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We investigate asymptotic properties of least-absolute-deviation or median quantile estimates of
the location and scale functions in nonparametric regression models with dependent data from
multiple subjects. Under a general dependence structure that allows for longitudinal data and
some spatially correlated data, we establish uniform Bahadur representations for the proposed
median quantile estimates. The obtained Bahadur representations provide deep insights into the
asymptotic behavior of the estimates. Our main theoretical development is based on studying
the modulus of continuity of kernel weighted empirical process through a coupling argument.
Progesterone data is used for an illustration.
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1. Introduction

There is a vast literature on the nonparametric location-scale model Y = µ(X) + s(X)e,
where X,Y , and e are the covariates, response, and error, respectively. Given observa-
tions {(Xj , Yj)}j=1,...,m, the latter model has been studied under various settings of data
structure. In terms of the dependence structure, there are independent data and time
series data scenarios; in terms of the design point X , there are random-design and fixed-
design Xj = j/m settings. In these settings, we usually assume that either (Xj , Yj) are
independent observations from subjects j = 1, . . . ,m, or {(Xj, Yj)}j=1,...,m is a sequence
of time series observations from the same subject. We refer the reader to Fan and Yao
[9] and Li and Racine [20] for an extensive exposition of related works.
In this article, we are interested in the following nonparametric location-scale model

with serially correlated data from multiple subjects:

Yi,j = µ(xi,j) + s(xi,j)ei,j , 1≤ j ≤mi,1≤ i≤ n, (1.1)
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where, for each subject i, {(xi,j , Yi,j)}j=1,...,mi is the sequence of covariates and responses,
and {ei,j}j=1,...,mi is the corresponding error process. We study (1.1) under a general
dependence framework for {ei,j}j∈N that allows for both longitudinal data and some
spatially correlated data. In typical longitudinal studies, xi,j represents measurement
time or covariates at time j, then it is reasonable to assume that {ei,j}j∈Z is a causal time
series, that is, the current observation depends only on past but not future observations.
In other applications, however, measurements may be dependent on both the left and
right neighboring measurements, especially when xi,j represents measurement location.
A good example of this type of data is the vertical density profile data in Walker and
Wright [27]; see also Section 2.1 for more details. To accommodate this, we propose a
general error dependence structure, which can be viewed as an extension of the one-sided
causal structure in Wu [32] and Dedecker and Prieur [8] to a two-sided noncausal setting.
The proposed dependence framework allows for many linear and nonlinear processes.
We are interested in nonparametric estimation of the location function µ(·) and the

scale function s(·). Least-squares based nonparametric methods have been extensively
studied for both time series data (Fan and Yao [9]) and longitudinal data (Hoover et al.
[16], Fan and Zhang [10], Wu and Zhang [31], Yao, Müller and Wang [35]). While they
perform well for Gaussian errors, least-squares based methods are sensitive to extreme
outliers, especially when the errors have a heavy-tailed distribution. By contrast, robust
estimation methods impose heavier penalty on far-deviated data points to reduce the
impact from extreme outliers. For example, median quantile regression uses the abso-
lute loss and the resultant estimator is based on sample local median. Since Koenker
and Bassett [19], quantile regression has become popular in parametric and nonparamet-
ric inferences and we refer the reader to Yu, Lu and Stander [37] and Koenker [18] for
excellent expositions. Recently, He, Fu and Fung [12], Koenker [17] and Wang and Fy-
genson [28] applied quantile regression techniques to parameter estimation of parametric
longitudinal models, He, Zhu and Fung [13] studied median regression for semiparamet-
ric longitudinal models, and Wang, Zhu and Zhou [29] studied inferences for a partially
linear varying-coefficient longitudinal model. Here we focus on quantile regression based
estimation for the nonparametric model (1.1).
We aim to study the asymptotic properties, including uniform Bahadur representations

and asymptotic normalities, of the least-absolute-deviation or median quantile estimates
for model (1.1) under a general dependence structure. Nonparametric quantile regres-
sion estimation has been studied mainly under either the i.i.d. setting (Bhattacharya
and Gangopadhyay [4], Chaudhuri [7], Yu and Jones [36]) or the strong mixing set-
ting (Truong and Stone [26], Honda [15], Cai [6]). There are relatively scarce results on
Bahadur representations of conditional quantile estimates. Bhattacharya and Gangopad-
hyay [4] and Chaudhuri [7] obtained point-wise Bahadur representations for conditional
quantile estimation of i.i.d. data. For mixing stationary processes, Honda [15] obtained
point-wise and uniform Bahadur representations of conditional quantile estimates. For
stationary random fields, Hallin, Lu and Yu [11] obtained a point-wise Bahadur repre-
sentation for spatial quantile regression function under spatial mixing conditions. Due
to the nonstationarity and dependence structure, it is clearly challenging to establish
Bahadur representations in the context of (1.1).
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Our contribution here is mainly on the theoretical side. We establish uniform Bahadur
representations for the least-absolute-deviation estimates of µ(·) and σ(·) in (1.1). To
derive the uniform Bahadur representations, the key ingredient is to study the modulus
of continuity of certain kernel weighted empirical processes of the nonstationary obser-
vations Yi,j in (1.1). Empirical processes have been extensively studied under various
settings, including the i.i.d. setting (Shorack and Wellner [25]), linear processes (Ho and
Hsing [14]), strong mixing setting (Andrews and Pollard [2], Shao and Yu [23]), and gen-
eral causal stationary processes (Wu [33]). Using a coupling argument to approximate the
dependent process by an m-dependent process with a diverging m, we study the mod-
ulus of continuity of weighted empirical processes, and the latter result serves as a key
tool in establishing our uniform Bahadur representations. These Bahadur representations
provide deep insights into the asymptotic behavior of the estimates, and in particular
they provide theoretical justification for the profile control chart methodologies in Wei,
Zhao and Lin [30]. These technical treatments are also of interest in other nonparametric
problems involving dependent data.
The article is organized as follows. In Section 2, we introduce the error dependence

structure with examples. In Section 3, we study weighted empirical process through a
coupling argument. Section 4 contains uniform Bahadur representations and asymptotic
normality. Section 5 contains an illustration using progesterone data. Possible extensions
to spatial setting are discussed in Section 6. Proofs are provided in Section 7.

2. Error dependence structure

First, we introduce some notation used throughout this article. For a, b ∈ R, let ⌊a⌋
be the integer part of a, a ∨ b=max(a, b), and a ∧ b=min(a, b). For a random variable
Z ∈Lq, q > 0, if ‖Z‖q = [E(|Z|q)]1/q <∞. Let Cr(S) be the set of functions with bounded
derivatives up to order r on a set S ⊂R.
Assume that, for each i, the error process {ei,j}j∈N in (1.1) is an independent copy

from a stationary process {ej}j∈N which has the representation

ej =G(εj , εj±1, εj±2, . . .), (2.1)

where εj , j ∈ Z, are i.i.d. random innovations, and G is a measurable function such that ej
is well defined. We can view (2.1) as an input-output system with (εj , εj±1, εj±2, . . .),G,
and ej being, respectively, the input, filter, and output. Wu [32] considered the causal time
series case that ej depends only on the past innovations εj, εj−1, . . . . In contrast, (2.1)
allows for noncausal models and is particularly useful for applications that do not have
a time structure. For example, if xi,j are locations, then the corresponding measurement
yi,j depends on both the left and right neighboring measurements.

Condition 2.1. Let {ε′j}j∈Z be i.i.d. copies of {εj}j∈Z. There exist constants q > 0 and
ρ ∈ (0,1) such that

‖e0 − e0(k)‖q =O(ρk), where e0(k) =G(ε0, ε±1, . . . , ε±k, ε
′
±(k+1), ε

′
±(k+2), . . .). (2.2)
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In (2.2), e0(k) can be viewed as a coupling process of e0 with {εr}|r|≥k+1 replaced
by the i.i.d. copy {ε′r}|r|≥k+1 while keeping the nearest 2k + 1 innovations {εr}|r|≤k. In
particular, if e0 does not depend on {εr}|r|≥k+1, then e0(k) = e0. Thus, ‖e0 − e0(k)‖q
quantifies the contribution of {εr}|r|≥k+1 to e0, and (2.2) states that the contribution
decays exponentially in k. Shao and Wu [24] and Dedecker and Prieur [8] [cf. equation
(4.2) therein] considered one-sided causal version of (2.2) where e0 depends only on
{εr}r≤0.
Propositions 2.1–2.2 below indicate that, if {ei} satisfies (2.2), then its properly trans-

formed process also satisfies (2.2).

Proposition 2.1. For 0< ς ≤ 1 and υ ≥ 0, define the collection of functions h

H(ς, υ) = {h: |h(x)− h(x′)| ≤ c|x− x′|ς(1 + |x|+ |x′|)υ, x, x′ ∈R}, (2.3)

where c is a constant. Suppose {ej} satisfies (2.2). Then the transformed process e∗j =
h(ej) satisfies (2.2) with (q, ρ) replaced by q∗ = q/(ς + υ) and ρ∗ = ρς .

In (2.3), H(ς,0) is the class of uniformly Hölder-continuous functions with index ς .
If h(x) = |x|b, b > 1, then h ∈ H(1, b− 1). Clearly, all functions in H(ς,0) are continu-
ous. Interestingly, for noncontinuous transformations, the conclusion may still hold; see
Proposition 2.2 below, where 1 is the indicator function.

Proposition 2.2. Let e0 have a bounded density. Suppose {ej} satisfies (2.2). Then, for
any given x, {1ej≤x} satisfies (2.2) with ρ replaced by ρ∗ = ρ1/(1+q).

Propositions 2.1–2.2 along with the examples below show that the error structure
(2.1) and Condition 2.1 are sufficiently general to accommodate many popular linear
and nonlinear time series models and their properly transformed processes.

Example 2.1 (m-dependent sequence). Assume that ej =G(εj , εj±1, . . . , εj±m) for
a measurable function G. Then ej depends only on the nearest 2m + 1 innovations
εj, εj±1, . . . , εj±m. Clearly, {ej}j∈Z form a (2m+1)-dependent sequence, ‖e0−e0(k)‖q = 0
for k ≥m, and (2.2) trivially holds. If m= 0, then ej are i.i.d. random variables.

Example 2.2 (Noncausal linear processes). Consider the noncausal linear process
ej =

∑∞
r=−∞ arεj−r . If εj ∈Lq and aj =O(ρ|j|), then it is easy to see that (2.2) holds.

Example 2.3 (Iterated random functions). Consider random variables ej defined
by

ej =R(ej−1, . . . , ej−d; εj), (2.4)

where εj , j ∈ Z, are i.i.d. random innovations, and R is a random map. Many widely
time series models are of form (2.4), including threshold autoregressive model ej =
amax(ej−1,0) + bmin(ej−1,0) + εj , autoregressive conditional heteroscedastic model
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ej = εj(a
2 + b2e2j−1)

1/2, random coefficient model ej = (a + bεj)ej−1 + εj , and expo-

nential autoregressive model ej = [a+ b exp(−ce2j−1)]ej−1 + εj , among others. Suppose
there exists z0 such that R(z0; ε0) ∈ Lq and there exist constants a1, . . . , ad such that

d
∑

j=1

aj < 1 and ‖R(z; ε0)−R(z′; ε0)‖1∧q
q ≤

d
∑

j=1

aj|zj − z′j |
1∧q

holds for all z = (z1, . . . , zd), z
′ = (z′1, . . . , z

′
d). By Shao and Wu [24], (2.2) holds.

2.1. Some examples

The imposed dependence structure and hence the developed results in Sections 3–4 below
are potentially applicable to a wide range of practical data types. We briefly mention
some below.
(Time series data). In the special case of n= 1, m1 =m→∞ and (x1,j , Y1,j , e1,j) =

(xj , Yj , ej) for a stationary time series {ej}, (1.1) becomes the usual nonparametric
location-scale model Yj = µ(xj)+s(xj)ej with time series data. The latter model has been
extensively studied under both the random-design case and the fixed-design case xj =
j/n. See Fan and Yao [9] for an excellent introduction to various local least-squares based
methods under mixing settings. Quantile regression based estimations have been studied
in Truong and Stone [26], Honda [15], and Cai [6] for mixing processes. Despite the pop-
ularity of mixing conditions, it is generally difficult to verify mixing conditions even for
linear processes. For example, for the autoregressive model Xi = ρXi−1 + εi, ρ ∈ (0,1/2],
where εi are i.i.d. Bernoulli random variables P(εi = 1) = 1− P(εi = 0) = q ∈ (0,1), the
stationary solution is not strong mixing (Andrews [1]). By contrast, as shown above,
the imposed Condition 2.1 is easily verifiable for many linear and nonlinear time series
models and their proper transformations.
(Longitudinal data). For each subject i, if xi,j is the jth measurement time or the

covariates at time j, Yi,j is the corresponding response, and {ei,j}j∈N is a stationary
causal process [e.g., ej = G(εj , εj−1, εj−2, . . .) in (2.1) depends only on the past], then
(1.1) becomes a typical longitudinal data setting. For example, Section 5.2 re-examines
the well-studied progesterone data using the proposed methods. Another popular longi-
tudinal data example is the CD4 cell percentage in HIV infection from the Multicenter
AIDS Cohort Study. Based on least-squares methods, this data has been studied previ-
ously in Hoover et al. [16] and Fan and Zhang [10]. We can examine how the response
function (CD4 cell percentage) varies with measurement time (age) using the proposed
robust estimation method in Section 4.
(Spatially correlated data). In the vertical density data of Walker and Wright [27],

manufacturers are concerned about engineered wood boards’ density, which determines
fiberboard’s overall quality. For each board, densities are measured at various locations
along a designated vertical line. In this example, measurements depend on both the
left and right neighboring measurements, and it is reasonable to impose the dependence
structure (2.1). See Wei, Zhao and Lin [30] for a detailed analysis. Also, as will be
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discussed in Section 6, the two-sided framework (2.1) can be extended to spatial lattice
settings. We point out that the structure in (1.1) and (2.1) differs from the usual spatial
model setting in the sense that (1.1) allows for observations from multiple independent
subjects whereas the latter usually assumes that all observations are spatially correlated
(see, e.g., Hallin, Lu and Yu [11] for quantile regression of spatial data).

3. Weighted empirical process

In this section, we study weighted empirical processes through a coupling argument.
Dependence is the main difficulty in extending results developed for independent data to
dependent data. For mixing processes, the widely used large-block-small-block technique
partitions the data into asymptotically independent blocks. Here, we adopt a coupling
argument which copes well with the dependence structure in Section 2.
We now illustrate the basic idea. By (2.1), the error ei,j in (1.1) has the representation

ei,j =G(εi,j , εi,j±1, εi,j±2, . . .)

for i.i.d. innovations εi,j , i, j ∈ Z. Thus, {ei,j}j∈Z is a dependent series for each fixed i,
whereas {ei1,j}j∈Z and {ei2,j}j∈Z are two independent series for i1 6= i2. Let ε

′
i,j,k, i, j, k ∈

Z, be i.i.d. copies of εi,j . For kn ∈N, define the coupling process of ei,j as

ei,j(kn) =G(εi,j, εi,j±1, . . . , εi,j±kn , ε
′
i,j,j±(kn+1), ε

′
i,j,j±(kn+2), . . .) (3.1)

by replacing all but the nearest 2kn + 1 innovations with i.i.d. copies. We call kn the
coupling lag. Clearly, ei,j(kn) has the same distribution as ei,j .
By construction, for each fixed i, {ei,j(kn)}j∈Z form (2kn + 1)-dependent sequence in

the sense that ei,j(kn) and ei,j′(kn) are independent if |j − j′| ≥ 2kn + 1. Consequently,
for each fixed i and s, {ei,(j−1)(2kn+1)+s(kn)}j∈Z are i.i.d. The latter property helps us
reduce the dependent data to an independent case. On the other hand, under (2.2),
‖ei,j − ei,j(kn)‖q = O(ρkn) is sufficiently small with properly chosen kn and hence the
coupling process is close enough to the original one. Similarly, for Yi,j in (1.1), define its
coupling process:

Ỹi,j = µ(xi,j) + s(xi,j)ei,j(kn). (3.2)

First, we present a general result regarding the sum of functions of the coupling process
Ỹi,j . Let Vn be any finite set. For real-valued functions gi,j(y, v), i, j ∈N, defined on R×Vn

such that E[gi,j(Ỹi,j , v)] = 0 for all v ∈ Vn, define

Hn(v) =

n
∑

i=1

mi
∑

j=1

gi,j(Ỹi,j , v), v ∈ Vn.

Throughout, let Nn =m1 + · · ·+mn be the total number of observations.
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Theorem 3.1. Assume that the cardinality |Vn| of Vn and the coupling lag kn grow no
faster than a polynomial of Nn. Further assume |gi,j(y, v)| ≤ c for a constant c <∞, and
for some sequence χn,

max
v∈Vn

n
∑

i=1

mi
∑

j=1

E[g2i,j(Ỹi,j , v)]≤ χn. (3.3)

(i) If χn =O(1), then maxv∈Vn |Hn(v)|=Op(kn logNn).
(ii) If supn logNn/χn <∞, then maxv∈Vn |Hn(v)|=Op[kn(χn logNn)

1/2].

By Theorem 3.1, the magnitude of maxv∈Vn |Hn(v)| increases with the coupling lag
kn. Intuitively, as kn increases, there is stronger dependence in the coupling process
Ỹi,j and consequently a larger bound for Hn(v). Therefore, a small kn is preferred in
order to have a tight bound for Hn(v). On the other hand, a reasonably large kn is
needed in order for the coupling process to be sufficiently close to the original process.
Under (2.2), for kn =O(logNn), the coupling process converges to the original one at a
polynomial rate, and meanwhile the maximum bound in Theorem 3.1 is optimal up to
a logarithm factor. For example, if χn =O(1), then maxv∈Vn |Hn(v)|=Op[(logNn)

2]; if

supn logNn/χn <∞, then maxv∈Vn |Hn(v)|=Op{[χn(logNn)
3]1/2}.

In what follows, we consider the special case of weighted empirical process, which plays
an essential role in quantile regression. Let ̟i,j(x)≥ 0 be nonrandom weights that may
depend on x. Consider the weighted empirical process

Fn(x, y) =
n
∑

i=1

mi
∑

j=1

̟i,j(x)1Yi,j≤y. (3.4)

To study Fn(x, y), recall Ỹi,j in (3.2) and define the coupling empirical process

F̃n(x, y) =

n
∑

i=1

mi
∑

j=1

̟i,j(x)1Ỹi,j≤y. (3.5)

Under mild regularity conditions, Theorem 3.2 below states that Fn(x, y) can be uni-
formly approximated by F̃n(x, y) with proper choice of the coupling lag kn.

Condition 3.1. (i) ̟i,j(x)≤ c uniformly for some constant c <∞. (ii) µ(xi,j) is uni-
formly bounded. (iii) s(xi,j)> 0 is uniformly bounded away from zero and infinity.

Theorem 3.2. Assume that Conditions 2.1 and 3.1 hold. In (3.1), let the coupling lag
kn = ⌊λ logNn⌋ for some λ > (q + 1)/[q log(1/ρ)], where Nn =m1 + · · ·+mn. Then

sup
x,y∈R

|Fn(x, y)− F̃n(x, y)|=Op[(logNn)
2].
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To study asymptotic Bahadur representations of quantile regression estimates, a key
step is to study the modulus of continuity of Fn(x, y), defined by

Dn(δ, x, y) = {Fn(x, y+ δ)−E[Fn(x, y+ δ)]} − {Fn(x, y)−E[Fn(x, y)]}. (3.6)

Intuitively, Dn(δ, x, y) measures the oscillation of the centered empirical process
Fn(x, y)−E[Fn(x, y)] in response to a small perturbation δ in y.
The dependence structure in Section 2 along with the coupling argument provides a

convenient framework to study Dn(δ, x, y). Recall F̃n(x, y) in (3.5). For Dn(δ, x, y) in
(3.6), define its coupling process

D̃n(δ, x, y) = {F̃n(x, y+ δ)−E[F̃n(x, y+ δ)]} − {F̃n(x, y)−E[F̃n(x, y)]}. (3.7)

Notice that ei,j(kn) and ei,j have the same distribution, so E[Fn(x, y)] =E[F̃n(x, y)]. By
Theorem 3.2, it is easy to see that, uniformly over x, y, δ,

|Dn(δ, x, y)− D̃n(δ, x, y)| ≤ 2 sup
x,y∈R

|Fn(x, y)− F̃n(x, y)|=Op[(logNn)
2]. (3.8)

Therefore, the asymptotic properties ofDn(δ, x, y) are similar to that of D̃n(δ, x, y), which
can be studied through Theorem 3.1.

Condition 3.2. (i) ̟i,j(·) = 0 outside a common bounded interval for all i, j. (ii) There
exist τn and φn such that

sup
x 6=x′

|̟i,j(x)−̟i,j(x
′)|

|x− x′| ≤ τn and sup
x

n
∑

i=1

mi
∑

j=1

̟2
i,j(x)≤ φn. (3.9)

Theorem 3.3. Assume that Conditions 2.1 and 3.1–3.2 hold. Further assume δn → 0,
supn logNn/(δnφn)<∞, and that 1/δn + τn grows no faster than a polynomial of Nn.
Then

sup
|δ|≤δn,x,y∈R

|Dn(δ, x, y)|=Op{[δnφn(logNn)
3]

1/2}. (3.10)

4. Quantile regression and Bahadur representations

For a random variable Z , denote by Q(Z) = inf{z ∈R,P(Z ≤ z)≥ 1/2} the median of Z ,
and similarly denote by Q(·|·) the conditional median operator. To ensure identifiability
of µ and s in (1.1), without loss of generality we assume Q(ei,j) = 0 and Q(|ei,j |) = 1.
Note that Q(Yi,j |xi,j = x) = µ(x). Applying a kernel localization technique, we propose

the following least-absolute-deviation or median quantile estimate of µ(x):

µ̂(x) = argmin
θ

n
∑

i=1

mi
∑

j=1

|Yi,j − θ|Kbn(xi,j − x), where Kbn(u) =K(u/bn) (4.1)
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for a nonnegative kernel function K satisfying
∫

R
K(u) = 1, and bn > 0 is a bandwidth.

The estimate µ̂bn(x) pools together information across all subjects, an appealing property
especially when some subjects have sparse observations. By the Bahadur representation

in Theorem 4.1 below, the bias term of µ̂(x)− µ(x) is of order O(b2n). Following Wu and
Zhao [34], we adopt a jackknife bias-correction technique. In (4.1), denote by µ̂(x|bn)
and µ̂(x|

√
2bn) the estimates of µ(x) using bandwidth bn and

√
2bn, respectively. The

bias-corrected jackknife estimator is

µ̃(x) = 2µ̂(x|bn)− µ̂(x|
√
2bn), (4.2)

which can remove the second-order bias term O(b2n) in µ̂(x).

After estimating µ(·), we estimate s(·) based on residuals. Notice that Q(|ei,j |) = 1
implies Q(|Yi,j − µ(x)||xi,j = x) = s(x). Therefore, we propose

ŝ(x) = argmin
θ

n
∑

i=1

mi
∑

j=1

||Yi,j − µ̃(x)| − θ|Khn(xi,j − x), (4.3)

where hn > 0 is another bandwidth, and µ̃(x) is the bias-corrected jackknife estimator in

(4.2). As in (4.2), we adopt the following bias-corrected jackknife estimator

s̃(x) = 2ŝ(x|hn)− ŝ(x|
√
2hn). (4.4)

Remark 4.1. By Q(|Yi,j − µ(xi,j)||xi,j = x) = s(x), an alternative estimator of s(x) is

s̄(x) = argmin
θ

n
∑

i=1

mi
∑

j=1

||Yi,j − µ̃(xi,j)| − θ|Khn(xi,j − x). (4.5)

The difference between (4.3) and (4.5) is that (4.3) uses µ̃(x) whereas (4.5) uses µ̃(xi,j).
Since K has bounded support, only those xi,j ’s with |xi,j − x| = O(hn) contribute to
the summation in (4.5). Thus, as hn → 0 so that xi,j → x and µ̃(xi,j) ≈ µ̃(x), the two
estimators in (4.3) and (4.5) are expected to be asymptotically close. Our use of (4.3) has
some technical and computational advantages. First, the estimation error µ̃(xi,j)−µ(xi,j)
varies with (i, j), and thus it is technically more challenging to study (4.5). Second, to

implement (4.5), we need to compute µ̃(·) at each point xi,j , which requires solving a
large number of optimization problems in (4.1) for a large data set. By contrast, (4.3)
only requires estimation of µ̃(·) at those grid points x at which we wish to estimate s(·).

To study asymptotic properties, we need to introduce some regularity conditions.
Throughout we write Sǫ([a, b]) = [a + ǫ, b − ǫ] for an arbitrarily fixed small ǫ > 0. De-
note by Fe and fe = F ′

e the distribution and density functions of e0 in (2.1), respectively.
The assumptionQ(e0) = 0 andQ(|e0|) = 1 implies Fe(0) = 1/2 and Fe(1)−Fe(−1) = 1/2.
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Condition 4.1. Suppose that all measurement locations xi,j are within an interval [a, b],
and order them as a= x̃0 < x̃1 < · · ·< x̃Nn < x̃Nn+1 = b. Assume that

max
0≤k≤Nn

∣

∣

∣

∣

x̃k+1 − x̃k −
b− a

Nn

∣

∣

∣

∣

=O(N−2
n ), where Nn =m1 + · · ·+mn. (4.6)

Condition 4.1 requires that the pooled covariates xi,j should be approximately uni-
formly dense on [a, b], which is a natural condition since otherwise it would be impossible
to draw inferences for regions with very scarce observations. Pooling all subjects together
is an appealing procedure to ensure this uniform denseness even though each single sub-
ject may only contain sparse measurements.
In nonparametric regression problems, there are two typical settings on the design

points: fixed-design and random-design points. For fixed-design case, it is often assumed
that the design points are equally spaced on some interval. For example, for the vertical
density profile data of Walker and Wright [27], the density was measured at equispaced
points along a designated vertical line of wood boards. Condition 4.1 can be viewed as a
generalization of the fixed-design points to allow for approximately fixed-design points.
For random-design case, the design points are sampled from a distribution. For exam-
ple, assumption (a) in Appendix A of Fan and Zhang [10] imposed the random-design
condition. In practice, both settings have different range of applicability. For example,
for daily or monthly temperature series, the fixed-design setting may be appropriate; for
children’s growth curve studies, it may be more reasonable to use the random-design
setting since the measurements are usually taken at irregular time points.

Remark 4.2 (Asymptotic results under the random-design case). All our sub-
sequent theoretical results are derived under the approximate fixed-design setting in
Condition 4.1, but the same argument also applies to the random-design case. Specifi-
cally, assume that the design-points {xi,j} are random samples from a density fX(·) with
support [a, b] and that x is an interior point. Then, for the design-adaptive local linear
median quantile regression estimates, the subsequent Theorems 4.1–4.2 and Corollaries
4.1–4.2 still hold with (b− a) therein replaced by 1/fX(x). In fact, given the i.i.d. struc-
ture of {xi,j}, the technical argument becomes much easier. For example, to establish
Lemma 7.1 (again, with (b − a) therein replaced by 1/fX(x)), elementary calculations
can easily find the mean and variance for the right-hand side of (7.11). All other proofs
can be similarly modified and we omit the details.

Conditions 4.2–4.3 below are standard assumptions in nonparametric estimation.

Condition 4.2. K is symmetric and has bounded support and bounded derivative. Write

ϕK =

∫

R

K2(u) du and ψK =
1

2

∫

R

u2K(u) du.

Condition 4.3. µ, s ∈ C4([a, b]), infx∈[a,b] s(x) > 0, fe ∈ C4(R), fe(0) > 0, fe(1) +
fe(−1)> 0.
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4.1. Uniform Bahadur representation for µ̂(x)

Theorem 4.1 below provides an asymptotic uniform Bahadur representation for µ̂(x) in
(4.1), and its proof in Section 7.4 relies on the arguments and results in Section 3.

Theorem 4.1. Let µ̂(x) be as in (4.1). Assume that Conditions 2.1 and 4.1–4.3 hold.
Further assume bn → 0 and (logNn)

3/(Nnbn)→ 0. Then

(i) We have the uniform consistency:

sup
x∈Sǫ([a,b])

|µ̂(x)− µ(x)|=Op

{

b2n +
(logNn)

3/2

(Nnbn)1/2

}

. (4.7)

(ii) Moreover, the Bahadur representation

µ̂(x)− µ(x) = ψKρµ(x)b
2
n +

(b− a)s(x)

fe(0)

Qbn(x)

Nnbn
+Op(rn) (4.8)

holds uniformly over x ∈ Sǫ([a, b]), where

ρµ(x) = µ′′(x)−
[

µ′(x)f ′
e(0)

fe(0)
+ 2s′(x)

]

µ′(x)

s(x)
,

Qbn(x) = −
n
∑

i=1

mi
∑

j=1

{1Yi,j≤µ(x) −E[1Yi,j≤µ(x)]}Kbn(xi,j − x),

rn = b4n +
b
1/2
n (logNn)

3/2

N
1/2
n

+
(logNn)

9/4

(Nnbn)3/4
.

In the Bahadur representation (4.8), ψKρµ(x)b
2
n is the bias term, Qbn(x) determines

the asymptotic distribution of µ̂(x) − µ(x), and rn is the negligible error term. Such a
Bahadur representation provides a powerful tool in studying the asymptotic behavior of
µ̂(x). Based on Theorem 4.1, we obtain a Central Limit theorem (CLT) for µ̂ in Corollary
4.1. Clearly, the variance of Qbn(x) is a linear combination ofKbn(xi,j1 −x)Kbn(xi,j2 −x).
The following regularity condition is needed to ensure the negligibility of the cross-term
Kbn(xi,j1 − x)Kbn(xi,j2 − x) for j1 6= j2.

Condition 4.4. Assume that, for all given x ∈ Sǫ([a, b]) and kn =O(logNn), there exits
ιn such that knιn → 0 and

∑

(i,j1,j2)∈I
Kbn(xi,j1 − x)Kbn(xi,j2 − x) = O[min(h,Mn)nbnknιn], Mn = max

1≤i≤n
mi

(4.9)
for all h≥ (kn∨a), where I = {(i, j1, j2): 1≤ i≤ n,a≤ j1 < j2 ≤min(a+h−1,mi), |j1−
j2| ≤ kn}. Further assume that maxj

∑n
i=1K

r
bn
(xi,j − x) = O(nbn), r = 2,4.
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Condition 4.4 is very mild. Intuitively, we consider xi,j , j ∈ Z, being random locations,
then E[Kbn(xi,j1 − x)Kbn(xi,j2 − x)] = O(b2n) for j1 6= j2. Thus, under the mild condition
bn logNn → 0, (4.9) holds with ιn = bn.

Corollary 4.1. Let the conditions in Theorem 4.1 be fulfilled and Condition 4.4
hold. Further assume that (logNn)

9/(Nnbn) + Nnb
9
n → 0 and nMn = O(Nn), nbn →

∞, logNn = O(
√
Mn), where Mn is defined as in (4.9). Then, for any x ∈ Sǫ([a, b]),

we have

(Nnbn)
1/2[µ̂(x)− µ(x)− ψKρµ(x)b

2
n]⇒N

(

0,
ϕK(b− a)s2(x)

4f2
e (0)

)

. (4.10)

The proof of Corollary 4.1, given in Section 7.5, uses the coupling argument in Section 3.
The condition nMn =O(Nn) is in line with the classical CLT Lindeberg condition that
none of the subjects dominates the others. If bn is of the order N−β

n , then the bandwidth
condition in Corollary 4.1 holds if β ∈ (1/9,1). By Corollary 4.1, the optimal bandwidth
minimizing the asymptotic mean squared error is

bn =

[

ϕK(b− a)s2(x)

4ψ2
Kρ

2
µ(x)f

2
e (0)

]1/5

N−1/5
n . (4.11)

For this optimal bandwidth, the bias term is of order O(N
−2/5
n ) and contains the deriva-

tives s′, µ′, µ′′ and f ′
e that can be difficult to estimate. Based on the Bahadur represen-

tation (4.8), we can correct the bias term ψKρµ(x)b
2
n via the jackknife estimator µ̃(x)

in (4.2). Then the bias term for µ̃(x) becomes 2ψKρµ(x)b
2
n − ψKρµ(x)(

√
2bn)

2 = 0. By
(4.8), following the proof of Corollary 4.1, we have

(Nnbn)
1/2[µ̃(x)− µ(x)]⇒N

(

0,
ϕK∗(b− a)s2(x)

4f2
e (0)

)

, (4.12)

where K∗(u) = 2K(u)− 2−1/2K(u/
√
2).

4.2. Uniform Bahadur representation for ŝ(x)

Theorem 4.2 below provides a uniform Bahadur representation for ŝ(x) in (4.3).

Theorem 4.2. Let ŝ(x) be as in (4.3). Assume that the conditions in Theorem 4.1 hold.
Further assume hn + (logNn)

3/(Nnhn)→ 0. Then

(i) We have the uniform consistency:

sup
x∈Sǫ([a,b])

|ŝ(x)− s(x)|=Op

{

b2n + h2n +
(logNn)

3/2

(Nnbn)1/2
+

(logNn)
3/2

(Nnhn)1/2

}

. (4.13)
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(ii) Moreover, the Bahadur representation

ŝ(x)− s(x) = ψKρs(x)h
2
n + (b− a)s(x)

[

Whn(x)

Nnhnκ+
− κTbn(x)

Nnbnfe(0)

]

+Op(r̃n), (4.14)

holds uniformly over x ∈ Sǫ([a, b]), where κ+ = fe(−1) + fe(1), κ= [fe(1)− fe(−1)]/κ+,
Qbn(x) is defined as in Theorem 4.1,

Tbn(x) = 2Qbn(x)− 2−1/2Q√
2bn

(x),

ρs(x) = s′′(x)− 2s′(x)2

s(x)
+ κ

[

µ′′(x)− 2µ′(x)s′(x)

s(x)

]

− f ′
e(1)[s

′(x) + µ′(x)]2 − f ′
e(−1)[s′(x)− µ′(x)]2

κ+s(x)
,

Whn(x) = −
n
∑

i=1

mi
∑

j=1

{1|Yi,j−µ(x)|≤s(x) −E[1|Yi,j−µ(x)|≤s(x)]}Khn(xi,j − x),

r̃n = b4n + h4n +
h
1/2
n (logNn)

3/2

N
1/2
n

+
(logNn)

9/4

(Nnhn)3/4

+
(logNn)

9/4

N
3/4
n b

1/4
n h

1/2
n

+
bn(logNn)

3/2

(Nnhn)1/2
.

As in Corollary 4.1, we can use the Bahadur representation (4.14) to obtain a CLT for
ŝ(x)− s(x). However, the convergence rate depends on the ratio hn/bn. If hn/bn →∞,
then the term Tbn(x)/(Nnbn) dominates and we have (Nnbn)

1/2-convergence; if hn/bn →
0, then the term Whn(x)/(Nnhn) dominates and we have (Nnhn)

1/2-convergence; if
hn/bn → c for a constant c ∈ (0,∞), then both terms contribute.

Corollary 4.2. Let the conditions in Theorem 4.2 be fulfilled and Condition 4.4 and its
counterpart version with bn being replaced by hn hold. Further assume that

Nn(bn ∨ hn)9 +
(logNn)

9

Nn(bn ∧ hn)
→ 0,

and nMn =O(Nn), n(bn ∧hn)→∞, logNn =O(
√
Mn), where Mn is defined as in (4.9).

Recall K∗(u) = 2K(u) − 2−1/2K(u/
√
2) in (4.12) and κ,κ+ in Theorem 4.2. Let x ∈

Sǫ([a, b]) be a fixed point. Suppose hn/bn → c.

(i) If κ 6= 0 and c=∞, then

(Nnbn)
1/2[ŝ(x)− s(x)− ψKρs(x)h

2
n]⇒N

(

0,
ϕK∗κ2(b− a)s2(x)

4f2
e (0)

)

.
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(ii) If κ 6= 0 and c ∈ [0,∞), then

(Nnhn)
1/2[ŝ(x)− s(x)− ψKρs(x)h

2
n]⇒N(0, σ2

c ), (4.15)

where

σ2
c =

(b− a)s2(x)

4

{

ϕK

κ2+
+
c2κ2ϕK∗

f2
e (0)

− 2cκ[1− 4Fe(−1)]

κ+fe(0)

∫

R

K(u)K∗(cu) du

}

.

(iii) If κ= 0, then for all c ∈ [0,∞], (4.15) holds with σ2
c = ϕK(b− a)s2(x)/(4κ2+).

One can similarly establish CLT results for s̃(x) in (4.4). We omit the details.

5. An illustration using real data

5.1. Bandwidth selection

For least-squares based estimation of longitudinal data, Rice and Silverman [21] suggested
the subject-based cross-validation method. The basic idea is to use all but one subject to
do model fitting, validate the fitted model using the left-out subject, and finally choose
the optimal bandwidth by minimizing the overall prediction error:

b∗LS = argmin
b

n
∑

i=1

mi
∑

j=1

{Yi,j − µ̃(−i)(xi,j)}2, (5.1)

where µ̃(−i)(x) represents the estimator of µ(x) based on data from all but ith subject.
As in Wei, Zhao and Lin [30], we replace the square loss by absolute deviation:

b∗LAD = argmin
b

n
∑

i=1

mi
∑

j=1

|Yi,j − µ̃(−i)(xi,j)|. (5.2)

5.2. An illustration using progesterone data

Urinary metabolite progesterone levels are measured daily, around the ovulation day,
over 22 conceptive and 69 nonconceptive women’s menstrual cycles so that each curve
has about 24 design points; see the left panel of Figure 1 for a plot of the trajectories of
the 22 conceptive women. Previous studies based on least-squares (LS) methods include
Brumback and Rice [5], Fan and Zhang [10], and Wu and Zhang [31]. Here we reanalyze
the conceptive group using our least-absolute-deviation (LAD) estimates.
From the left plot in Figure 1, subject 14 (dashed curve) has two sharp drops in

progesterone levels at days −3 and 9. Similarly, subject 13 (dotted curve) has unusually
low levels on days −1,0,1. While such sharp drops or “outliers” may be caused by
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Figure 1. Left: Trajectories of the measurements from 22 conceptive women. Right: Estimates
of µ(·) using both the original data and perturbed data. Thin solid, dotted, and dashed curves are
the least-squares estimates of µ(·) based on the original data, perturbation scenario I (remove
subjects 13 and 14), and perturbation scenario II (shift subjects 13 and 14 down by three
units), respectively. Similarly, thick solid, dotted, and dashed curves are least-absolute-deviation
estimates.

incorrect measurements or other unknown reasons, we investigate the impact of such
“outliers” on the LS and LAD estimates. In the right plot of Figure 1, the thick solid and
thin solid curves are the LAD and LS estimates of µ(·). The two estimates are reasonably
close except during the periods [−4,1] and [8,15]. Notice that the latter periods contain
the “outliers” from subjects 13, 14.
To understand the impact of such possible “outliers”, we consider two scenarios of

perturbing the data below.

(i) Scenario I: remove subjects 13 and 14 and estimate µ(·) using the remaining sub-
jects. The thick dotted and thin dotted curves are the corresponding LAD and LS esti-
mates. Clearly, the discrepancy is largely diminished.
(ii) Scenario II: make the two outlier subjects 13 and 14 even more extreme by shifting

their curves three units down. We see that the discrepancy between the LAD (thick
dashed) and LS (thin dashed) estimates becomes even more remarkable.

Compared with the estimate based on the original data, the LS estimates under the two
perturbation scenarios differ significantly. By contrast, the LAD estimates under the three
cases are similar, indicating the robustness in the presence of outliers. We conclude that,
for the progesterone data with several possible outliers, the proposed LAD estimate offers
an attractive alternative over the well-studied LS estimates. In practice, we recommend
the LAD estimate if the data has suspicious, unusual observations or extreme outliers.
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6. Conclusion and extension to spatial setting

This paper studies robust estimations of the location and scale functions in a nonpara-
metric regression model with serially dependent data from multiple subjects. Under a
general error dependence structure that allows for many linear and nonlinear processes,
we study uniform Bahadur representations and asymptotic normality for least-absolute-
deviation estimations of a location-scale longitudinal model. In the large literature on
nonparametric estimation of longitudinal models, most existing works use least-squares
based methods, which are sensitive to extreme observations and may perform poorly
in such circumstances. Despite the popularity of quantile regression methods in linear
models and nonparametric regression models, little research has been done in quantile
regression based estimations for nonparametric longitudinal models, partly due to diffi-
culties in dealing with the dependence. Therefore, our work provides a solid theoretical
foundation for quantile regression estimations in longitudinal models.
The study of asymptotic Bahadur representations is a difficult area and has focused

mainly on the i.i.d. setting or stationary time series setting. For longitudinal data, deriv-
ing Bahadur representations is more challenging due to the nonstationarity and depen-
dence. To obtain our Bahadur representations, we develop substantial theory for kernel
weighted empirical processes via a coupling argument.
The proposed error dependence structure and coupling argument provide a flexible

and powerful framework for asymptotics from dependent data, such as time series data,
longitudinal data and spatial data, whereas similar problems have been previously studied
mainly for either independent data or stationary time series. In (2.1), ej depends on the
innovations or shocks εj, εj±1, . . . , indexed by integers on a line. A natural extension is
the function of innovations indexed by bivariate integers on a square:

ej =G(εj,j , εj,j±1, εj±1,j, εj±1,j±1, . . .), j ∈ Z.

The coupling argument still holds by replacing the innovations εj±r,j±s, r, s≥ k+1, out-
side the k nearest squares with i.i.d. copies. As in Condition 2.1, we can assume that the
impact of perturbing the distant innovations decays exponentially fast (or polynomially
fast with slight modifications of the proof). More generally, the coupling argument holds
for function of innovations indexed by multivariate spatial lattice, and such setting may
be useful in studying asymptotics for spatial data.

7. Technical proofs

Throughout c, c1, c2, . . . , are generic constants. First, we give an inequality for the indi-
cator function. Let Z,Z ′ be two random variables and y ∈R. For α > 0, we have

1Z≤y<Z′ = 1Z≤y<Z′,|Z−Z′|≥α + 1Z≤y<Z′,|Z−Z′|<α ≤ 1|Z−Z′|≥α + 1y<Z′<y+α,

similarly, 1Z′≤y<Z ≤ 1|Z−Z′|≥α + 1y−α<Z′≤y . Therefore,

|1Z≤y − 1Z′≤y|= 1Z≤y<Z′ + 1Z′≤y<Z ≤ 21|Z−Z′|≥α + 1y−α<Z′<y+α. (7.1)
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7.1. Proof of Propositions 2.1–2.2

Proof of Proposition 2.1. Let q∗ = q/(ς + υ), p1 = υ/ς + 1, and p2 = ς/υ+ 1 so that
ςq∗p1 = q, υq∗p2 = q, and 1/p1+1/p2 = 1. For convenience, write e′0 = e0(k). By assump-
tion, ‖e0 − e′0‖q =O(ρk). By (2.3) and the Hölder inequality E|Z1Z2| ≤ ‖Z1‖p1

‖Z2‖p2
,

‖h(e′0)− h(e0)‖q
∗

q∗ ≤ O(1)E[|e′0 − e0|ςq
∗

(1 + |e0|+|e′0|)
υq∗

]

≤ O(1){E[|e0 − e′0|
ςq∗·p1 ]}1/p1{E[(1 + |e0|+ |e′0|)

υq∗·p2 ]}1/p2

= O(1)‖e0 − e′0‖
q/p1

q ‖e0‖q/p2

q =O(ρkq/p1 ).

The above expression gives ‖h(e′0)− h(e0)‖q∗ ≤O(1)[ρq/(p1q
∗)]k =O(ρkς). �

Proof of Proposition 2.2. Let α= ρkq/(1+q). By (7.1) and the triangle inequality,

‖1e0≤x − 1e0(k)≤x‖q ≤ 2‖1|e0−e0(k)|≥α‖q + ‖1x−α≤e0≤x+α‖q
= 2[P{|e0 − e0(k)| ≥ α}]1/q + [P{x− α≤ e0 ≤ x+ α}]1/q.

By the Markov inequality, P{|e0 − e0(k)| ≥ α} ≤ E[|e0 − e0(k)|q]/αq =O(ρkq/αq). Since
e0 has a bounded density, P{x−α≤ e0 ≤ x+α}=O(α). The result then follows. �

7.2. Proof of Theorems 3.1–3.3

Proof of Theorem 3.1. For r = 1,2, . . . ,2kn + 1, let

Ir = {(i, j): 1≤ i≤ n,1≤ j ≤ ⌊(mi − r)/(2kn + 1)⌋+ 1}. (7.2)

Using the identity
∑m

j=1 aj =
∑k

r=1

∑⌊(m−r)/k⌋+1
j=1 a(j−1)k+r for all k,m ∈N, a1, . . . , am ∈

R, we can rewrite Hn(v) as

Hn(v) =

2kn+1
∑

r=1

∑

(i,j)∈Ir

gi,(j−1)(2kn+1)+r(Ỹi,(j−1)(2kn+1)+r, v) :=

2kn+1
∑

r=1

Hn(v, r). (7.3)

Now we consider Hn(v, r). By the discussion in Section 3, the summands in Hn(v, r) are
independent. By (3.3),

Var[Hn(v, r)] =
∑

(i,j)∈Ir

E[g2i,(j−1)(2kn+1)+r(Ỹi,(j−1)(2kn+1)+r, v)]

(7.4)

≤
n
∑

i=1

mi
∑

j=1

E[g2i,j(Ỹi,j , v)]≤ χn,

uniformly over v, r.
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(i) Consider the case χn = O(1). Recall the condition |gi,j(y, v)| ≤ c. By Berstein’s
exponential inequality (Bennett [3]) for bounded and independent random variables, for
any given c1 > 0, when Nn is sufficiently large,

P{|Hn(v, r)| ≥ c1 logNn} ≤ 2 exp

{

− (c1 logNn)
2

2Var[Λn(r, h)] + cc1 logNn

}

≤ 2N−c1/(3c)
n , (7.5)

uniformly over r and h. Here the second inequality follows from Var[Hn(v, r)] ≤ χn =
O(1)≤ cc1 logNn for large enough Nn. Thus,

P

{

max
v∈Vn,1≤r≤2kn+1

|Hn(v, r)| ≥ c1 logNn

}

≤
∑

v∈Vn,1≤r≤2kn+1

P{|Hn(v, r)| ≥ c1 logNn}

≤ 2|Vn|knN−c1/(3c)
n .

By the assumption that both |Vn| and kn grow no faster than a polynomial of Nn, we
can make the above probability go to zero by choosing a large enough c1. Therefore,
maxv∈Vn,1≤r≤2kn+1 |Hn(v, r)|=Op(logNn). By (7.3), the desired result follows from

max
v∈Vn

|Hn(v)| ≤ (2kn +1) max
v∈Vn,1≤r≤2kn+1

|Hn(v, r)|.

(ii) Consider the case supn logNn/χn <∞. As in (7.5),

P{|Hn(v, r)| ≥ c1
√

χn logNn} ≤ 2 exp

{

− (c1
√
χn logNn)

2

2χn + cc1
√
χn logNn

}

=O[N
−c21/(2+cc1c2)
n ],

uniformly over r and h, where c2 = supn[logNn/χn]
1/2 <∞. The rest of the proof follows

from the same argument as in the case (i) by choosing a sufficiently large c1. �

Proof of Theorem 3.2. Let α= 1/Nn. Since ̟i,j(x)≤ c, applying (7.1), we obtain

|Fn(x, y)− F̃n(x, y)| ≤
n
∑

i=1

mi
∑

j=1

̟i,j(x)|1Yi,j≤y − 1Ỹi,j≤y|

≤ 2c

[

n
∑

i=1

mi
∑

j=1

1|Yi,j−Ỹi,j |≥α +
n
∑

i=1

mi
∑

j=1

1y−α<Ỹi,j<y+α

]

(7.6)

:= 2c[Ωn +Λn(y)].

Notice that, |Yi,j − Ỹi,j |=O(1)|ei,j − ei,j(kn)|. By (2.2) and the Markov inequality,

E(1|Yi,j−Ỹi,j |≥α)≤
‖Yi,j − Ỹi,j‖qq

αq
=O(1)

‖ei,j − ei,j(kn)‖qq
αq

=O(N q
nρ

qkn).

Thus, Ωn =Op(N
1+q
n ρqkn) =Op[N

1+q
n ρqλ log(Nn)] = op(1) for λ > (q + 1)/[q log(1/ρ)].
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For Λn(y) over y ∈ R, consider two cases: |y|>N
1/q
n and |y| ≤N

1/q
n . For |y|>N

1/q
n ,

since α= 1/Nn → 0, µ(xi,j) and s(xi,j) are bounded, {y−α< Ỹi,j < y+α} ⊂ {|ei,j(kn)| ≥
c1N

1/q
n } for some constant c1 > 0. Therefore, by ei,j(kn) ∈ Lq and the Markov inequality,

E

[

sup
|y|>N

1/q
n

Λn(y)
]

≤ E

[

n
∑

i=1

mi
∑

j=1

1|ei,j(kn)|>c1N
1/q
n

]

(7.7)

≤
n
∑

i=1

mi
∑

j=1

‖ei,j(kn)‖qq
(c1N

1/q
n )q

=O(1).

We conclude that sup|y|>N
1/q
n

Λn(y) = Op(1).

In what follows, we use a chain argument to prove sup
y∈[−N

1/q
n ,N

1/q
n ]

Λn(y) =

Op[(logn)
2]. Without loss of generality, consider y ∈ [0,N

1/q
n ]. Write ℓn = ⌊N1+1/q

n ⌋ and

let Vn = {yv = vN
1/q
n /ℓn, v = 0,1, . . . , ℓn} be the set of ℓn+1 grid points uniformly spaced

over [0,N
1/q
n ]. Partition [0,N

1/q
n ] into intervals Iv = [yv−1, yv], v = 1, . . . , ℓn. For any

y ∈ Iv , we have 1y−α<Ỹi,j<y+α ≤ 1yv−1−α<Ỹi,j<yv+α. Since s(xi,j) is bounded away from

zero, supu fe(u)<∞, and |yv−yv−1|=O(1/Nn), we have E(1yv−1−α<Ỹi,j<yv+α)≤ c2/Nn

uniformly for some constant c2 <∞. Consequently, for any y ∈ Iv , we have

Λn(y)≤
n
∑

i=1

mi
∑

j=1

[{1yv−1−α<Ỹi,j<yv+α −E(1yv−1−α<Ỹi,j<yv+α)}+ c2/Nn] = Λ∗
n(v) + c2.

We apply Theorem 3.1 to Λ∗
n(v). For χn in (3.3), using E(1yv−1−α<Ỹi,j<yv+α)≤ c2/Nn,

we have χn =O(1) and thus maxv∈Vn |Λ∗
n(v)|=Op[(logNn)

2], completing the proof. �

Proof of Theorem 3.3. Recall the coupling process D̃n(δ, x, y) in (3.7). Under the
assumption supn logNn/(δnφn)<∞, (logNn)

2 =O{[δnφn(logNn)
3]1/2}. Thus, by (3.8),

it suffices to show sup|δ|≤δn,x,y∈R
|D̃n(δ, x, y)|=Op{[δnφn(logNn)

3]1/2}.
Without loss of generality, assume δ ∈ [0, δn]. Recall Ỹi,j in (3.5). Rewrite

D̃n(δ, x, y) =

n
∑

i=1

mi
∑

j=1

̟i,j(x){ξ̃i,j(δ, y)−E[ξ̃i,j(δ, y)]}, ξ̃i,j(δ, y) = 1y<Ỹi,j≤y+δ.

As in the proof of Theorem 3.2, consider |y|>N
1/q
n and |y| ≤N

1/q
n .

For |y| > N
1/q
n , since µ(xi,j) and s(xi,j) are bounded and |δ| ≤ δn → 0, {y < Ỹi,j ≤

y+ δ} ⊂ {|ei,j(kn)| ≥ c1N
1/q
n } for some c1 > 0. Therefore, by the boundedness of ̟i,j(·),

the same argument in (7.7) shows D̃n(δ, x, y) = Op(1) uniformly over x ∈ R, |y|>N
1/q
n ,

|δ| ≤ δn.

Next, we consider |y| ≤N
1/q
n . Since ̟i,j(x) vanishes for x outside a bounded interval,

without loss of generality we only consider x ∈ [0, b] for some b > 0, y ∈ [0,N
1/q
n ], and δ ∈
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[0, δn]. As in the proof of Theorem 3.2, we use the chain argument. Let ℓn = ⌊N1/q
n /δn +

Nnτn +N
1+1/q
n ⌋, and

Vn =

{

(xv1 , yv2 , tv3), xv1 =
v1b

ℓn
, yv2 =

v2N
1/q
n

ℓn
, tv3 =

v3δn
ℓn

, v1, v2, v3 = 0,1, . . . , ℓn

}

be uniformly spaced grid points. Partition [0, b]× [0,N
1/q
n ]× [0, δn] into intervals Iv1,v2,v3 =

[xv1−1, xv1 ]× [yv2−1, yv2 ]× [tv3−1, tv3 ], v1, v2, v3 = 1, . . . , ℓn. Let

ξ
i,j
(v2, v3) = 1yv2<Ỹi,j≤yv2−1+tv3−1

and ξi,j(v2, v3) = 1yv2−1<Ỹi,j≤yv2+tv3
.

Clearly, for any (x, y, δ) ∈ Iv1,v2,v3 , we have ξ
i,j
(v2, v3) ≤ ξ̃i,j(δ, y) ≤ ξi,j(v2, v3). Since

Nn → ∞ and δn → 0, there exists a constant c2 <∞ such that 0 ≤ E[ξi,j(v2, v3)] −
E[ξ

i,j
(v2, v3)]≤ c2N

1/q
n /ℓn. Additionally, for x ∈ [xv1−1, xv1 ], by Condition 3.2, |̟i,j(x)−

̟i,j(xv1)| ≤ τn|x− xv1 | ≤ τnb/ℓn. Thus, there exists a constant c3 <∞ such that

̟i,j(x){ξ̃i,j(δ, y)−E[ξ̃i,j(δ, y)]}
≤̟i,j(xv1 ){ξi,j(v2, v3)−E[ξ

i,j
(v2, v3)]}+ τnb/ℓn (7.8)

≤̟i,j(xv1 ){ξi,j(v2, v3)−E[ξi,j(v2, v3)]}+ c3(τn +N1/q
n )/ℓn,

uniformly over i, j, and (x, y, δ) ∈ Iv1,v2,v3 . Similarly,

̟i,j(x){ξ̃i,j(δ, y)−E[ξ̃i,j(δ, y)]}
(7.9)

≥̟i,j(xv1 ){ξi,j(v2, v3)−E[ξ
i,j
(v2, v3)]}− c3(τn +N1/q

n )/ℓn.

Combining (7.8) and (7.9) and using Nn(τn +N
1/q
n )/ℓn =O(1), we have

sup
x,y,δ

|D̃n(δ, x, y)| ≤ max
v∈Vn

{|∆n(v)|+ |∆n(v)|}+O(1), (7.10)

where v = (v1, v2, v3),

∆n(v) =

n
∑

i=1

mi
∑

j=1

̟i,j(xv1){ξi,j(v2, v3)−E[ξ
i,j
(v2, v3)]},

∆n(v) =
n
∑

i=1

mi
∑

j=1

̟i,j(xv1){ξi,j(v2, v3)−E[ξi,j(v2, v3)]}.

We now apply Theorem 3.1 to ∆n(v) and ∆n(v). For χn in (3.3), with φn in (3.9)

and E[ξi,j(h2, h3)] = O(δn + N
1/q
n /ℓn) = O(δn), we can take χn = O(δnφn). By Theo-

rem 3.1(ii), maxv∈Vn |∆n(v)| =Op{[δnφn(logNn)
3]1/2}. The latter bound also holds for

maxv∈Vn |∆n(v)|. The desired result then follows from (7.10). �
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7.3. Asymptotic expansions

Throughout the proofs, we use the following notation:

Lµ(δ1, x) =

n
∑

i=1

mi
∑

j=1

Kbn(xi,j − x)1Yi,j≤µ(x)+δ1 ,

Lµ(x) =
n
∑

i=1

mi
∑

j=1

Kbn(xi,j − x),

Jµ(δ1, x) = E[Lµ(δ1, x)],

Ls(δ1, δ2, x) =
n
∑

i=1

mi
∑

j=1

Khn(xi,j − x)1|Yi,j−µ(x)−δ1|≤s(x)+δ2 ,

Ls(x) =

n
∑

i=1

mi
∑

j=1

Khn(xi,j − x),

Js(δ1, δ2, x) = E[Ls(δ1, δ2, x)].

Lemma 7.1. Assume that Conditions 4.1–4.2 hold. Then, we have

(i) Uniformly over x ∈ Sǫ[a, b],

n
∑

i=1

mi
∑

j=1

(

xi,j − x

bn

)r

K

(

xi,j − x

bn

)

=
Nnbn
b− a

∫

R

urK(u) du+O(1). (7.11)

(ii) Let g(x, v) be a measurable bivariate function on [a, b]2. Define

Gg(x) =
n
∑

i=1

ni
∑

j=1

g(x,xi,j)Kbn(xi,j − x). (7.12)

Further assume that supx∈[a,b] |∂s(x, v)/∂vs| <∞, s = 0,1, . . . , r for some r ∈ N. Then
uniformly over x ∈ Sǫ[a, b],

Gg(x) =

r−1
∑

s=0

∂sg(x, v)

∂vs

∣

∣

∣

v=x

Nnb
s+1
n

(b− a)s!

∫

R

usK(u) du+O(1 +Nnb
r+1
n ). (7.13)

Proof. (i) Recall the ordered locations x̃k in Condition 4.1. Define

Sn(x) =

Nn
∑

k=1

(

x̃k − x

bn

)r

K

(

x̃k − x

bn

)

, (7.14)
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In(x) =

Nn
∑

k=0

(x̃k+1 − x̃k)

(

x̃k − x

bn

)r

K

(

x̃k − x

bn

)

, (7.15)

̺n = max
0≤k≤Nn

|x̃k+1 − x̃k − (b− a)/Nn|=O(N−2
n ), (7.16)

I(x) = {1≤ k ≤Nn: x̃k − x ∈ [−bn − (b− a)/Nn − ̺n, bn]}. (7.17)

Assume without loss of generality that K has support [−1,1]. Condition (4.6) implies
that supx∈[a,b] |I(x)| = O(Nnbn), where and hereafter |I| is the cardinality of a set I.
Because K has support [−1,1], Kbn(x̃k − x) = 0 for k /∈ I(x). Additionally, for k ∈ I(x),
the summands in Sn(x) are uniformly bounded. Thus,

Sn(x) =
∑

k∈I(x)

(

x̃k − x

bn

)r

K

(

x̃k − x

bn

)

=O[|I(x)|] = O(Nnbn), (7.18)

uniformly over x ∈ [a, b].
By (4.6), elementary calculation shows that, uniformly over x ∈ Sǫ[a, b],

b− a

Nn
Sn(x)− In(x) = −

Nn
∑

k=1

(

x̃k+1 − x̃k −
b− a

Nn

)(

x̃k − x

bn

)r

K

(

x̃k − x

bn

)

(7.19)
= O(̺n) sup

x∈[a,b]

|Sn(x)|=O(bn/Nn).

Write uk = (x̃k − x)/bn. Observe that In(x) =
∑Nn

k=0

∫ x̃k+1

x̃k
urkK(uk) dv. Thus, by the

triangle inequality, we have

∣

∣

∣

∣

In(x)−
∫ x̃Nn+1

x̃0

(

v − x

bn

)r

K

(

v − x

bn

)

dv

∣

∣

∣

∣

≤
Nn
∑

k=0

Vk,

(7.20)

where Vk =

∫ x̃k+1

x̃k

∣

∣

∣

∣

urkK(uk)−
(

v− x

bn

)r

K

(

v − x

bn

)∣

∣

∣

∣

dv.

Since K has bounded derivative, |yrK(y)− zrK(z)|=O(|y − z|) for y, z ∈ [−1,1]. Also,
|uk − (v − x)/bn|= |v− x̃k|/bn. Thus, under Condition 4.1,

|Vk|=O(1)

∫ x̃k+1

x̃k

v− x̃k
bn

dv =
O[(x̃k+1 − x̃k)

2]

bn
=

O(1)

N2
nbn

. (7.21)

Furthermore, it is easily seen that, for k /∈ I(x), min(|x̃k − x|, |x̃k+1 − x|) > bn, which
implies K(uk) = 0,K{(v− x)/bn}= 0 for v ∈ [x̃k, x̃k+1], and consequently Vk = 0. Thus,
by (7.20) and (7.21),

∣

∣

∣

∣

In(x)−
∫ x̃Nn+1

x̃0

(

v − x

bn

)r

K

(

v− x

bn

)

dv

∣

∣

∣

∣

≤
∑

k∈I(x)
Vk =O(1/Nn), (7.22)
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uniformly over x ∈ Sǫ[a, b],
Notice that

∑n
i=1

∑mi

j=1[(xi,j − x)/bn]
rKbn(xi,j − x) = Sn(x). Recall that x̃0 = a and

x̃Nn+1 = b. The desired result then follows from (7.19) and (7.22) in view of

∫ x̃Nn+1

x̃0

(

v − x

bn

)r

K

(

v− x

bn

)

dv = bn

∫ (b−x)/bn

(a−x)/bn

urK(u) du= bn

∫ 1

−1

urK(u) du

for all x ∈ Sǫ[a, b] and large enough n.
(ii) The expression (7.13) easily follows from (i) in view of the Taylor expansion

g(x,xi,j) =
∑r−1

s=0 ∂
sg(x, v)/∂vs|v=x(xi,j − x)s/s! + O(brn) for |xi,j − x| ≤ bn. �

Lemma 7.2. Assume that Conditions 4.1–4.2 hold. Let ρµ(x), ρs(x), κ, κ+ be as in The-
orems 4.1–4.2. Then, for δ1 → 0, δ2 → 0, we have uniformly over x ∈ Sǫ[a, b],

Jµ(0, x) = Lµ(x)/2−Nnb
3
nρµ(x)fe(0)ψK/[(b− a)s(x)] +O(1 +Nnb

5
n),

Jµ(δ1, x) = Jµ(0, x) +Nnbnδ1{fe(0)/[(b− a)s(x)] +O[(Nnbn)
−1 + b2n + δ1]},

Js(δ1,0, x) = Ls(x)/2−Nnhnκ+{[h2nψKρs(x)− δ1κ]/[(b− a)s(x)] +O(h4n + δ21)},
Js(δ1, δ2, x) = Js(δ1,0, x) +Nnhnδ2{κ+/[(b− a)s(x)] +O(h2n + δ1 + δ2)}.

Proof. Recall that Fe and fe are the distribution and density functions of ei,j . The
assumption Q(ei,j) = 0 implies that Fe(0) = 1/2. Notice that

Jµ(0, x)−Lµ(x)/2 =

n
∑

i=1

mi
∑

j=1

Kbn(xi,j − x)[P{Yi,j ≤ µ(x)} − 1/2]

=
n
∑

i=1

mi
∑

j=1

Kbn(xi,j − x)g(x,xi,j),

where g(x, v) = Fe{[µ(x)−µ(v)]/s(v)}−Fe(0). The symmetry ofK entails
∫

usK(u) du=
0, s= 1,3. The first expression then follows from Lemma 7.1(ii) with r = 4.
Similarly, we can show J ′

µ(0, x) := ∂Jµ(δ1, x)/∂δ1|δ1=0 = Nnbnfe(0)/[(b − a)s(x)] +
O(1 + Nnb

3
n) and J ′′

µ (δ1, x) := ∂2Jµ(δ1, x)/∂δ
2
1 = O(Nbn) uniformly over δ1, x. So, the

second expression follows from the Taylor expansion Jµ(δ1, x)− Jµ(0, x) = δ1J
′
µ(0, x) +

O(Nbnδ
2
1). The other two expressions can be similarly treated. We omit the details. �

7.4. Proof of Theorems 4.1–4.2

Let Lµ(x), Lµ(δ1, x), Jµ(δ1, x), Ls(x), Ls(δ1, δ2, x) and Js(δ1, δ2, x) be as in Section 7.3.

Proof of Theorem 4.1. Let δn = [(logNn)
3/(Nnbn)]

1/2 + b2n → 0. Let ln ↑ ∞ be a
positive sequence satisfying δnln → 0. First, we show ∆̂µ(x) := µ̂(x) − µ(x) = Op(lnδn)
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uniformly over x ∈ Sǫ([a, b]). Since µ̂(x) is a solution to (4.1), by Koenker ([18],
pages 32–33),

|Lµ(∆̂µ(x), x)−Lµ(x)/2| ≤
∑

i,j

Kbn(xi,j − x)1Yi,j=µ̂(x) =Op(1), (7.23)

uniformly over x. Let

Ωn(x) = [Lµ(lnδn, x)− Jµ(lnδn, x)]− [Lµ(0, x)− Jµ(0, x)].

We can apply Theorem 3.3 with ̟i,j(x) = Kbn(xi,j − x) to Ωn(x). For τn and φn in
Condition 3.2, τn = O(1/bn) and φn = O(Nnbn) (see Lemma 7.1). By Theorem 3.3,
supx∈[a,b] |Ωn(x)|=Op{[Nnbnlnδn(logNn)

3]1/2}. By the same argument, we can show

sup
x∈[a,b]

|Lµ(0, x)− Jµ(0, x)|=Op{[Nnbn(logNn)
3]

1/2}. (7.24)

Hence, by (7.24) and Lemma 7.2, uniformly over x ∈ Sǫ([a, b]),

Lµ(lnδn, x)−Lµ(x)/2 = [Jµ(lnδn, x)− Jµ(0, x)] + [Jµ(0, x)−Lµ(x)/2]

+ [Lµ(0, x)− Jµ(0, x)] +Ωn(x) (7.25)

= Nnbnlnδnfe(0)/[(b− a)s(x)][1 + o(1)] +Op(νn),

where νn = Nnb
3
n + 1 + [Nnbn(logNn)

3]1/2 + [Nnbnlnδn(logNn)
3]1/2. Because ln → ∞

and lnδn → 0, it is easy to see that νn = o(Nnbnlnδn) and Nnbnlnδn →∞, which implies
Lµ(lnδn, x)− Lµ(x)/2→∞ uniformly over x ∈ Sǫ[a, b] in view of supx s(x) <∞. Since

Lµ(δ1, x) is nondecreasing in δ1, (7.23) and (7.25) entail P{supx ∆̂µ(x)≤ lnδn}→ 1. Sim-

ilarly, P{infx ∆̂µ(x)≥−lnδn}→ 1. So, supx |∆̂µ(x)|=Op(lnδn). Since the rate of ln →∞
can be arbitrarily slow, supx |∆̂µ(x)|=Op(δn).
Again, by (7.23) and Lemma 7.2, uniformly over x ∈ Sǫ([a, b]),

Lµ(0, x)− Jµ(0, x) = Lµ(∆̂µ(x), x)− Jµ(∆̂µ(x), x) +Op[
√

Nnbnδn(logNn)3]

= [Lµ(∆̂µ(x), x)−Lµ(x)/2] + [Lµ(x)/2− Jµ(0, x)]

− [Jµ(∆̂µ(x), x)− Jµ(0, x)] +Op[
√

Nnbnδn(logNn)3]

= Op(1) +Nnb
3
nρµ(x)fe(0)ψK/[(b− a)s(x)] +O(1+Nnb

5
n)

−Nnbn∆̂µ(x){fe(0)/[(b− a)s(x)] +O(δn)}

+Op[
√

Nnbnδn(logNn)3].

The representation (4.8) then follows by solving ∆̂µ(x) from the above equation. �
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Proof of Theorem 4.2. We use the argument in Theorem 4.1 and only sketch the
outline. Let

Ds(δ1, δ2, x) = [Ls(δ1, δ2, x)− Js(δ1, δ2, x)]− [Ls(0,0, x)− Js(0,0, x)].

Using Theorem 3.3, we can show that

sup
x∈[a,b]

|Ls(0,0, x)− Js(0,0, x)|= Op{[Nnhn(logNn)
3]

1/2}, (7.26)

sup
|δ1|+|δ2|≤δn,x∈[a,b]

|Ds(δ1, δ2, x)| = Op{[Nnhn(logNn)
3]

1/2}, (7.27)

hold for all bn → 0, hn → 0 and δn → 0 satisfying supn logNn/[Nnmin(bn, hn)δn]<∞.
Let δn = b2n + h2n + [(logNn)

3/(Nnbn)]
1/2 + [(logNn)

3/(Nnhn)]
1/2 and ln → ∞ be a

sequence such that lnδn → 0. By Theorem 4.1, ∆̃µ(x) := µ̃(x) − µ(x) = Op(δn). Using
(7.27) and Lemma 7.2, we can derive the following counterpart of (7.25)

Ls(∆̃µ(x), lnδn, x)−Ls(x)/2 = [Js(∆̃µ(x), lnδn, x)− Js(∆̃µ(x),0, x)]

+ [Js(∆̃µ(x),0, x)−Ls(x)/2] +Ls(0,0, x)− Js(0,0, x)

+Op{[Nnhnlnδn(logNn)
3]

1/2}
=Nnhnlnδnκ+/[(b− a)s(x)][1 + op(1)]→∞.

Let ∆̂s(x) = ŝ(x) − s(x). By the same argument in (7.23), supx |Ls(∆̃µ(x), ∆̂s(x), x) −
Ls(x)/2|=Op(1). Notice that Ls(∆̃µ(x), δ2, x) is nondecreasing in x. Thus, P{supx ∆̂s(x)≤
lnkn}→ 1. Similarly, P{infx ∆̂s(x)≥−lnkn}→ 1. Then supx |∆̂s(x)|=Op(δn).
Write ̟n = [Nnhnδn(logNn)

3]1/2. To derive the Bahadur representation (4.14), we use
(7.27) and Lemma 7.2 to obtain

Ls(0,0, x)− Js(0,0, x)

= [Ls(∆̃µ(x), ∆̂s(x), x)−Ls(x)/2] + [Ls(x)/2− Js(∆̂µ(x),0, x)]

− [Js(∆̃µ(x), ∆̂s(x), x)− Js(∆̃µ(x),0, x)] +Op(̟n)

= Op(1) +Nnhnκ+{[h2nψKρs(x)− κ∆̃u(x)]/[(b− a)s(x)] +O(h4n + δ2n)}

−Nnhn∆̂s(x){κ+/[(b− a)s(x)] +O(δn)}+Op(̟n).

Solving ∆̂s(x) from the above equation, we obtain the Bahadur representation (4.14). �

7.5. Proof of Corollaries 4.1–4.2

Again we use the coupling argument to convert the dependent data to m-dependent case.
Theorem 7.1 below presented a CLT for m-dependent sequence with unbounded m.
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Theorem 7.1 (Romano and Wolf [22]). Let Zn,j,1 ≤ j ≤ dn, be a triangular array
of mean zero kn-dependent random variables. Define

Sn =

dn
∑

j=1

Zn,j, B2
n =Var(Sn), Sn,h,a =

a+h−1
∑

j=a

Zn,j , B2
n,h,a =Var(Sn,h,a).

Assume that there exist some δ > 0,−1≤ γ < 1,Cn,1,Cn,2,Cn,3 > 0 such that

(a) E(|Zn,j |2+δ) = O(Cn,1); (b) B2
n,h,a/h

1+γ =O(Cn,2) for all h≥ kn, a;

(c) B2
n/(dnC

γ
n,2)≥Cn,3; (d) Cn,2/Cn,3 =O(1);

(e) Cn,1/C
(2+δ)/2
n,3 =O(1); (f) k

1+(1−γ)(1+2/δ)
n /dn → 0.

Then Sn/Bn ⇒N(0,1).

Proof of Corollaries 4.1–4.2. We only prove Corollary 4.1 since Corollary 4.2 can
be similarly treated. By the Bahadur representation (4.8), under the specified condition,
rn
√
Nnbn → 0. Thus, it suffices to show (Nnbn)

−1/2Qbn(x)⇒N(0, ϕK/[4(b−a)]). Recall
ei,j(kn) and Ỹi,j in (3.1) and (3.5). Define the coupling process

Q̃bn(x) =−
n
∑

i=1

mi
∑

j=1

{1Ỹi,j≤µ(x) −E[1Ỹi,j≤µ(x)]}Kbn(xi,j − x).

Let the coupling lag kn = ⌊c logNn⌋ be chosen as in Theorem 3.2. By Theorem 3.2,
Qbn(x)−Q̃bn(x) = Op[(logNn)

2] = op[(Nnbn)
1/2]. It remains to show (Nnbn)

−1/2Q̃bn(x)⇒
N(0, ϕK/[4(b− a)]). Recall Mn =max1≤i≤nmi. Set Ỹi,j = 0 for mi < j ≤Mn. Define

Zn,j =

n
∑

i=1

ζi,j , where ζi,j = (Nnbn)
−1/2{1Ỹi,j≤µ(x) −E[1Ỹi,j≤µ(x)]}Kbn(xi,j − x).

Then we can write −(Nnbn)
−1/2Q̃bn(x) =

∑Mn

j=1Zn,j . Notice that Zn,j, j = 1,2, . . . , are
(2kn + 1)-dependent, and ζi,j , i= 1,2, . . . , are independent for each fixed j.
Let Sn,B

2
n, Sn,h,a and B2

n,h,a be defined in Theorem 7.1. We shall verify the conditions
in Theorem 7.1. By the independence of the summands ζi,j in Zn,j ,

E(|Zn,j|4) =
n
∑

i=1

E(|ζi,j |4) + 6
∑

i1 6=i2

E(|ζi1,j|2)E(|ζi2,j |2)

=
O(1)

(Nnbn)2

{

n
∑

i=1

K4
bn(xi,j − x) +

[

n
∑

i=1

K2
bn(xi,j − x)

]2}

=O(1/M2
n),

in view of nMn = O(Nn). Since Ỹi,j and Yi,j have same distribution, we have
g(x,xi,j) := Var(1Ỹi,j≤µ(x)) = Fe{[µ(x)− µ(xi,j)]/s(xi,j)} − F 2

e {[µ(x)− µ(xi,j)]/s(xi,j)}.
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Recall Fe(0) = 1/2. Then g(x,x) = 1/4. Thus, by (4.9) and the (2kn + 1)-dependence of
Ỹi,j , j ∈ Z, applying Lemma 7.2(ii) with r = 1 produces

B2
n =

1

Nnbn

n
∑

i=1

ni
∑

j=1

Var(1Ỹi,j≤µ(x))K
2
bn(xi,j − x)

+
O(1)

Nnbn

n
∑

i=1

∑

1≤j1<j2≤ni,|j1−j2|≤2kn

Kbn(xi,j1 − x)Kbn(xi,j2 − x)

=
1

Nnbn

[

NnbnϕK

4(b− a)
+O(Nnb

2
n)

]

+
O(nMnknbnιn)

Nnbn
→ ϕK

4(b− a)
,

in view of nMn = O(Nn) and knιn → 0. Similarly, we can show B2
n,h,a = O(nh/Nn) =

O(h/Mn). Therefore, it is easy to see that the conditions in Theorem 7.1 hold with
δ = 2, γ = 0, and straightforward choices of Cn,1,Cn,2,Cn,3, completing the proof. �
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