
mss # 1739.tex; art. # 01; 46(3)

Dimensional Analysis and Its

Applications in Statistics

WEIJIE SHEN

The Pennsylvania State University, University Park, PA 16802, USA

TIM DAVIS

We Predict Ltd., Technium 1, Kings Road, Swansea, SA1 8PH, UK

DENNIS K. J. LIN

The Pennsylvania State University, University Park, PA 16802, USA

CHRISTOPHER J. NACHTSHEIM

University of Minnesota, Minneapolis, MN 55455, USA

Dimensional analysis (DA) is a well-developed, widely-employed methodology in the physical and en-
gineering sciences. The application of dimensional analysis in statistics leads to three advantages: (1) the
reduction of the number of potential causal factors that we need to consider, (2) the analytical insights
into the relations among variables that it generates, and (3) the scalability of results. The formalization of
the dimensional-analysis method in statistical design and analysis gives a clear view of its generality and
overlooked significance. In this paper, we first provide general procedures for dimensional analysis prior to
statistical design and analysis. We illustrate the use of dimensional analysis with three practical examples.
In the first example, we demonstrate the basic dimensional-analysis process in connection with a study
of factors that a↵ect vehicle stopping distance. The second example integrates dimensional analysis into
the regression analysis of the pine tree data. In our third example, we show how dimensional analysis
can be used to develop a superior experimental design for the well-known paper helicopter experiment.
In the regression example and in the paper helicopter experiment, we compare results obtained via the
dimensional-analysis approach to those obtained via conventional approaches. From those, we demonstrate
the general properties of dimensional analysis from a statistical perspective and recommend its usage based
on its favorable performance.
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1. Introduction

DIMENSIONAL ANALYSIS (DA) is a well-established
method in physics (see Sonin (2001), Szirtes

(2007)). Bridgman (1931) stated that “The principal
use of dimensional analysis is to deduce from a study
of the dimensions of the variables in any physical sys-
tem certain limitations on the form of any possible
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relationship between those variables. The method is
of great generality and mathematical simplicity”. It
is mainly used to find the relations among physical
quantities in complicated physical systems by their
dimensions. A variety of literature has applied di-
mensional analysis in various fields. See Asmussen
and Heebooll-Nielsen (1955), Islam and Lye (2009),
and Stahl (1962), for examples. Through these anal-
yses, some simple rules among those quantities can
be extracted. As a dimension-reduction and feature-
extraction methodology, dimensional analysis could
be of great use to the field of statistics. This a pri-
ori analysis gives us a conceptual and analytical view
of the problem we are dealing with, thereby provid-
ing guidance in both the design and analysis steps.
Furthermore, the physical origin of dimensional anal-
ysis improves the interpretability of the final results,
which is particularly desirable to the fields of physics
and engineering.

Unfortunately, statisticians seem to have over-
looked the advantages of dimensional analysis.
Finney (1977) commented that “I am surprised by
the lack of attention given to dimensions as a check
on the theory and practice of statistics. The basic
ideas, readily appreciated, should form part of the
stock-in-trade of every statistician”. In this paper,
we focus on building functional relationships between
inputs and outputs. We will first introduce the basic
concept and general procedure of dimensional anal-
ysis. Illustrated by two examples, the pine tree and
paper helicopter, we show how to apply dimensional
analysis in real problems and also compare the results
with classic approaches. We summarize the proper-
ties and discuss the advantages of dimensional anal-
ysis in the statistical context.

The rest of the paper is organized as follows. In
the Section 2, we introduce the definitions and gen-
eral procedures of dimensional analysis with an il-
lustrative example. In Section 3, we use dimensional
analysis for data analysis and show its generality and
importance. In Section 4, dimensional analysis is ap-
plied to design of experiments. The last two sections
summarize general properties, followed by some con-
cluding remarks and prospective research.

2. Definitions of Dimensional Analysis
and General Procedure with

Illustrative Example
2.1. Physical Dimensions

In mathematics, dimension typically refers to the
number of coordinates required to define points in

abstract spaces, whereas in statistics, dimension typ-
ically refers to the number of variables in a design
problem or a data set. However, physical dimen-
sions refer to the measurement systems to charac-
terize certain objects. Each physical dimension has
several empirical scales of the measurements and
they are called “units”. Ignoring nuclear e↵ects such
as isospin, charm, and strangeness, there are seven
fundamental physical dimensions: namely, mass M,
length L, time T, temperature ⇥, electric current I
(or charge Q), amount of substance mol, and lumi-
nous intensity Iv. The corresponding units, defined
by SI (International System of Units), are kilogram,
meter, second, kelvin, ampere, mole, and candela, re-
spectively. All other physical quantities are combina-
tions of these fundamental quantities and their units
are combinations of the units of the corresponding
fundamental quantities, combined in the same way.
For example, speed has the dimension of length per
time, for which the SI unit is meters per second.

2.2. Background of Dimensional Analysis

Physical quantities cannot be constructed unre-
strictedly. For example, it makes no sense to add
“length” to “mass” due to the natural constraints in
the physical quantities. The main constraint is that
“a physical law must be independent of the units
used to measure the physical quantities”. This was
first proposed by Joseph Fourier in the 19th cen-
tury (see Mason (1962)). This principle has been
formalized in two important theorems, Bucking-
ham’s ⇧-theorem (Buckingham (1914, 1915a,b)) and
Bridgman’s principle of absolute significance of rela-
tive magnitude (Bridgman, 1931). Buckingham’s ⇧-
theorem shows that physical equations must be di-
mensionally homogeneous. In other words, any mean-
ingful equations (and inequalities) must have the
same dimensions in both the left and right sides.
Bridgman’s principle of absolute significance of rela-
tive magnitude shows that such formulae should be in
the power-law form. Basically, Bridgman’s principle
allows us to transform physical quantities properly,
especially into dimensionless forms. The method of
using dimensionless quantities and Buckingham’s ⇧-
theorem to remove such constraints is called dimen-
sional analysis. Next, we introduce Buckingham’s ⇧-
theorem and how to use it in practice.

2.3. General Procedure

We recommend applying dimensional analysis be-
fore statistical analysis to give a general view of the
problems and the variables involved. From the physi-
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cal perspective, procedures can be found in Taylor et
al. (2007) and others. From the statistical perspec-
tive, the general procedure of dimensional analysis
can be specified as follows:

Step 1. Determine the input and output variables
and their dimensions, respectively.

Step 2. Determine the basis quantities.
Step 3. Transform input and output variables into

dimensionless quantities by using basis
quantities in step 2.

Step 4. Re-express the model functions via trans-
formed variables in step 3.

Step 1

Determine the input and output variables of
the system we consider. Denote input variables as
Q1, . . . , Qp and the output variable (response) as Q0.
The conventional model will be Q0 = f(Q1, . . . , Qp),
where f is the model function to be estimated. Note
that, in dimensional analysis, Qi may include rel-
evant physical constants with dimensions, such as
gravitational constant = 6.67300⇥10�11m3kg�1s�2.
The units are often standardized to avoid dimension-
less multiplicative constants. But standardization is
not always necessary because these constants are
combined into unknown functional relationships. Af-
ter checking the physical meaning of all the variables
we consider, we determine the relevant fundamen-
tal physical quantities in the system of the seven SI
units as shown in the previous section: denote them
as q1, . . . , q7. Further denote the dimensions of Qi as
[Qi] and qj as [qj ] for i = 0, 1, . . . , p, j = 1, . . . , 7. We
express the dimensions of Q0, Q1, . . . , Qp in terms
of [q1], . . . , [q7] as [Qi] = [q1]ri1 · · · [q7]ri7 , for some
proper choices of {rij} with i = 0, 1, . . . , p, j =
1, . . . , 7.

Step 2

Determine the basis quantities. The basis quanti-
ties constitute a subset of the inputs. We reorder and
denote them as Q1, . . . , Qt, where t  7 as discussed
above and t  p. The basis quantities should satisfy
two conditions: (1) “Representativity”: the dimen-
sions of any other quantities, [Q0], [Qt+1], . . . , [Qp]
can be expressed by the combinations of the dimen-
sions of the basis quantities, [Q1], . . . , [Qt]. The com-
binations take the form of power law. (2) “Indepen-
dence”: the dimension of any basis quantities cannot
be expressed by the combinations of the dimensions
of other basis quantities. Furthermore, assume that
[Q0] can be expressed by the combinations of [Qi],

i = 1, . . . , p. If not, dimensional homogeneity is vio-
lated. This assumption leads to the existence of the
basis quantities but they are not unique. However,
the number of basis quantities is a fixed constant.
The concept of basis in linear algebra is a very good
analogy to the concept of basis quantities.

Step 3

Transform input and output variables into di-
mensionless quantities by using basis quantities. We
mainly transform variables that are not basis quan-
tities, i.e., Q0, Qt+1, . . . , Qp, based on Buckingham’s
⇧-theorem. Due to the two properties of basis quan-
tities in step 2, we can have [Qi] = [Q1]di1 · · ·
[Qt]dit , i = 0, t + 1, t + 2, . . . , p. Consequently, the
transformed dimensionless quantities are ⇧i = Qi ·
Q�di1

1 · · ·Q�dit
t , i = 0, t + 1, t + 2, . . . , p, because

[⇧i] = [QiQ
�di1
1 · · ·Q�dit

t ]
= [Q1]di1 · · · [Qt]dit [Q1]�di1 · · · [Qt]�dit

= 1.

Step 4

Re-express the response functions. Before using di-
mensional analysis, we have Q0 =f(Q1, . . . , Qt, Qt+1,
. . . , Qp). Using ⇧i instead of Qi, we have the follow-
ing expression:

⇧0Q
d01
1 · · ·Qd0t

t

= f(Q1, . . . , Qt,⇧t+1Q
dt+1,1
1 · · ·Qdt+1,t

t , . . . ,

⇧pQ
dp1
1 · · ·Qdpt

t )

and

⇧0 = Q�d01
1 · · ·Q�d0t

t

⇥ f(Q1, . . . , Qt,⇧t+1Q
dt+1,1
1 · · ·Qdt+1,t

t , . . . ,

⇧pQ
dp1
1 · · ·Qdpt

t ),

where f is the function we hope to estimate. So we
can rewrite it as

⇧0 = g(Q1, . . . , Qt,⇧t+1, . . . ,⇧p),

where ⇧i, i = 0, t + 1, . . . , p are dimensionless and
Q1, . . . , Qt are “independent”. Buckingham’s theo-
rem indicates that Q1, . . . , Qt should not be in the
formula. This implies ⇧0 = g(⇧t+1, . . . ,⇧p) to be the
final model.

2.4. Example: Vehicle Stopping Distance

Here we use the vehicle stopping distance exam-
ple to illustrate the general procedure. In the exper-
iment, we estimate the stopping distance for cars, a
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key indication of their safety. Assume that the driver
requires a certain amount of time for reaction to an
emergency and that the wheels are not locked when
braking. We show the dimensional analysis below us-
ing the procedure described in the previous section.

Step 1. Identify input and output variables and their
dimensions as follows:

Q0 = D : vehicle stopping distance [D] = L.

Q1 = v : velocity of the vehicle [v] = LT�1.

Q2 = ⌧ : thinking time [⌧ ] = T.

Q3 = m : mass of the car [m] = M.

Q4 = F : braking force on the brake discs
[F ] = MLT�2.

Q5 = µ : friction coe�cient of brakes [µ] = 1.

The response is {D} and the predictors are
{v, ⌧,m, F, µ}. The model function is D =
f(v, ⌧,m, F, µ). The dimensions of respective
variables are listed above and we summa-
rize corresponding {rij} in Table 1. There
are three fundamental quantities in this sys-
tem. Their dimensions are length L, time T,
and mass M. The entries in the table are the
power of the fundamental dimensions (de-
noted by rows) for dimensions of each vari-
able (denoted by columns).

Step 2. Determine the basis quantities. We choose
{Q1 = v,Q2 = ⌧, Q3 = m} in this case.

Step 3. Determine the dimensionless transformation
for the remaining three quantities {Q0 = D,
Q4 = F , Q5 = µ}, and formulate {⇧0, ⇧4,
⇧5} as follows:

[v⌧ ] = L, [⌧ ] = T, [m] = M, [µ] = 1

and

⇧0 =
D

v⌧
, ⇧4 =

F ⌧

mv
, ⇧5 = µ.

Step 4. Re-express the model. Here our objective
will be to estimate the function g, with ⇧0

as the response variable and only two input
variables, ⇧4 and ⇧5:

⇧0 = g(Q1, Q2, Q3,⇧4,⇧5)
= g(⇧4,⇧5),

or equivalently,

D

v⌧
= g

✓
F ⌧

mv
, µ

◆
.

TABLE 1. Dimensions of Variables in
the Vehicle Stopping Distance

Dimension D v ⌧ m F µ

L (length) 1 1 0 0 1 0
T (time) 0 �1 1 0 �2 0
M (mass) 0 0 0 1 1 0

From the procedure and the example, we can see
that, in physical phenomena, we have certain restric-
tions in the forms of f , satisfying certain dimensional
requirements. After dimensional analysis, the poten-
tial e↵ects on responses are attributable to the com-
binations of quantities considered. These quantities
act like groups. If we base our estimated function
g on the group values, we do not have dimensional
restrictions.

3. Dimensional Analysis
for Data Analysis

Statistics extracts information from the data of
experiments to find or justify properties, laws, and
performance. Based on the fact that those experi-
ments are results of physical phenomena and the data
are physical quantities measured in experiments, it
is often justifiable and beneficial to perform dimen-
sional analysis in the first place. For data analysis,
the advantages of using dimensional analysis stand
out clearly: it is rather straightforward. Incorporat-
ing dimensional analysis only transforms the data
in a predetermined fashion; the basic development
strategies remain the same. Furthermore, it is sup-
ported by physics to make dimensionless transfor-
mations. We conjecture that making variables di-
mensionally independent is helpful in making them
statistically independent, although this important is-
sue needs further investigation. After dimensional
analysis, the information from inputs and outputs
is more concentrated, leading to statistical models
with fewer variables and simpler analysis. Below, we
compare data-analysis procedures with and without
dimensional analysis based on the pine tree data from
Bruce and Schumacher (1935, p. 226). From there, we
show how to perform dimensional analysis for data
analysis and its potential benefits.

3.1. Pine Tree Example

The pine tree data has been used by various au-
thors to illustrate the use of diagnostics and transfor-
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mation methods in linear regression (see, e.g., Atkin-
son (1994)). The data arise from the measurements of
70 shortleaf pine trees. Three measurements of inter-
est here are d, the diameter of the tree in feet taken
at “breast height” above the ground; h, the height of
the tree in feet; and v, the volume in cubic feet. The
objective of the analysis is to establish a relationship
between the volume v and the variables d and h. In
other words, we hope to predict the volume of a tree
from its known diameter and height. The complete
data set is given in the Appendix.

3.2. Regression Method Without Dimensional
Analysis for Pine Tree Data Set

The conventional linear regression assumes that

vi = ↵ + �1di + �2hi + ✏i, (1)

with ✏i ⇠ i.i.d. N(0,�2). It gives us the following es-
timated function with standard errors of estimations
in subscripts:

v̂ = �45.3(5.0) + 77.2(5.9)d + 0.12(0.11)h, (2)

with �̂ = 9.87. The coe�cient of h is not signifi-
cant. Although a univariate analysis makes the resid-
uals appear to be reasonably normally distributed
with constant variance, we notice that (i) because
the data (see Appendix) are ordered by diameter d,
Figure 1 shows a distinct trend of residuals relative
to the diameters; and (ii) there is a potential outlier
of tree #70 (the largest tree). Both of these diagnos-
tics strongly suggest that model (2) is inadequate.
We could proceed by applying the log transforma-
tion to all variables before the linear model fitting,
which leads to the following result:

dln(v) = �1.06(0.24) + 1.943(0.038) ln(d)
+ 1.054(0.055) ln(h),

with �̂ = 0.0673. It is appealing to approximate the

FIGURE 1. Studentized Residuals Plot of Model (1).

coe�cients of diameter and height e↵ects (1.943 and
1.05) by the integers 2 and 1, respectively. After fix-
ing the coe�cients, we obtain a regression model on
the original scale without intercept:

vi = �d2
i hi · �i, (3)

with ✏i = ln �i ⇠ i.i.d. N(0,�2). The estimated re-
gression function is

v̂ = 0.4411(0.0081)d
2h. (4)

On the other hand, the Box–Cox transformation on
the response variable recommends a transformation
parameter of �̂ = 0.384. Thus, a cubic-root trans-
formation (� = 1/3 = 0.333) seems appropriate.
The use of the cubic-root transformation of the re-
sponse (without intercept) suggests the following lin-
ear model:

v1/3
i = �1di + �2hi + ✏i, (5)

with ✏i ⇠ i.i.d. N(0,�2). The estimated regression
function turns out to be

dv1/3 = 2.084(0.044)d + 0.01471(0.00059)h. (6)

The residual plots in Figures 2a and 2b show that

FIGURE 2. Studentized Residuals Plot of Models (4) in (a) and (6) in (b).

Vol. 46, No. 3, July 2014 www.asq.org



mss # 1739.tex; art. # 01; 46(3)

190 WEIJIE SHEN ET AL.

both log transformation and Box–Cox transforma-
tion have fixed the problems highlighted in Figure 1.
Note that tree #53 deserves special attention, but
will not be further studied in this paper.

The preceding analyses were, of course, conducted
without using dimensional analysis. However, a fur-
ther look at equations (4) and (6) reveals that both
methods provide dimensionally homogeneous solu-
tions to the prediction problem. The physical dimen-
sions are coherent in the equations. Model (4) has the
dimension of cubic length on both sides while model
(6) has the dimension of length on both sides.

3.3. Regression Method with Dimensional
Analysis for Pine Tree Data Set

Following the general procedure that we proposed
in Section 2.3, the dimensional analysis can be im-
plemented as below. A similar approach was outlined
in Vignaux and Scott (1999).

1. Our objective is to predict the output volume
v as a function of diameter d and height h: v =
f(d, h). We determine the physical dimensions
of these quantities in Table 2. The dimension
of v is cubic length L3 with unit feet3. Both
dimensions of d and h are length L with units
in feet.

2. Because the only dimension involved is length,
let h be the basis quantity.

3. Transform other quantities into dimensionless
forms,

⇧v =
v

h3
and ⇧d =

d

h
.

4. By Buckingham’s ⇧-theorem, the predicted
function should be ⇧v = g(⇧d), or equivalently,

v

h3
= g

✓
d

h

◆
.

Suppose⇧v = g(⇧d), and we choose g(⇧d) = k⇧�
d .

After taking the logarithm of both sides, we obtain
the linear model,

ln(⇧v,i) = ln(k) + � ln(⇧d,i) + ✏i,

with ✏i ⇠ N(0,�2). The estimated regression func-
tion is

ˆln(⇧v) = �1.07(0.16) + 1.942(0.036) ln(⇧d) (7)

Alternatively, we might prefer that ⇧v = g(⇧d) =
k⇧2

d. Figure 3 shows the data and linear fits in terms
of ⇧v and ⇧2

d. In fact, fitting a linear model yields

TABLE 2. Dimensions of Quantities in Pine Tree Data Set

Name Quantity Dimension Unit

Volume v L3 feet3
Diameter d L feet
Height h L feet

⇧̂v = 0.4363(0.0036)⇧2
d,

i.e.,
v̂ = 0.4363(0.0036)d

2h. (8)

The result is similar to the log-transformed model (4)
and it also accommodates the problematic 70th case.
The di↵erences in parameter estimates can be at-
tributed to di↵erences in associated error structures.

In summary, certain assumptions regarding the
form of the function g will give corresponding pa-
rameterizations and results. If ⇧v = k⇧�

d , then v =
kd�h3�� . If ⇧v = (A⇧d +B)3, then v1/3 = Ad+Bh.
These are exactly the two models previously obtained
in equations (4) and (6). The dimensionally homoge-
neous results we derived from regression analyses are
merely special cases of choosing di↵erent functions
g after dimensional analyses. The procedure ensures
that the results are dimensionally homogeneous and
intuitively interpretable, while leaving choice of the
function g to the investigator, as informed by the
data. It gives us a guide of how to model in an ef-
ficient and parsimonious way based on the physical
laws.

FIGURE 3. Plot of Pine Tree Data Set in Terms of Di-
mensionless Variables.
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In contrast with the analysis and discussion of
the same dataset by Atkinson (1994), dimensional
analysis points to an “automatic” transformation
of the data, without prior assumption of the cone
shape, and posterior diagnosis of “transform both
sides model” as Atkinson (1994) did. Moreover, be-
cause the dimensional analysis of each tree is the
same, there is less need to worry about individual
trees influencing the choice of transformation, and
hence regression methods such as constructed vari-
able plots, which Atkinson (1994) used, are no longer
necessary.

3.4. Remarks

From an analytic perspective, dimensional analy-
sis o↵ers several advantages relative to the conven-
tional procedures. First, it decreases the number of
variables, which may lead to a simpler model. Sec-
ond, physical independence may establish a simpler
statistical relationship. Third, it gives more sensi-
ble interpretations by having dimensionless variables
and coe�cients. Physicists and engineers often fa-
vor dimensionless coe�cients as indices for describ-
ing systems. Fourth, dimensional analysis produces
scalable results, which is necessary for extrapolation,
although the scalability depends on a good choice
of the model. This is attributed to the ratio form
of dimensionless variables that is invariant to scale
changes. Often, extrapolating in the original scale re-
sults in values interpolating in the transformed scale.
Fifth, it captures the inherent nonlinear relationship
between physical quantities.

From a practical perspective, dimensional anal-
ysis is applicable when modeling physical relation-
ships. It is a straightforward method before collect-
ing data and modeling. It fits all kinds of data struc-
tures and modeling requirements. Furthermore, di-
mensional analysis does not lose generality when
transforming the data. As shown above, it does not
constrain the forms of estimating functions for di-
mensionally homogeneous solutions. Due to its an-
alytical nature, the proposed procedure is easy to
implement.

4. Dimensional Analysis for
the Design of Experiments

Dimensional analysis can also serve as a guid-
ance in the design of experiments. For the design
of experiments, incorporating dimensional analysis
can significantly improve e�ciency by reducing the
number of experimental variables. In this section, we
demonstrate the use of dimensional analysis in the
design and analysis of the popular paper helicopter
experiment. We also compare the results to those ob-
tained using the conventional design of experiments
approaches.

4.1. The Paper Helicopter Experiment

The paper helicopter experiment is a widely used
teaching device for the design of experiments. The
objective is to predict the “flight time” performance
for a particular configuration of the helicopter dimen-
sions in Figure 4. Upon its launch, twin blades spin

FIGURE 4. Paper Helicopter Illustration.
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around the central ballast shaft to provide lift as it
descends. It can be easily constructed from a sheet
of paper using only scissors and tape. As displayed
in Figure 4, the upper part of the model consists of
two wings (or rotors). The central part is the body
and the lower part is the tail folded into the ballast.
The length and width of each part can be varied to
achieve di↵ering levels of performance. We wish to
predict the flight time for a given configuration. The
usual design factors include the rotor radius (r), the
rotor width (w), the tail length (l), the tail width
(d), paper clip (p), and the tape (t).

4.2. Conventional Design of the Paper
Helicopter Experiment Without Using
Dimensional Analysis

Johnson et al. (2006a, b) studied experimental de-
sign on the paper helicopter as part of a Six Sigma
Black Belt project. They considered a Resolution VII
design with seven two-level factors in a half fraction,
with two replicates. This led to 27�1⇥2 (= 128) runs
in total. They provided a step-by-step routine to de-
sign experiments and maximize the flight time. Box
and Liu (1999) and Box (1999) discussed the use of
sequential design in the paper helicopter experiment.
First, they conducted a two-level Resolution IV frac-
tional factorial design with eight factors in four repli-
cates, i.e., 28-4

IV ⇥4, for a total of 64 runs. In the second

setting, they designed a full-factorial experiment in-
volving four important factors. Two key lessons from
their work, among others, are (1) with the help of
response surface and steepest ascent, sequential de-
signs search for an optimum point e↵ectively and ef-
ficiently and (2) minimum variance or dispersion of
flight time is included in addition to longest flight
time to enrich the meaning of optimum. Annis (2005)
derived the aerodynamics of this flying object in a
rigorous physical sense before designing the experi-
ment. He presented a physical model of flight time in
terms of the length and width of wing and body. He
employed two three-level factors in a single replicate
of a 3⇥ 3 factorial design for wing length and width
and employed response surface methods to identify
the optimal operating condition. The use of physics
to identify promising factors in advance turned out
to be extremely advantageous.

Table 3 summarizes the results of the above three
papers, including Johnson et al., (2006a,b), Box and
Liu (1999), and Annis (2005). The directions of
respective e↵ects are provided in the parentheses.
Three variables are included in all of the three ex-
periments; namely, body length, body width, and
wing length. Additionally, Johnson et al. (2006a, b)
considered (i) paper type, (ii) whether or not tap-
ing body and wing, and (iii) whether or not clipping
in the bottom. They also examined the two-way in-

TABLE 3. Summary of Literature on Paper Helicopter

Johnson et al. (2006a,b) Box and Liu (1999) Annis (2005)

Input variables Body length (�) Body length (�) Body length (�)*
Body width (�) Body width (�) Body width (�)*
Wing length (+) Wing length (+) Wing length (+)
Paper type (�) Paper type (�) Wing width (dip)
Taped body (�) Taped body (�)
Taped wing (�) Taped wing (�)
Clip (�) Clip (�)
Interactions Fold (�)

Design 27-1
VII ⇥ 2 = 128 28-4

IV ⇥ 4 = 64 32 = 9

Feature Interactions Sequential learning Physical insight

Significant variables Body length (�) Body length (�) Body length (�)
Body width (�) Body width (�) Body width (�)
Wing length (+) Wing length (+) Wing length (+)

*Not a design factor.
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teractions between the variables of interest. Box and
Liu (1999) considered whether to fold the paper and
use an additional 50 runs to search for the optimum.
Their second design included a full-factorial exper-
iment on both the length and width of both body
and wing. Annis (2005) took wing width as an ad-
ditional variable and chose wing length and width
to be experimental variables and considered e↵ects
of body length and width as given by the physical
formula. The “dip” e↵ect of wing width means the
relationship is not monotone. In general, the signs in
the parentheses indicate the e↵ects of each variable
on the flight time. For example, wing length has a
positive e↵ect on the flight time, meaning that the
flight time will increase if wing length is increased.
All the above studies concluded that the wing length
is the most important factor for determining flight
time, with factors a↵ecting helicopter mass also be-
ing important.

4.3. Design of the Paper Helicopter
Experiment Using Dimensional Analysis

The physics of falling objects in a gravitational
field follows the following assumptions: (1) the flight
time (T ) is determined by the launch height (H) and
average velocity (v), i.e., T = H/v; (2) the falling ob-
ject reaches terminal velocity quickly after dropped,
when the drag force of the air becomes equal to the
force of gravity; (3) the drag force depends on the
density of dry air (⇢ = 1.20412 kgm�1 at sea level at
20�C), drag coe�cient (cd, dimensionless) and the
shape of the helicopter (rotor radius r and rotor
width w, or their combinations, such as ratio r/w and
area rw); (4) the weight of the helicopter depends on
the mass (m) and acceleration due to gravity (g = 9.8
ms�2).

Suppose the flight time follows the model below,

T = f1(m, g, r, cd, ⇢,H).

Because cd is dimensionless and T = H/v, the ex-
pression can be represented as

v = f2(m, g, ⇢, r). (9)

Next, we apply dimensional analysis step-by-step.

Step 1. Table 4 displays the dimensions and units
of the variables. We have three fundamental
dimensions, length L, time T, and mass M.

Step 2. Variables r, ⇢, and g are chosen as the base
quantities.

Step 3. From Buckingham’s ⇧ theorem, we can re-
duce the number of variables from five to

two. Following Gearhart (2004), we define
the two dimensionless variables as �v =
vra⇢bgc and  m = mrd⇢egf . Dimensions of
�v and  m are, thus, as follows:

[�v] = (LT�1)(L)a(ML�3)b(LT�2)c

= L1+a�3b+cMbT�1�2c

[ m] = (ML)d(ML�3)e(LT�2)f

= Ld�3e+fM1+eT�2f .

We enforce nondimensionality and solve the
two sets of linear equations,

1 + a� 3b + c = 0
b = 0

�1� 2c = 0

and

d� 3e + f = 0
1 + e = 0
�2f = 0.

From the first set, we obtain a = c = �1/2
and b = 0 and, from the second, d = �3, e =
�1, and f = 0. The transformed variables
are thus

�v =
v
p

gr
=

h

T
p

gr
;  m =

m

⇢r3
. (10)

Step 4. The final equation is obtained as the follow-
ing form:

�v = g( m). (11)

Because there is only one input variable
( m), we conduct the paper helicopter fly-
ing experiment with four runs:  m = 0.937,
2.087, 3.088, and 4.642. The resulting flight
times (T) are 5.18, 3.87, 3.48, and 2.98, re-
spectively. This implies the values of �v to
be 0.873, 1.264, 1.537, and 1.795. The results

TABLE 4. Dimensions of Quantities of Paper Helicopter

Quantity
Quantity name symbol Dimension Unit

Velocity v = h/T LT�1 ms�1

Mass m M kg
Gravity acceleration g LT�2 ms�2

Air density ⇢ ML�3 kgm�3

Wing length r L m
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TABLE 5. Table of Design and Results of Paper Helicopter Experiment

 m Paper Helicopter Rotor Flight �v

No. (m/⇢r3) type mass(m) radius(r) time(T ) (h/(Tpgr))

1 0.937 80 g/m2 3.09 g 140 mm 5.18 s 0.873
2 2.087 120 g/m2 4.34 g 120 mm 3.87 s 1.264
3 3.088 100 g/m2 3.72 g 100 mm 3.48 s 1.537
4 4.642 160 g/m2 5.59 g 100 mm 2.98 s 1.795

Note: The results are the averages of three flights recorded independently twice.

are displayed in Table 5. Figure 5 is the scat-
ter plot of �v and  m.

The data are modeled using a simple linear regres-
sion, giving �̂v = 0.700.09 + 0.250.03 m. Converting
to the original variables, this becomes

T̂ =
h

p
gr(0.70 + 0.25

⇢r3 )
. (12)

Alternatively, we regress data on a log scale. This
gives us log(�v) = �0.1020.01+0.460.01 log( m). The
power of 0.46 suggests a square-root transformation
of  m. We thus take a square-root transformation on
 m and fit a linear model without intercept, obtain-
ing �̂v = 0.8590.014

p
 m. Converting to the original

variables, this can be expressed as

T̂ =
hr

0.859

r
⇢

mg
. (113)

In both models (12) and (13), the coe�cients are
dimensionless and the equations are dimensionally
homogeneous. We prefer model (13) because it is able
to capture the potential curvature shown in Figure

FIGURE 5. Plot of Simple Linear Regression on Paper
Helicopter.

5. For validation of the final model, we conducted
eight confirmation runs with various combinations
of 80/100/120/160 g/m2 A4 paper and 100/120/140
mm rotor radius. The actual flight times versus pre-
dicted flight times are displayed in Figure 6. The
points align closely to the line y = x, indicating a
good model indeed.

Table 6 provides a comparison of results between
designs using dimensional analysis and those without
it. It can be seen that the key factors are exactly the
same, while the settings for maximal time are close.
However, the design we used had only one dimen-
sionless variable; therefore, fewer runs were needed (4
runs vs. 128 runs in Johnson et al. (2006b), 64 runs in
Box and Liu (1999), and 9 runs in Annis (2005)). In
addition, the prediction model is elegant and easy
to interpret: the response is proportional to some

FIGURE 6. The Plot of Predicted Flight Time and Actual
Flight Time of the Confirmation Runs.
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TABLE 6. Comparison Between Designs with and Without DA

Without DA With DA

Variables 2 or 3 Levels Continuous (interpolate and extrapolate)

Design On variables On dimensionless quantities

Number of experimental runs 128, 64 and 9 4

Key variables Wing length (+) Wing length (+)
Body length (�) Body length (�)

Settings for maximal flight time L = 15.2c m, w = 4.60 cm L = 14 cm, w = 5.25 cm
m = A4 (gsm unstated) m = 3.09 g (80 gsm)

Validation model Full factorial Confirmation runs

power of each factor. The ratio form also produces
scalable results. Furthermore, after transformation,
the dimensionless quantities seem to be linearly re-
lated to the response, which avoids the complicated
relationships such as “dip” e↵ect found in Box and
Liu (1999) and Annis (2005). Last, robustness analy-
sis through transmitted variation (Morrison (1957))
can be directly applied to the fitted model, avoiding
costly replications to determine this variation empir-
ically. Further results on a dimensional-analysis ap-
proach to the paper helicopter can be found in Davis
(2013).

4.4. Remarks
From the design of experiments perspective, the

number of experimental runs required tends to in-
crease with the number of experimental factors. Di-
mensional analysis combines variables according to
physical laws and creates new design variables that
can be incorporated into the design. It reduces the
number of factors and consequently reduces the re-
quired number of runs. It potentially allows the in-
clusion of variables not included in the original ex-
periment, as long as they can be expressed in the di-
mensionless variables. We also benefit from the scal-
ability and the interpretability of the solutions. See,
for example, Albrecht et al. (2013) for a detailed
treatment of designing experiments to dimensional-
analysis models.

5. General Properties
From the above examples, we summarize the fol-

lowing advantages for dimensional analysis on gen-
eral cases.

1. Dimensional analysis starts from basic and nat-
ural physical assumptions. The resulting fac-
tors and their coe�cients are dimensionless and
easy to interpret for practitioners.

2. Dimensional analysis combines and eliminates
unnecessary variables using Buckingham’s ⇧
Theorem. This leads to dimension reduction,
which is especially helpful for the design of ex-
periments.

3. The power law is used in the combination, re-
vealing that the nature of relationships between
variables with di↵erent dimensions is often not
linear. It is believed that, after transformation,
the dimensionless quantities may become more
independent (fewer interactions) and their re-
lationships with response are simpler, as shown
in our examples.

4. It is compatible with all kinds of methods, as it
is a “data-free” method. It transforms the vari-
ables according to their dimensions, not values.
It can be done even before we get the real data
or any pilot experiment. The subsequent statis-
tical procedures are valid without changes.

5. The resulting models are often scalable. For ex-
ample, extrapolation in linear regression is of-
ten misleading, because the assumed form of
the model may not be valid beyond the range
of the data. The dimensionless models devel-
oped using dimensional analysis do not depend
on absolute quantities, but are rather defined
in terms of relative amounts; thus, scale is not
relevant in most cases.
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Drawbacks of dimensional analysis may include the
requirement of physical knowledge about the exper-
imental environment and the possibility of severe
problems if any related variable is excluded (Albrecht
et al. (2013)). Piepel (2013) also raises the issue of
spurious correlation. A comprehensive discussion of
statistical issues of dimensional analysis is presented
in Lin and Shen (2013).

Conclusion

Dimensional analysis has been well developed in
physics, engineering, and other fields. However, its
significance was overlooked for years by statisticians.
Little e↵ort was made to incorporate it into statisti-
cal practice. In this paper, we describe the use of the
dimensional-analysis method for both data analysis
and design of experiments. Additional examples and
comments can be found in Davis (2011) and Lin and
Shen (2013). Our purpose is to promote greater inte-
gration of dimensional analysis into statistical design
and analysis by statisticians, engineers, and scien-
tists.

The fundamental insight of dimensional analysis
is to identify key dimensionless variables from physi-
cal considerations, and then use data and statistical
analysis to understand them. Engineers provide the-
ory for guidance in the statistical analysis using phys-
ical prior knowledge. Statisticians design and ana-
lyze experiments for the unknown physical structure,
check the validity of physical assumptions and rec-
ommend further experiments. Complementing each
other in this fashion often leads to solutions that nei-
ther could achieve alone.

This paper introduces the basic idea of dimen-
sional analysis and its potential applications in statis-
tics, notably in regression analysis and the design
of experiments. There are many more issues to be
studied. First, the error structure should be fur-
ther investigated for dimensional analysis. Latent
errors in covariates and the robustness need to be
taken into account as well. For example, an orthog-
onal distance regression can be applied when both
sides of the modeling equation have errors. More-
over, errors could propagate very di↵erently for dif-
ferent nonunique DA representations. Second, once
designing the transformed dimensionless quantities,
the corresponding design on the original quantities is
not unique. The various design options on those op-
erating quantities o↵er a way to test the validity of
Buckingham’s ⇧-theorem statistically. Third, a for-
mal sequential or recursive scheme is suggested to

interweave the knowledge of engineers and that of
statisticians. Special designs or analyses may be pre-
ferred after conducting dimensional analysis. Fourth,
we believe dimensional analysis could be generalized
into fields outside of physics and engineering. Certain
common measure units in economics, biology, or soci-
ology could be candidates to enlarge the application
of dimensional analysis. Fifth, it seems promising to
generalize the idea of combining variables. PCA is
one kind of combining under linear schemes in feature
extraction. Dimensional analysis implies that combi-
nations may be done nonlinearly by power law.
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Appendix

The Shortleaf Pine Tree Data Set

ID Diameter Height Volume ID Diameter Height Volume
(feet) (feet) (feet3) (feet) (feet) (feet3)

1 0.383 33 2.2 36 0.917 71 25.8
2 0.367 38 2.0 37 0.925 81 32.8
3 0.417 40 3.0 38 0.933 91 35.4
4 0.425 49 4.3 39 0.958 66 26.0
5 0.425 37 3.0 40 0.975 65 29.0
6 0.433 41 2.9 41 1.000 72 30.2
7 0.433 41 3.5 42 1.017 66 28.2
8 0.458 39 3.4 43 1.017 72 32.4
9 0.458 50 5.0 44 1.042 90 41.3

10 0.467 69 7.2 45 1.075 88 45.2
11 0.492 58 6.4 46 1.083 63 31.5
12 0.492 50 5.6 47 1.092 69 37.8
13 0.625 45 7.7 48 1.092 65 31.6
14 0.633 51 10.3 49 1.117 73 43.1
15 0.633 49 8.0 50 1.150 69 36.5
16 0.650 59 12.1 51 1.150 77 43.3
17 0.667 56 11.1 52 1.192 64 41.3
18 0.675 86 16.8 53 1.192 77 58.9
19 0.700 59 13.6 54 1.217 91 65.6
20 0.717 78 16.6 55 1.233 90 59.3
21 0.742 93 20.2 56 1.242 68 41.4
22 0.758 65 17.0 57 1.258 96 61.5
23 0.767 67 17.7 58 1.267 91 66.7
24 0.775 76 19.4 59 1.267 97 68.2
25 0.775 64 17.1 60 1.275 95 73.2
26 0.817 71 23.9 61 1.283 89 65.9
27 0.825 72 22.0 62 1.308 73 55.5
28 0.825 79 23.1 63 1.325 99 73.6
29 0.825 69 22.6 64 1.333 90 65.9
30 0.842 71 22.0 65 1.400 90 71.4
31 0.850 80 27.0 66 1.483 91 80.2
32 0.850 82 27.0 67 1.525 96 93.8
33 0.858 81 27.4 68 1.525 100 97.9
34 0.867 75 25.2 69 1.617 94 107.0
35 0.883 75 25.5 70 1.950 104 163.5
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