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a b s t r a c t

Amethodology is developed to add runs to existing supersaturated designs. The technique
uses information from the analysis of the initial experiment to choose the best possible
follow-up runs. After analysis of the initial data, factors are classified into one of three
groups: primary, secondary, and potential. Runs are added to maximize a Bayesian
D-optimality criterion to increase the information gained about those factors. Simulation
results show the method can outperform existing supersaturated design augmentation
strategies that add runs without analyzing the initial response variables.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Screening designs are used in the early stages of industrial and computer experiments to discover which input factors
have major effects on a system’s output. A screening experiment is intended to remove the negligible, or inactive, factors
from further experiments, allowing the investigator to focus on the important, or active, factors. In a large set of factors,
relatively few are likely to be active, a concept called effect sparsity (Box and Meyer, 1986). Traditional screening methods
for k factors, like two-level 2k−p fractional factorial (Box et al., 2005) or Plackett–Burman designs (Plackett and Burman,
1946), require at least k + 1 experimental runs to separate the few active factors from the many inactive. But, when k
is large or experimental runs are prohibitively expensive, the experimenter requires alternative designs that can screen k
factors in n < k + 1 runs. Supersaturated designs (SSDs) are one such technique.

SSDs were introduced by Satterthwaite (1959) and Booth and Cox (1962) but did not receive considerable attention until
Lin (1993) and Wu (1993) renewed interest in the field, which continues today. The focus of an SSD is on identifying the
active main effects in a linear model. Consider an experiment with k factors and n runs. The underlying linear main-effect
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model is represented as:

y = β01 + β1x1 + · · · + βkxk + ϵ = Xβ + ϵ; (1)

where y is the response vector, β = (β0, . . . , βk)
′ is the p × 1 vector of unknown model parameters (p = k + 1), and

ϵ ∼ N(0, σ 2In) is the error term. The model matrix X equals (1|S), where 1 is an n × 1 column of 1’s and S = (x1| · · · |xk)
is the design matrix. The rows of S contain the k factor level settings for the n experimental runs. For clarity, we adopt the
notation in Gupta et al. (2010) and let SSD(n, k) = S represent an SSD with n runs and k factors.

An SSD(n, k)withmodelmatrixX is typically constructed to optimize a criterion thatminimizes the bias of the parameter
estimates. For two-level designs, in which factor levels are coded as ±1, the most popular criterion is E(s2). Denote the
(i, j)th element of X′X as sij. E(s2) is defined as E(s2) =


i<j s

2
ij/(p(p− 1)/2). A small E(s2) implies the average correlations

between factor columns are as small as possible (see Nguyen (1996), Bulutoglu and Cheng (2004) and Suen and Das (2010),
and references therein formore on E(s2)-optimal designs). Another popular construction technique is based on the Bayesian
D-optimality criterion by Jones et al. (2008), discussed in Sections 2 and 3. An overview of other design criteria for SSDs,
including criteria for designs with more than two levels, can be found in Lin (2003).

Regardless of the constructionmethod, the analysis of SSDs is rather challenging. Since n < k+1, X′X is singular and the
ordinary least squares estimates, b = (X′X)−1X′y, cannot be calculated. Due to effect sparsity, most of the βi terms in (1)
are assumed to be zero, but choosing which factors to remove from the model is difficult. We refer the reader to Gupta and
Kohli (2008) and Georgiou (2012) for reviews of proposed analysis methods, but we note that no method is infallible. There
is a tradeoff between the economy of a design and the information gained from the experiment. The experimenter risks
classifying an inactive factor as active (a Type I error), or worse, classifying an active factor as inactive (a Type II error). For
this reason, screening designs are not intended to be utilized for an ‘‘all-encompassing’’ experiment, but rather as the first
stage in a sequence of experiments (Box, 1992). This is especially pertinent with SSDs because the original analysis results
are not always definitive, a consequence of the inability to simultaneously estimate all main-effects.

Adding follow-up runs to a design is a useful way to clarify or confirm initial results and guide the next phase of
experimentation. The notion of sequential experimentation is a well-established approach in experimental design: Box
(1992) provided general guidelines to consider, and traditional augmentation strategies like fold-over designs and the
addition of center points are described inmost experimental design textbooks (e.g.Montgomery (2009) andWuandHamada
(2000)). However, the idea of augmenting SSDs has only recently been explored. Consider the following.

Suppose after running an SSD(n1, k), the experimenter can afford n2 more runs to resolve ambiguities. What is the best
way to augment the original design to reduce uncertainty and get the most information out of the final SSD(n1 + n2, k)?
This is a relatively new research area. Two papers by Gupta et al. (2010, 2012) describe methods to add rows to two-level
and s-level designs, respectively. With Gupta et al.’s method, E(s2)-optimal designs are augmented with additional runs to
create a new class of ‘‘extended E(s2)-optimal’’ designs. Suen and Das (2010) used a similar approach to add or remove one
row from an existing E(s2)-optimal design to make a new E(s2)-optimal design. However, in the current methods, there is
no effort to analyze the initial results before adding runs. After running an SSD(n1, k), an experimenter should have some
useful information about the process. Indeed, that is the motivation for running the experiment in the first place.

The focus of this paper is to present an alternative approach to the extended-E(s2) augmentation technique presented
in Gupta et al. (2010). Our goal is to take the information gained from the initial design, SSD(n1, k), identify and classify
factors of interest, and prioritize the additional n2 runs to get the most information from the final design, SSD(n1 + n2, k).
Specifically, we propose an SSD augmentation strategy using the BayesianD-optimality criterion fromDuMouchel and Jones
(1994) and Jones et al. (2008). Our approach has several benefits over current methods:
1. It uses information from the first n1 runs to strategically plan the n2 follow-up runs;
2. It can augment any SSD built from any construction method or optimality criterion;
3. It can add any number of runs; and
4. It uses the Coordinate-Exchange Algorithm (Meyer and Nachtsheim, 1995), a polynomial-time algorithm.

LikeGupta et al. (2010),we assumeadditional runs becomeavailable after the first experiment and thatn2 is provided by a
decisionmaker. This is inherently different than a two-stage designwhere an experimenter purposefully partitions the allot-
ted screening budget into two parts. SSDs are usedwhen resources are heavily constrained, so had all the runs been available
in the screening budget from the beginning, the experimenter would likely have chosen a design to accommodate all runs.

The next section reviews the relevant backgroundof three key concepts: BayesianD-optimality, the Coordinate-Exchange
Algorithm, and algorithmic augmentation strategies for standard designs. Section 3 presents our approach to augment SSDs
using information from the initial runs. Section 4 compares the performance of Bayesian D-optimal augmented designs
with extended E(s2)-optimal designs by highlighting examples where using information from the first runs leads to better
recommendations than adding runs to maintain E(s2)-optimality. We conclude with a discussion in Section 5.

2. Preliminaries

2.1. Bayesian D-optimality

D-optimality is a popular design criterion for traditional designs with an assumed n× kmodel matrix Xwith n > k. The
goal of D-optimality is to reduce the error variances of the least squares estimates, given by σ 2(X′X)−1. This is accomplished
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by maximizing the determinant of X′X, denoted |X′X| (see Kiefer and Wolfowitz (1959) and Pukelsheim (1993) for more
on D-optimality). Unfortunately, D-optimality is not always model-robust because the design may be ‘optimal’ to the
wrong model. To reduce dependency on one model, researchers have proposed alternative optimality criteria under the
Bayesian paradigm. A Bayesian design for a linear model is constructed to maximize the posterior information about the
model parameters, which are conditional on prior information. In Bayesian design theory, the counterpart to D-optimality
is Bayesian D-optimality. We refer the reader to Chaloner and Verdinelli (1995) and Atkinson et al. (2007, Chapter 18) for a
detailed description and history of Bayesian design theory and Bayesian D-optimal methods. In this paper, we focus on the
Bayesian D-optimality criterion as presented in DuMouchel and Jones (1994).

Consider the linear model y = Xβ + ϵ. Assume ϵ ∼ N(0, σ 2In). Let the prior distribution of the parameters be β|σ 2
∼

N(β0, σ
2R−1), where R is a prior covariance matrix, and the conditional distribution of y given β be y|β, σ 2

∼ N(Xβ, σ 2I).
The posterior distribution for β given y is then β|y ∼ N(b, σ 2(X′X + R)−1), where b = (X′X + R)−1(X′y + Rβ0). As noted,
D-optimal designs maximize |X′X| to reduce the error variances of the parameter estimates. Similarly, Bayesian D-optimal
designs aim to reduce the error variances of the parameter estimates, but the addition of prior information has changed the
variance to Var(b) = σ 2(X′X + R)−1. Therefore, Bayesian D-optimal designs are constructed to maximize |X′X + R|.

The matrix R reflects the prior information assigned to each of the p terms in the model matrix, X. DuMouchel and Jones
(1994) incorporate prior information and model uncertainty into the regression parameters by splitting models terms into
two sets: primary terms and potential terms. Primary terms are assumed to be active (i.e. a nonzero βi), whereas potential
terms may or may not be active. Using this information, the p1 primary terms are given a diffuse prior distribution with an
arbitrary prior mean and prior variance tending towards infinity. The arbitrary mean reflects no knowledge of the direction
of the effect of the primary term, and the ‘‘infinite’’ variance implies the effect is likely to be much different than zero. The
p2 = p − p1 potential terms, on the contrary, are not expected to have large effects and are given a prior mean zero and
finite variance σ 2τ 2, where τ represents the expected effect of a factor relative to residual standard error (DuMouchel and
Jones, 1994). The matrix, R, is consequently set to R = K/τ 2, where

K =


0p1×p1 0p1×p2
0p2×p1 Ip2×p2


.

The posterior distribution for β given y is then

β|y ∼ N


X′X +

K
τ 2

−1 
X′y +

K
τ 2

β0


, σ 2


X′X +

K
τ 2

−1


; (2)

and the Bayesian D-optimal design objective function becomes |X′X + K/τ 2
|. The p1 primary terms consist of those terms

assumed to be in the true model, whereas higher-order effects make up the p2 potential terms. The methodology allows
the total number of model terms, p = p1 + p2, to be greater than the number of runs, n, because the addition of the prior
information in K/τ 2 makes the information matrix invertible. As such, the designs can estimate all p1 primary terms and
detect some of the p2 potential terms.

This method was adapted to create SSDs in Jones et al. (2008). In an SSD(n, k), prior information is usually not available
for any of the k control factors, so all are classified as potential terms; the intercept is the only primary term. If information is
available to suggest p1 > 1 factors are active, the Bayesian D-optimality criterion can create such a design, provided p1 < n.
Incorporating this prior information makes the technique more dynamic than a naive regularization of the information
matrix.

Jones et al. set τ 2
= 5 and used the Coordinate-Exchange Algorithm to create the designs. For two-level designs, the

Coordinate-Exchange Algorithm can be summarized with the following steps: Generate a uniform random number from
[−1, 1] for each xi,j in X. Then, iterate through each entry in X, replacing the random number with the entry from {−1, +1}
that results in the largest value of the objective function. Because the resulting design is likely only locally optimal, the
algorithm is repeated many times with different random starting values for the xi,j entries. After many random starts, e.g.
100, the design with the largest determinant is approximately the Bayesian D-optimal design.

2.2. Augmenting designs

Augmenting a design with additional runs is the natural way to get more information about the system under study.
One criterion used to add runs to traditional designs with n < k is D-optimality. Suppose after an initial experiment, the
investigatorwishes to add specific terms to the assumedmodelmatrix (e.g. two-factor interactions or quadratic effects). The
model is specified a priori and runs are added to the original model matrix to create a D-optimal design for the full, updated
model. The overall goal is to maximize the information gained from the combined design. For a step-by-step example, see
Goos and Jones (2011, pp. 60–65).

Let X1 be a model matrix corresponding to the first n1 runs of an experiment, and let X2 be the additional n2 rows. To
optimize the final design, we need to maximize |X′X| of the final model matrix X, where X =


X1
X2


.
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To find |X′X|, first note that

X′X =


X1
X2

′ X1
X2


=


X′

1X
′

2

 
X1
X2


= X′

1X1 + X′

2X2. (3)

The Coordinate-Exchange Algorithm can be used to construct the appropriate X2 matrix to maximize |X′

1X1 + X′

2X2|

and create an augmented D-optimal design. Other algorithms and strategies for D-optimal augmentation can be found in
Atkinson et al. (2007).

Follow-up runs to traditional designs can also be addedwith Bayesian techniques.Meyer et al. (1996) augmented designs
with a Bayesian model-discrimination criterion to resolve ambiguities between many plausible models in the presence of
observed data. Jones and Dumouchel (1996), in a discussion of Meyer et al.’s method, suggested an F-criterion based on
Fisher’s information matrix. Neff (1996) and Ruggoo and Vandebroek (2004) proposed a two-stage, sequential Bayesian
D–D optimal method based on the Bayesian D-optimality criterion in Dumouchel and Jones. In the two-stage Bayesian D–D
optimalmethod, a first stage design is constructing to support an assumedmodelwith primary and potential terms. After the
first stage, data are analyzed via Box andMeyer (1993)’s model-discriminationmethod of calculating posterior probabilities
of possible models. A second stage design is then added to maximize a weighted D-optimality criterion to support and
discriminate the many competing models.

In the next section, we extend the aforementionedwork and develop themethodology to add runs to SSDs. It is important
to mention several unique aspects to augmenting SSDs. First, we are typically not interested in adding interactions or
quadratic effects to the assumedmain-effectmodel; with the limited number of runs, detecting the activemain effects is the
top priority. Second, the large number of factors and small number of runs in SSDsmeansmanymodels explain the datawell.
As such, it is difficult to pick which model or models to build upon in the follow-up runs. Therefore, instead of adding runs
based on a model-discrimination criterion like in Ruggoo and Vandebroek (2004), we add runs based on a categorization
of factors. A model-dependent augmentation strategy is computationally expensive. For example, it took 7 h to search
for all 6 factor models in a 124 factor, 24 run design (Edwards and Mee, 2011). Calculating larger models with a model-
discrimination criterion would be impractical. Categorizing factors into groups is more efficient. Further, categorization
makes the augmentationmethod adaptable because it is not tied to a specific analysismethod. The experimenter can analyze
the initial data with several methods to search for active factors.

3. Augmenting supersaturated designs with Bayesian D-optimality

Suppose an experimenter ran an SSD(n1, k) and can afford to add n2 more runs. Our objective is to create the best possible
augmented design, SSD(n1 + n2, k), given the information from the initial n1 runs. To do this, we adopt the linear model
assumptions used to create Bayesian D-optimal SSDs and adapt them to add n2 runs to the design matrix. Let X1 be the
original main-effect model matrix with response vector y1. Assume the prior distribution of β is β|σ 2 ∼ N(β0, σ

2R−1) for
a prior covariance matrix, R. Let the n2 × 1 vector of new observations, y2, have the conditional distribution y2|β, σ 2 ∼
N(X2β, σ 2In2×n2), where X2 is the additional run matrix in model form. Then, as shown in Ruggoo and Vandebroek (2004),

the posterior distribution for β given y =


y1
y2


is

β|y ∼ N

b, σ 2 

X′

1X1 + X′

2X2 + R
−1


; (4)

where b =

X′

1X1 + X′

2X2 + R
−1 

X′

1y1 + X′

2y2 + Rβ0

. To create a Bayesian D-optimal augmented SSD, X2 is chosen to

maximize |X′

1X1 + X′

2X2 + R|. Because runs are added to an existing design, the prior information for the n2 follow-up
runs comes from the analysis of the original SSD(n1, k) with response vector y1. Like DuMouchel and Jones (1994), prior
information is incorporated into the design process through the choice in R by classifying factors as primary or potential
terms. We also introduce a category of secondary terms.

After the first n1 runs, the experimenter can likely identify factors that appear to be the most active. For instance, some
factor or factor set may be detected in many different analysis methods. If evidence suggests the factor is in the true
model, the experimenter can classify it as a primary term. If there is an indication the factor may be active, but it is not
a predominant as the primary terms, the factor can be classified as a secondary term. Any factor that does not appear active
can be classified as a potential term (Section 3.1 expounds on classifying factors). Using this classification, the augmented
design SSD(n1+n2, k) is constructed to reduce the error variances of the parameter estimates under the Bayesian paradigm.

Let p1 denote the number of primary terms, p2 denote the number of secondary terms, and p3 be the number of potential
terms, where p1 + p2 + p3 = k+ 1 = p. The p1 primary terms are the most likely to be active, so their effects, denoted βpri,
are given a diffuse prior. The p2 secondary terms with effects βsec are given a prior mean of zero and a finite variance σ 2γ 2,
while the p3 potential terms with effects βpot are assigned a prior mean of zero and a finite variance σ 2τ 2, where τ < γ .
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Larger scaling factors for σ 2 represent stronger beliefs that certain factors are active (Ruggoo and Vandebroek, 2004). Using
this information, R = J/γ 2

+ K/τ 2, where

J =



0

j1,1 0
j2,2

0 . . .

jk,k

 and K =



0

k1,1 0
k2,2

0 . . .

kk,k

 . (5)

For each i = 1, 2, . . . , k, we set ji,i = 1 if xi is a secondary term, 0 otherwise, and
k

i=1 ji,i = p2. Similarly, ki,i = 1 if xi is a
potential term, 0 otherwise, and

k
i=1 ki,i = p3.

The posterior distribution for β in (4) can be rewritten as

β|y ∼ N


b, σ 2


X′

1X1 + X′

2X2 +
J

γ 2
+

K
τ 2

−1


; (6)

where b =

X′

1X1 + X′

2X2 + J/γ 2
+ K/τ 2

−1 
X′

1y1 + X′

2y2 + (J/γ 2
+ K/τ 2)β0


. Therefore, a Bayesian D-optimal

augmented SSD(n1 + n2, k) with model matrix X =


X1
X2


is constructed by choosing X2 to maximizeX′

1X1 + X′

2X2 +
J

γ 2
+

K
τ 2

 . (7)

Note that p1 < n1 + n2 is a necessary condition to make the determinant calculation in (7) nonzero. The Coordinate
Exchange Algorithm is used to construct X2 to optimize the objective function in (7).

3.1. Classifying factors

Getting information from the original SSD(n1, k) is not trivial, hence the motivation for additional runs. However, the
objective function in (7) is dependent on the experimenter using some information from the initial runs in order to classify
the k factors into groups. Analysis methods for SSDs range from basic regression techniques (e.g. stepwise and all-subsets
regression, as in Abraham et al. (1999)) to more sophisticated methods, like a cluster analysis strategy (Li et al., 2010) and a
combination of singular value decomposition (SVD), principle components analysis (PCA), and regression (Georgiou, 2008).
Different analysis techniques may identify different sets of active factors, so it is useful to consider the results of several
analysis methods (Lin, 1995). Regardless of which techniques are implemented, we suggest the following guidelines when
assigning the k factors in the primary, secondary, or potential groups.

1. The intercept is always a primary term.
2. If an experimenter must add runs but is not comfortable classifying the factors, we suggest specifying all factors as

potential terms to mimic the construction of Bayesian D-optimal SSDs.
3. If an analysis method (or many methods) highlight a group of less than n1 + n2 key factors, specify the terms as primary.
4. If the number of factors of interest is larger than n1 + n2 runs, specify the terms as secondary.
5. Terms with little evidence to suggest they are active should be classified as potential.

Secondary terms let the experimenter differentiate between terms when more than n1 + n2 factors are of interest. After
running an SSD(n1, k), an experimenter may identify a group of s key factors, where s > n1 + n2. Therefore, not all s factors
can be classified as the p1 primary terms, as p1 < n1 + n2 is required. To differentiate between the s key factors and the
remaining k − s, the experimenter can classify all s factors as the p2 secondary terms. Secondary terms are given a larger
prior variance to suggest they are likelymore active than the k−p2 potential terms. The augmentation criterion then selects
runs to discriminate between the two groups. An example is given in Section 4.2.

3.2. Example augmentation

To visually compare howprior information influences the final SSDmatrix,we created a BayesianD-optimal SSD(25, 100)
with the JMP statistical software and added 25 runs to the original design. Using the Bayesian D-optimal augmentation
strategy, we created two augmented designs. For the first design, SSD(50, 100)1, every factor was classified as a potential
term prior to adding the 25 runs. For the second design, SSD(50, 100)2, factors x1 −x30 were listed as primary and all others
potential. Fig. 1 shows the grayscale maps of the correlations between the factors. All examples in this paper use γ 2

= 100
and τ 2

= 5; see Jones et al. (2008).
In the grayscale correlation maps, white represents a small correlation between factors (in absolute value), while black

represents a perfect correlation. Maximizing the criterion in (7) has the byproduct of de-aliasing factors by reducing the
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(a) SSD(25, 100). (b) SSD(50, 100)1 . (c) SSD(50, 100)2 .

Fig. 1. Correlation grayscale maps of supersaturated designs: SSD(25, 100) (L), SSD(50, 100)1 with all potential terms (M), and SSD(50, 100)2 with 30
primary terms (R).

Table 1
Average correlations of factors in augmented SSD(50, 100).

Correlations |rpri×pri| |rpri×pot| |rpot×pot| |r|

SSD(25, 100) 0.150 0.143 0.145 0.145
SSD(50, 100)1 0.078 0.083 0.089 0.086
SSD(50, 100)2 0.064 0.068 0.128 0.097

correlations between factors. Comparing SSD(25, 100) to SSD(50, 100)1, it is not surprising the color has lightened; the
additional runs reduced the correlations between the 100 factors in the model, thereby increasing the likelihood an active
factorwill be identified. The difference between SSD(50, 100)1 (Fig. 1(b)) and SSD(50, 100)2 (Fig. 1(c)) showshowclassifying
factors in the primary group reduces the pairwise correlations between those factors. Analyzing the correlation valuesmakes
this relationship clearer.

The average absolution correlation between a group of factors is defined as

|r| =

k−1
i=1

k
j=i+1

|ri,j|/(k(k − 1)/2);

where ri,j is the correlation between factors xi and xj. Smaller values |r| are preferred. Table 1 compares the designs’ absolute
average correlations between primary terms, primary terms and potential terms, and potential terms, denoted by |rpri×pri|,
|rpri×pot|, and |rpot×pot|, respectively. First, note that only SSD(50, 100)2 differentiates between primary and potential terms,
but Table 1 contains values for each group vs. group calculation to highlight how prior information reduces correlations
between factors of interest.

SSD(25, 100) has the highest correlation in all groups because it has the least number of runs. Comparing |rpri×pri| and
|rpri×pot| for SSD(50, 100)1 and SSD(50, 100)2 reveals that identifying factors as primary terms reduces the correlation
between those factors. The average absolute correlations between factors x1, . . . , x30 are lower in SSD(50, 100)2 (0.064)
than in SSD(50, 100)1 (0.078) becausewe specified the terms a priori as primary factors of interest and the design criterion in
(7) forces the additional runs to reduce the correlations between those factors. Note, however, that the reduced correlations
of |rpri×pri| and |rpri×pot| for SSD(50, 100)2 were offset by a higher |rpot×pot|.

To compare the designs further, define the maximum absolute correlation of factors in a group

|r|max
= max

i≠j
|ri,j|.

Smaller values are also preferred here. Let |rpri×pri|
max, |rpri×pot|

max, and |rpot×pot|
max denote the maximum absolute

correlations of factors in the primary, primary and potential, and potential groups, respectively. Table 2 shows the
augmented designs have smaller values than the original SSD(25, 100), as expected. Further, classifying factors as primary
reduces the maximum absolute correlation between those factors in SSD(50, 100)2 compared to SSD(50, 100)1.

4. Comparisons

In this section, we compare the performance of Bayesian D-optimal SSDs to extended E(s2)-optimal designs. Gupta
et al. (2010) added runs to two E(s2)-optimal designs, SSD(8, 13) and SSD(7, 15). For SSD(8, 13), Gupta et al. listed the
best n2 = 1, 2, 3, and 4 run(s) to add to the original design to minimize E(s2). For SSD(7, 15), they listed the best n2 = 3
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Table 2
Maximum correlations of factors in augmented SSD(50, 100).

Correlations |rpri×pri|
max

|rpri×pot|
max

|rpot×pot|
max

|r|max

SSD(25, 100) 0.603 0.603 0.603 0.603
SSD(50, 100)1 0.281 0.414 0.361 0.414
SSD(50, 100)2 0.250 0.327 0.560 0.560

Table 3
E(s2)-optimal SSD(8, 13) and additional 1, 2, 3, & 4 runs to create extended E(s2)-optimal designs, as presented in Gupta et al. (2010).

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 y1 y2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 15.320 −6.433
2 1 1 1 −1 −1 1 −1 −1 −1 1 −1 −1 1 3.588 −11.122
3 1 −1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 −3.159 19.684
4 1 −1 1 1 1 −1 −1 −1 −1 −1 1 −1 −1 14.380 12.237
5 −1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 1.696 −22.798
6 −1 1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 −20.391 8.646
7 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 −1 −12.956 21.218
8 −1 −1 −1 1 −1 1 1 −1 −1 1 −1 1 −1 0.306 −20.313

9 1 1 1 1 −1 −1 1 1 −1 −1 −1 1 −1 20.707 −12.700

9 1 1 1 1 −1 −1 1 1 −1 −1 −1 1 −1 18.236 −11.398
10 −1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −19.953 12.007

9 −1 −1 −1 1 1 1 −1 −1 1 1 1 −1 1 −4.712 −9.609
10 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 −3.304 47.024
11 1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 −1 6.918 −13.521

9 1 1 1 1 −1 −1 1 1 −1 −1 −1 1 −1 21.600 −11.596
10 1 −1 −1 1 1 1 −1 1 1 1 −1 −1 −1 14.120 4.539
11 −1 1 −1 −1 1 1 1 −1 −1 −1 1 −1 1 −20.515 33.206
12 −1 −1 1 −1 −1 −1 −1 −1 1 1 1 1 1 −13.339 −25.110

additional runs.We highlight these examples because, to date, they are the only two-level augmented SSDs in the literature.
The additional runs suggested in Gupta et al. are optimal with respect to E(s2), but the runs are independent of the initial
data. Hence, for a given SSD(n1, k) and number of new runs, n2, the same additional runs are suggested. In contrast, the
Bayesian D-optimal augmentationmethod uses information from the first n1 runs to improve the selection of the additional
n2 runs.

We perform a side-by-side comparison of the proposed methods with the following methodology: First, we randomly
created two main-effect models to study for both SSD(8, 13) and SSD(7, 15). Each model was randomly chosen to have 3–5
active factors with effect sizes drawn uniformly between −15 and 15. The location of the active factors was also random.
All responses were generated from themodels with random noise, ϵ ∼ N(0, 1). Next, we added the extended E(s2)-optimal
runs prescribed in Gupta et al. and recorded the new response(s). For the Bayesian D-optimal approach, the initial design
and response variables were analyzed. Then, we classified factors into their appropriate groups, added the required number
of runs by maximizing the objective function in (7), and recorded the new responses. Finally, we analyzed the screening
results of the final full Bayesian D-optimal augmented SSDs and Gupta et al.’s final extended E(s2)-optimal SSDs to see
which strategy provides a better recovery of the underlying model.

The SSDs in this section are analyzed with basic regression methods and screening techniques: forward and all-subsets
regression (for up to 5 factors) and Half Normal plots, which visually identify factors whose effects seem larger than random
noise (Daniel, 1959). All analysis results were calculated using the JMP software, though similar analyses can bemade in any
statistical software package. For forward regression, terms were added based on a p-value to enter of 0.05. The combined
results of forward regression, all-subsets regression, and Half Normal plots will guide the classification of each factor into
either the primary, secondary, or potential group.While traditional regressionmethods do not always workwell when used
for the analysis of SSDs (Edwards and Mee, 2011), the supposition is that if augmentation works well for the traditional
methods, it will work well for more sophisticated techniques.

4.1. Adding runs to an E(s2)-optimal SSD(8, 13)

Consider the E(s2)-optimal SSD(8, 13) in Table 3 (Runs 1–8) with responses generated from the equations

1. y1 = 10x3 + 8x4 + 6x5 − 9x11 + ϵ, ϵ ∼ N(0, I8); and
2. y2 = −10x4 + 12x5 + 7x6 − 11x10 − 6x13 + ϵ, ϵ ∼ N(0, I8).
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Table 4
Analysis of initial SSD(8, 13) data and classification of factors. Active factors are identified with a •.

Analysis Results x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Model 1 Half Normal
Forward • • • •

All subsets • • • •

Classification βpri βpot βpri βpri βpri βpot βpot βpot βpot βpot βpri βpot βpot

Model 2 Half Normal
Forward • • • • •

All subsets • • • • •

Classification βpot βpri βpot βpri βpri βpri βpot βpot βpot βpri βpri βpot βpri

Table 5
Additional 1, 2, 3, & 4 Bayesian D-optimal runs for SSD(8, 13). Runs 9∗

i –(9 + j)∗i are Bayesian D-optimal for responses yi .

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 y1 y2

1 Run 91
∗

−1 1 1 1 1 1 1 −1 −1 −1 −1 −1 1 32.764
92

∗ 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1 25.358

2 Runs 91
∗ 1 −1 −1 1 −1 −1 1 1 −1 1 1 −1 1 −17.549

101
∗

−1 −1 1 1 1 −1 1 1 −1 1 −1 −1 1 34.161
92

∗ 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 −5.498
102

∗ 1 1 −1 −1 1 1 1 −1 −1 −1 −1 1 −1 46.855

3 Runs 91
∗

−1 −1 1 1 1 1 −1 1 −1 −1 −1 1 1 30.908
101

∗
−1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −20.592

111
∗ 1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 1 −17.837

92
∗ 1 1 1 −1 1 −1 1 1 1 1 −1 −1 −1 11.525

102
∗ 1 −1 1 −1 −1 −1 1 1 1 1 1 −1 1 −23.607

112
∗

−1 −1 1 1 1 1 −1 1 −1 1 −1 −1 1 −7.140

4 Runs 91
∗

−1 −1 1 −1 −1 −1 −1 −1 1 1 1 1 1 −13.432
101

∗
−1 1 −1 1 1 1 1 −1 −1 −1 1 −1 1 −6.887

111
∗ 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −34.060

121
∗

−1 −1 1 −1 1 1 −1 1 −1 −1 −1 1 1 16.459
92

∗ 1 1 1 −1 −1 −1 1 1 1 1 −1 1 −1 −14.887
102

∗
−1 1 1 −1 1 1 1 −1 −1 −1 −1 −1 −1 45.149

112
∗

−1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1 1.230
122

∗
−1 1 1 −1 −1 −1 1 −1 −1 −1 1 1 1 −3.211

Table 3 also contains the n2 = 1, 2, 3, and 4 runs to add suggested by Gupta et al. to create SSD(8+n2, 13) E(s2)-optimal
designs along with the appropriate responses. Again, we emphasize that extended E(s2)-optimality recommends the same
runs for each model, whereas the runs added via the Bayesian D-optimal approach will be different for each model.

Using Half Normal Plots, forward regression, and all-subsets regression, we analyzed the response variables from SSD(8,
13) and classified factors as primary, secondary, or potential. Table 4 summarizes the initial analysis results. For example,
the Half Normal Plot failed to indicate any factor as significantly greater than experimental noise for either model. However,
forward regression on y1 selected factors x4, x1, x5, x11 as the top four ‘‘active’’ factors. Further analysis on the first 8 runs
with all-subsets regression indicated factors x1, x3, x4, and x5 are of particular interest, as the topmodels contain only those
four factors. Coupled with the results from forward regression, five factors are likely to be active: x1, x3, x4, x5, and x11. If
the analysis stopped here, all true active factors would be identified – x3, x4, x5, and x11 – but a false effect would remain,
x1. Augmenting the design with additional runs may help resolve this issue. Based on the initial results, these five factors of
interest were classified as primary terms, as indicated by βpri in Table 4. All other terms were classified as potential because
there was no indication any other factor was likely active.

A similar approach was carried out to analyze y2. Forward regression identified x2, x4, x5, x10, and x11 as potentially
active, whereas the best five-term model selected with all-subsets regression contained x4, x5, x6, x10, and x13. The union
of terms were placed in the primary group; all others were classified as potential. Next, runs were added to SSD(8, 13) to
get more information out of the respective models. The suggested n2 = 1, 2, 3, or 4 Bayesian D-optimal runs to add for each
model are listed in Table 5.

Table 6 compares the final analysis results of y1 on SSD(9, 13), SSD(10, 13), SSD(11, 13), and SSD(12, 13). The true
underlying model contained the active factors x3, x4, x5, and x11. These factors, and only these factors, were identified
by at least one analysis method in each of the Bayesian D-optimal designs. In all extended E(s2)-optimal designs, x1 was
incorrectly selected as an active factor, a Type I error. Moreover, all three analysis methods correctly identified all active
factors for the 11-run and 12-run Bayesian D-optimal designs. The results suggest using information from the initial design
can improve the selection of additional runs and ultimately improve screening results. This example also highlights that
having a false effect, x1, labeled as a primary factor after the first 8 runs is helpful because the new runs will test to see if it is
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Table 6
Final analysis of y1 on SSD(8 + n2, 13): comparing extended E(s2)-optimal SSDs and augmented Bayesian D-optimal SSDs. Active factors are identified
with a •.

Factors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 Correct?
True model • • • •

9 Run E(s2)
Half Normal • • • •

Forward • • • • •

All subsets • • • •

9 Run Bayes D
Half Normal
Forward • • • • •

All subsets • • • • •

10 Run E(s2)
Half Normal • • •

Forward • • • • •

All subsets • • • •

10 Run Bayes D
Half Normal • • • • •

Forward • • • • •

All subsets • • • • •

11 Run E(s2)
Half Normal • • • •

Forward • • • •

All subsets • • • •

11 Run Bayes D
Half Normal • • • • •

Forward • • • • •

All subsets • • • • •

12 Run E(s2)
Half Normal • • • • •

Forward • • • • •

All subsets • • • •

12 Run Bayes D
Half Normal • • • • •

Forward • • • • •

All subsets • • • • •

truly active. Table 7 compares the final analysis results of the data generated from the second model. Analysis of y2 is more
consistent between the E(s2) and Bayesian D-optimal SSDs than for y1, but note for the 9 and 10-run designs, the Bayesian
design performed better with respect to forward regression.

4.2. Adding runs to an E(s2)-optimal SSD(7, 15)

Consider the E(s2)-optimal SSD(7, 15) in Table 8 (Runs 1–7) with responses generated from the equations

1. y1 = −8x5 − 3x10 + 11x14 + ϵ, ϵ ∼ N(0, I7).
2. y2 = −10x2 + 6x4 + 3x7 + 11x9 + 5x13 + ϵ, ϵ ∼ N(0, I7).

In this example, we can afford to add three more runs to the design. Table 8 contains the three runs suggested by Gupta
et al. (Runs 8–10), as well as the three runs createdwith the BayesianD-optimalmethod. Note again that the new runs under
the Bayesian approach are different for each model. The runs were added based on the classification presented in Table 9.

An initial analysis of y1 on SSD(7, 15) correctly identified the true active factors. To confirm the results, x5, x10, and
x14 were placed in the primary group while all others were classified as potential terms. For y2, the analysis of SSD(7, 15)
was more challenging. A Half Normal Plot did not indicate any factors were substantially larger than experimental noise.
Forward regression, on the other hand, selected x1, x9, x5, x10, x4 as the five most important factors. All-subsets regression
presented conflicting results because the best five-factor model only contained one factor in the best four-factor model.
Factors x2, x3, x4, x7, x8, x10, x12, and x13 were all flagged in either the best four-factor or five-factor model in all-subsets
regression. Coupled with the factors from forward regression, this creates 11 factors of interest.

Because 11 factors are of interest and the final designwill only have 10 runs, all factors cannot be listed as primary terms.
Moreover, there is not substantial evidence to suggest some of the 11 factors are more active than the others, but evidence
does suggest these 11 factors are likelymore important than the four factors not detected by any analysismethod. Therefore,
we classified these 11 factors as secondary and classified the remaining four as potential terms.

The final analysis of both models is presented in Table 10. For the first model, both the E(s2) and Bayesian D designs
performed well. For the second model, however, the Bayesian design performed better. In the Half Normal Plot, factors
x1, x9, x5, and x2 were deemed active using the method proposed by Gupta et al., but only factors x2 and x9 are truly
active. Further, factors x4, x7, and x13 were not detected, even though they are active. In contrast, the Half Normal Plot
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Table 7
Final analysis of y2 on SSD(8 + n2, 13): comparing extended E(s2)-optimal SSDs and augmented Bayesian D-optimal SSDs.

Factors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 Correct?
True model • • • • •

9 Run E(s2)
Half Normal
Forward • • • • •

All subsets • • • • • •

9 Run Bayes D
Half Normal
Forward • • • • • •

All subsets • • • • • •

10 Run E(s2)
Half Normal •

Forward • • •

All subsets • • • • • •

10 Run Bayes D
Half Normal
Forward • • • • • •

All subsets • • • • • •

11 Run E(s2)
Half Normal
Forward • • • • • •

All subsets • • • • • •

11 Run Bayes D
Half Normal • • •

Forward • • • • • •

All subsets • • • • • •

12 Run E(s2)
Half Normal
Forward • • • • • •

All subsets • • • • • •

12 Run Bayes D
Half Normal • • • • • •

Forward • • • • • •

All subsets • • • • • •

Table 8
Adding 3 runs to an E(s2)-optimal SSD(7, 15): Runs 8–10 are extended E(s2)-optimal from Gupta et al.; Runs 8∗

i –10
∗

i are Bayesian D-optimal for responses
yi .

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 y1 y2

1 −1 1 −1 −1 −1 −1 1 1 1 −1 −1 1 1 −1 −1 −0.700 3.381
2 −1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 −1 −1 1 1 4.847 −16.135
3 −1 1 1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 0.429 −25.445
4 1 −1 −1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 −1 16.358 8.879
5 1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 1 −20.882 13.271
6 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 −1 1 −6.671 −0.594
7 1 −1 1 1 −1 1 1 1 1 −1 1 −1 1 1 1 21.237 33.838

8 1 1 1 −1 1 −1 1 −1 1 1 −1 −1 1 1 1 0.547 3.185
9 1 −1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −16.836 18.931
10 −1 1 −1 1 −1 1 1 −1 −1 −1 1 1 −1 1 1 22.934 −13.361

81∗ 1 1 1 1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 2.962
91∗ 1 1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 −15.616
101∗ 1 −1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −21.181
82∗ 1 1 −1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 8.842
92∗ 1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 −34.834
102∗ −1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 1 1 −18.872

Table 9
Analysis of initial SSD(7, 15) data and classification of factors.

Analysis Results x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Model 1 Half Normal • • •

Forward • • •

All subsets • • •

Classification βpot βpot βpot βpot βpri βpot βpot βpot βpot βpri βpot βpot βpot βpri βpot

Model 2 Half Normal •

Forward • • • • •

All subsets • • • • • • • •

Classification βsec βsec βsec βsec βsec βpot βsec βsec βsec βsec βpot βsec βsec βpot βpot
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Table 10
Final analysis of y1 and y2 on SSD(10, 15): comparing extended E(s2)-optimal SSDs and augmented Bayesian D-optimal SSDs.

Factors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 Correct?
Model 1 True model • • •

10 Run E(s2)
Half Normal • • • •

Forward • • • •

All subsets • • • •

10 Run Bayes D
Half Normal • • • •

Forward • • • •

All subsets • • • •

Model 2 True model • • • • •

10 Run E(s2)
Half Normal • • • •

Forward • • • • •

All subsets • • • • •

10 Run Bayes D
Half Normal • • • • • •

Forward • • • • • •

All subsets • • • • • •

for the Bayesian D-optimal SSD(10, 15) correctly identified only the five important factors. Forward regression and all-
subsets regression also indicate the Bayesian D-optimal method is favorable, as forward regression on the extended E(s2)-
optimal SSD(10, 15) detected x1, x9, x5, x2, x8 as important, whereas forward regression on the extended Bayesian D-
optimal SSD(10, 15) identified all active factors: x9, x2, x4, x13, x7.

5. Discussion and conclusions

We adapted Bayesian D-optimality to add runs to existing supersaturated designs by using information from the initial
experiment. After running and analyzing an SSD(n1, k), an experimenter can classify factors as primary, secondary, or
potential depending on how active they appear to be. Using this prior information, n2 runs are added to form a Bayesian
D-optimal augmented SSD(n1 + n2, k). The comparison study in Section 4 indicates the augmentation strategy performs
well against previous methods where designs are augmented to maintain E(s2)-optimality independently of the data.

Our goal with this paper is to introduce the method, but several points deserve explanation. Additional runs are chosen
to maximize the Bayesian D-optimality criterion, which is dependent on a classification of factors. The initial classification
can play a role in the reliability of themethod, but misclassification is not always troubling. In Section 4.1, an inactive factor,
x1, was listed as a primary term because the complicated confounding pattern in the SSD(8, 13) inflated its initial parameter
estimate. The additional runs reduced the bias from the true active factors, so in the final design, the parameter estimate
for x1 was no longer artificially inflated. The misclassification was not detrimental to the screening process. We have seen
some models where an incorrect initial classification led to more Type I or Type II errors than the extended E(s2)-optimal
designs, but this is not a surprising result. Regardless of the optimality criterion used to add runs, both the initial design and
augmented design are still supersaturated with complicated aliasing structures. As such, there is always a risk of not finding
the true active factors. Our methodology, however, is more general than the extended E(s2)-optimality approach, as it can
augment any SSD with any number of designed runs, whereas extended E(s2)-optimal designs are only known for certain
combinations of n1, n2, and k. Moreover, our technique can easily extend to SSDs with more than two levels, and while we
employed the Coordinate Exchange Algorithm, different design algorithms could be applied if desired.

Another important issue, suggested by one referee, is the determination of n2 if the decision maker asked for a
recommendation. In other words, given n1, what will be an ideal n2? This is a sensible issue; we hope that we will be able to
report some findings in thenear future. In a perfectworld,n2 would be as large as possiblewhile keepingwithin the screening
budget. The results in Section 4.1 provide evidence to this because the simulation results improved asmore runswere added.
Of course, all SSDs take place in a constrained environment. If the budget was highly constrained, an experimenter is already
taking on a certain amount of risk. Some research suggests SSDs work best when k is no more than 2n (Marley and Woods,
2010). Thus, an initial suggestion to a decision maker on n2 may be to add at least n2 runs to make n1 + n2 > .5k. With that
said, the presented method can still augment an existing SSD with any number of runs.
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