69.9 (0.4150/0.5941)
6 10 23 36 81.7 (0.7080/0.8667) 68.4 (0.4157/0.6077)

8 0 17 27 120.6 (0.8415/0.6974) 87.2 (0.3548/0.4071)
8 1 18 36 117.4 (0.8485/0.7230) 76.5 (0.3275/0.4280)
8 2 19 36 114.6 (0.8533/0.7446) 73.1 (0.3270/0.4475)
8 3 20 36 109.2 (0.8336/0.7631) 70.0 (0.3257/0.4659)
8 4 21 36 110.0 (0.8571/0.7792) 71.6 (0.3459/0.4831)
8 5 22 36 103.8 (0.8232/0.7932) 71.2 (0.3551/0.4994)
8 6 23 36 99.6 (0.8025/0.8055) 71.2 (0.3663/0.5147)
8 7 24 36 98.6 (0.8048/0.8165) 71.6 (0.3786/0.5291)
8 8 25 36 102.7 (0.8491/0.8263) 75.8 (0.4115/0.5428)
8 9 26 72 97.4 (0.8134/0.8351) 75.6 (0.4202/0.5557)
8 10 27 72 91.7 (0.7735/0.8431) 70.0 (0.3972/0.5679)
8 11 28 72 89.4 (0.7603/0.8503) 67.5 (0.3914/0.5795)
8 12 29 72 89.8 (0.7694/0.8569) 68.6 (0.4053/0.5905)

10 0 21 27 125.6 (0.8692/0.6917) 80.3 (0.3234/0.4028)
10 1 22 36 122.3 (0.8724/0.7133) 71.9 (0.3014/0.4193)
10 2 23 36 119.3 (0.8734/0.7321) 68.7 (0.2995/0.4359)
10 3 24 72 114.4 (0.8559/0.7485) 65.9 (0.2973/0.4513)
10 4 25 72 114.3 (0.8721/0.7631) 66.9 (0.3116/0.4659)
10 5 26 72 110.3 (0.8559/0.7761) 66.2 (0.3178/0.4798)
10 6 27 72 105.4 (0.8301/0.7878) 66.1 (0.3257/0.4930)
10 7 28 72 103.4 (0.8256/0.7983) 66.2 (0.3346/0.5056)
10 8 29 72 106.0 (0.8559/0.8078) 69.4 (0.3592/0.5176)
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Appendix A (continued)

1st-order Pure-quadratic
m p n = 2m + p + 1 OA size D-e�ciency ratio (%) D-e�ciency ratio (%)

10 9 30 72 101.5 (0.8284/0.8165) 69.1 (0.3656/0.5291)
10 10 31 72 101.5 (0.8367/0.8244) 70.5 (0.3806/0.5401)
10 11 32 72 98.9 (0.8226/0.8317) 71.7 (0.3913/0.5506)
10 12 33 72 98.1 (0.8228/0.8384) 68.7 (0.3853/0.5607)
10 13 34 72 94.4 (0.7974/0.8446) 66.9 (0.3815/0.5703)
10 14 35 72 91.2 (0.7758/0.8503) 65.3 (0.3784/0.5795)

12 0 25 27 129.2 (0.8887/0.6878) 74.5 (0.2980/0.3999)
12 1 26 54 125.8 (0.8904/0.7064) 72.0 (0.2798/0.4142)
12 2 27 72 123.3 (0.8914/0.7230) 64.8 (0.2774/0.4280)
12 3 28 72 118.2 (0.8721/0.7378) 62.3 (0.2748/0.4411)
12 4 29 72 118.6 (0.8908/0.7511) 62.9 (0.2855/0.4538)
12 5 30 72 113.8 (0.8687/0.7631) 62.2 (0.2898/0.4659)
12 6 31 72 111.1 (0.8599/0.7741) 62.0 (0.2956/0.4775)
12 7 32 72 108.2 (0.8487/0.7841) 61.9 (0.3023/0.4887)
12 8 33 72 109.9 (0.8717/0.7932) 64.4 (0.3214/0.4994)
12 9 34 72 104.9 (0.8412/0.8016) 64.1 (0.3264/0.5097)
12 10 35 72 104.6 (0.8465/0.8093) 65.1 (0.3381/0.5196)
12 11 36 72 103.7 (0.8468/0.8156) 65.5 (0.3465/0.5291)
12 12 37 72 107.3 (0.8828/0.8231) 68.6 (0.3684/0.5383)
12 13 38 72 103.9 (0.8620/0.8293) 69.1 (0.3781/0.5472)
12 14 39 72 98.5 (0.8222/0.8351) 65.1 (0.3613/0.5557)
12 15 40 72 96.0 (0.8067/0.8405) 63.6 (0.3587/0.5639)
12 16 41 72 96.1 (0.8119/0.8455) 64.2 (0.3674/0.5718)

Note: For p = 0, these are the designs from Xiao et al. (2012).

Appendix B
Proof of Theorem 1

The model matrix X2 has the following form:

X2 =

0
B@

1m C C �C H
1 0T

m 0T
m gT

1m �C C �C H
1p A A �A M

1
CA ,

where � denotes the element-wise product. From the
structure of X2, assuming

X�1
2 =

0
B@

Y1 Y2 Y3 Y4

Y5 Y6 Y7 Y8

Y9 Y10 Y11 Y12

Y13 Y14 Y15 Y16

1
CA ,

where the sizes of the submatrices of Y1, Y2, Y3, and
Y4 are 1⇥m, 1⇥ 1, 1⇥m, and 1⇥ p, respectively;
the sizes of Y5, Y6, Y7, and Y8 are m⇥m, m⇥ 1,
m⇥m, and m⇥p, respectively; the sizes of Y9, Y10,

Y11, and Y12 are m⇥m, m⇥ 1, m⇥m, and m⇥ p,
respectively; and the sizes of Y13, Y14, Y15, and Y16

are p⇥m, p⇥ 1, p⇥m, and p⇥ p, respectively. Due
to the multiplication of submatrices, we can have0

@ Y1 Y2 Y3 Y4

Y9 Y10 Y11 Y12

Y13 Y14 Y15 Y16

1
AX2

=

0
@ 1 0T

m 0T
m 0T

p

0m 0m⇥m 1m 0m⇥p

0p 0p⇥m 0p⇥m 1p

1
A ,

where 0m⇥p is a matrix with all elements zero; then
because✓

1
2(m� 1)

CT,0m,� 1
2(m� 1)

CT,0m⇥p

◆
X2

= (0m, Im,0m⇥m,0m⇥p),

it can thus be deduced that
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(Y5,Y6,Y7,Y8)

=
✓

1
2(m� 1)

CT,0m,� 1
2(m� 1)

CT,0m⇥p

◆
.

Let ti denote the ith diagonal element of (XT
2 X2)�1,

i = 1, . . . , 2m + p + 1, then Var(�̂i) = ti+1�2, i =
1, . . . ,m. Denote

(XT
2 X2)�1 =

0
B@

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

1
CA ,

where the sizes of Q11, Q12, Q13, and Q14 are 1⇥ 1,
1⇥m, 1⇥m, and 1⇥p, respectively; the sizes of Q21,
Q22, Q23, and Q24 are m ⇥ 1, m ⇥ m, m ⇥ m, and
m⇥ p, respectively; the sizes of Q31, Q32, Q33, and
Q34 are m⇥1, m⇥m, m⇥m, and m⇥p, respectively;
and the sizes of Q41, Q42, Q43, and Q44 are p ⇥ 1,
p⇥m, p⇥m and p⇥p, respectively; then the diagonal
elements of Q22 are ti+1, i = 1, . . . ,m. From the form
of X�1

2 , we can get0
B@

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

1
CA

=

0
B@

Y1 Y2 Y3 Y4

Y5 Y6 Y7 Y8

Y9 Y10 Y11 Y12

Y13 Y14 Y15 Y16

1
CA

⇥

0
B@

YT
1 YT

5 YT
9 YT

13

YT
2 YT

6 YT
10 YT

14

YT
3 YT

7 YT
11 YT

15

YT
4 YT

8 YT
12 YT

16

1
CA .

Due to the multiplication of submatrices, it is obvious
that

Q22 = (Y5,Y6,Y7,Y8) (Y5,Y6,Y7,Y8)
T

=
✓

1
2(m� 1)

CT,0m,� 1
2(m� 1)

CT,0m⇥p

◆

⇥

0
BB@

1
2(m�1)C

0T
m

� 1
2(m�1)C
0p⇥m

1
CCA

=
1

2(m� 1)2
CTC =

1
2(m� 1)

Im.

So ti+1 = 1/[2(m � 1)], i = 1, . . . ,m; furthermore,
Var(�̂i) = �2/[2(m� 1)]. ⇤

Appendix C

The Correlation Coe�cients of the Proposed Designs

m p ⇢min ⇢max ⇢ave m p ⇢min ⇢max ⇢ave

4 1 0 0.65 0.10 10 1 0 0.36 0.08
4 2 0 0.55 0.13 10 2 0 0.37 0.08
4 3 0 0.48 0.13 10 3 0 0.41 0.09
4 4 0 0.36 0.12 10 4 0 0.41 0.09
4 5 0 0.37 0.12 10 5 0 0.31 0.10
4 6 0 0.72 0.16 10 6 0 0.53 0.10
4 7 0 0.75 0.16 10 7 0 0.56 0.10
4 8 0 0.61 0.11 10 8 0 0.37 0.09
6 1 0 0.32 0.08 10 9 0 0.43 0.09
6 2 0 0.47 0.10 10 10 0 0.33 0.09
6 3 0 0.42 0.11 10 11 0 0.31 0.09
6 4 0 0.43 0.10 10 12 0 0.24 0.09
6 5 0 0.44 0.10 10 13 0 0.32 0.09
6 6 0 0.35 0.11 10 14 0 0.31 0.09
6 7 0 0.50 0.11 12 1 0 0.36 0.07
6 8 0 0.40 0.11 12 2 0 0.37 0.08
6 9 0 0.45 0.12 12 3 0 0.32 0.09
6 10 0 0.45 0.13 12 4 0 0.37 0.09
8 1 0 0.44 0.08 12 5 0 0.33 0.09
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Appendix C (continued)

m p ⇢min ⇢max ⇢ave m p ⇢min ⇢max ⇢ave

8 2 0 0.45 0.09 12 6 0 0.35 0.09
8 3 0 0.46 0.10 12 7 0 0.50 0.09
8 4 0 0.39 0.10 12 8 0 0.31 0.09
8 5 0 0.43 0.11 12 9 0 0.39 0.10
8 6 0 0.47 0.10 12 10 0 0.35 0.09
8 7 0 0.50 0.10 12 11 0 0.33 0.08
8 8 0 0.46 0.08 12 12 0 0.26 0.07
8 9 0 0.58 0.09 12 13 0 0.31 0.08
8 10 0 0.41 0.10 12 14 0 0.28 0.09
8 11 0 0.43 0.10 12 15 0 0.40 0.09
8 12 0 0.35 0.10 12 16 0 0.46 0.08

Appendix D

Comparisons of D-E�ciencies Between the Proposed Designs and the DSD-Augment Designs

DSD-augment 1st-order Pure-quadratic
m p n = 2m + p + 1 size D-e�ciency ratio (%) D-e�ciency ratio (%)

4 1 10 14 96.1 (0.7524/0.7831) 88.2 (0.3866/0.4381)
4 2 11 14 97.4 (0.7657/0.7864) 86.4 (0.3999/0.4631)
4 3 12 18 90.4 (0.7585/0.8392) 86.6 (0.4082/0.4715)
4 4 13 18 92.7 (0.7794/0.8410) 93.0 (0.4592/0.4936)
6 1 14 18 95.0 (0.7770/0.8179) 92.8 (0.3584/0.3861)
6 2 15 18 98.8 (0.8157/0.8257) 88.6 (0.3614/0.4082)
6 3 16 22 93.7 (0.8049/0.8594) 88.8 (0.3625/0.4083)
6 4 17 22 94.4 (0.8095/0.8574) 92.2 (0.3929/0.4260)
8 1 18 22 100.5 (0.8485/0.8445) 94.5 (0.3275/0.3467)
8 2 19 22 100.4 (0.8533/0.8503) 89.6 (0.3270/0.3648)
8 3 20 26 94.7 (0.8336/0.8804) 89.3 (0.3257/0.3648)
8 4 21 26 96.9 (0.8571/0.8842) 90.7 (0.3459/0.3814)

10 1 22 26 100.9 (0.8724/0.8648) 95.3 (0.3014/0.3163)
10 2 23 26 100.5 (0.8734/0.8692) 90.4 (0.2995/0.3314)
10 3 24 30 96.5 (0.8559/0.8868) 90.2 (0.2973/0.3295)
10 4 25 30 98.6 (0.8721/0.8841) 91.1 (0.3116/0.3422)
12 1 26 30 101.1 (0.8904/0.8806) 95.8 (0.2798/0.2921)
12 2 27 30 101.1 (0.8914/0.8816) 91.1 (0.2774/0.3045)
12 3 28 34 96.7 (0.8721/0.9016) 90.4 (0.2748/0.3040)
12 4 29 34 98.5 (0.8908/0.9041) 90.3 (0.2855/0.3162)
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