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We would like to congratulate Albrecht et al. (2013)—
henceforth ANAC—on their innovative and inspiring work on
design of experiments for DA. The idea of incorporating DA
into statistics could be considered as a breakthrough of inter-
weaving physical knowledge and statistics. It is always valuable
to formulate the scheme of combining scientific theories and
information from data together: DA is a good example. DA has
been a popular method to engineers since 1914 when it was first
proposed. However, ANAC is clearly among those first few who
notices its significance in the context of statistics. They have pro-
posed a way of exploring the physical meanings of covariates
rather than the numbers. This work is insightful and inspiring.
Our DA experience is somehow different from ANAC. We will
first discuss a typical DA example in meteorology to show the
merits and limitations of DA from an engineering perspective,
then we shall raise some related issues when DA is incorporated
in statistical design and analysis.

1. A TYPICAL DIMENSIONAL ANALYSIS CASE
IN METEOROLOGY

In meteorology, one of the most important areas is to study a
number of boundary layer situations of the atmosphere, where
the physical laws to govern the atmosphere’s dynamics are
clearly nonlinear. The planetary boundary layer, illustrated as
the shaded area in Figure 1, is the lowest part of the atmosphere.
The planetary boundary layer is categorized into different zones
based on the local time and height (the x- and y-axis, respec-
tively). Physical quantities, such as temperature, moisture, and
flow velocity in this layer fluctuate rapidly because of its dy-
namics with the planetary surface. In the convective mixed layer
where turbulence is driven by buoyancy and capped at a well-
defined height, it is obvious that the convective velocity scale
(w∗) and the depth of the boundary layer (zi) are important scales
for all quantities concerned (Stull 1988). Here, we consider de-
veloping an expression for vertical velocity variance (Q0 = w2),
as a function of height (Q1 = z) and other variables.

Figure 2(a) displays the scatterplot of w2 and z, given the
measurements from the Phoenix 78 experiment. The purpose of
the Phoenix 78 experiment is to study the turbulence of con-
vective boundary layer. During the experiment, the profiles of
turbulence statistics from aircraft observations were recorded
(see Young 1988, for details). From Figure 2(a), the dependence

between w2 and z is not obvious. This may be attributed to dif-
ferent magnitudes of length (Q2 = zi) and velocity (Q3 = w∗).
Using Buckingham’s � theorem, we can generate dimension-
less variables π0 = Q0/Q3 = w2/w2

∗ and π1 = Q1/Q2 = z/zi .
Figure 2(b) is the scatterplot of π0 = w2/w2

∗ and π1 = z/zi .
A straightforward LOESS fitting (R Development Core Team
2011) gives the four curves (corresponding to four dates) in
Figure 2(b). Each individual curve has the similar shape. We
anticipate to build up one empirical model π0 = f (π1), which
will be able to describe the common character.

Assuming the function is of power-law form (with some
boundary conditions), the empirical model can be built
as: π0 = 1.554π

1/2
1 (1 − 0.866π

1/2
1 ) or w2/w2

∗ = 1.554(z/zi)1/2

[1 − 0.866(z/zi)1/2].
It is interesting to compare the empirical model with the

conventional model in meteorology (see Stull 1988): π0 =
1.8π

2/3
1 (1 − 0.8π1)2 or w2/w2

∗ = 1.8(z/zi)2/3(1 − 0.8z/zi)2.

Figure 2(c) displays both models. The empirical model is
close to the conventional model, but with a better fit. More-
over, they share a similar analytical form. This is a rather typi-
cal dimensional analysis (DA) example. Some lessons we have
learned here are as follows:

1. DA is a popular and rather mature method in engineering.
2. When DA is used in engineering, typically only a small

number of variables (say four or less) are included in the
DA procedure.

3. DA can be employed to identify the appropriate di-
mensionless variables, but it does not provide the func-
tional form of the relationships. Empirical results can be
achieved by experiments and this is where statistics could
be powerful.

4. For problems with a physical context, the linear model
is often not appropriate because of boundary conditions
and the fact that many variables are related via products,
ratios, and powers.

5. The final empirical model should be tested with indepen-
dent datasets, ideally over a range of different conditions.

© 2013 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, AUGUST 2013, VOL. 55, NO. 3
DOI: 10.1080/00401706.2013.804445

TECHNOMETRICS, AUGUST 2013, VOL. 55, NO. 3

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

],
 [

D
en

ni
s 

L
in

] 
at

 1
0:

27
 2

7 
A

ug
us

t 2
01

3 

mailto:dkl5@psu.edu
mailto:wxs199@psu.edu
http://www.amstat.org
http://www.amstat.org
http://pubs.amstat.org/loi/jasa
http://dx.doi.org/10.1080/00401706.2013.804445


282 DENNIS K. J. LIN AND WEIJIE SHEN

Figure 1. Illustration of planetary boundary layer. The online version of this figure is in color.

The above example shows that the combination of DA and sta-
tistical analysis will be of great value to engineering problems.
However, in addition to modeling and prediction, the design of
experiments and data collection for DA is lacking. Incorporating
DA into design of experiments could be beneficial in terms of
its efficiency and robustness. This is indeed the key contribution
of ANAC’s article.

2. IRREGULAR DESIGN SUPPORT
AND LOG-TRANSFORMATION

The irregular design support is an important feature for trans-
formed variables after DA. This leads to some problems in de-
sign of experiments, as stated by the authors (see Section 5.2).
We would like to take a further look at why these problems
surface.

In the cylinder drag experiment, the authors state (in Sec-
tion 5.2) that the common basis quantities contribute to the
irregular shapes of the support. While we agree that the irreg-
ular support is due to the common basis quantities, we note
that the common basis quantities may not always lead to an
irregular support. For example, ANAC use π1 = ρUd/μ and
π2 = RS/d because π1 matches the definition of Reynolds num-
ber (Section 5.1). The support points in {π1, π2}, as displayed
in Figure 3(a), are indeed irregular. However, direct derivation
of DA will give the dimensionless quantity 1/π1 = μ/(ρUd).
The support points in {1/π1, π2}, as displayed in Figure 3(b),
are fairly regular.

In essence, the irregularity (specifically, the hyperbolic
design space in Figure 3(a)) occurs because the basis quantities
have inverse relationships with different derived quantities. In
this case, d is proportional to π1 = ρUd/μ, but is reciprocal
to π2 = RS/d. Under the power law, the relationship between
basis quantities and derived quantities can only be either
reciprocal or proportional, leading to the design space in either
Figure 3(a) or 3(b).

Figure 3(c) displays the design space after taking logarithm
transformation on both π1 and π2. It is clear that it is now a reg-

ular design space (as discussed in Section 5.2). In fact, such a
logarithm transformation works well for both reciprocal and pro-
portional relationships discussed above. However, are there any
undesirable consequences by taking log-transformations? For
example, how does the log-transformation affect the de-
sign space (e.g., uniformity and orthogonality are no longer
valid) and the model building? Two issues related to log-
transformation are (a) unbiased estimation and (b) design com-
parison, as described below.

Consider a power-law model with multiplicative errors, in
which

π0 =
∏

π
βi

i · ε.

Taking log on both sides results in a “linear model” of

(log π0) =
∑

βi(log πi) + log ε.

However, E(̂log π0) = log π0 does not imply E(π̂0) = π0, be-
cause E(exp(̂log π0)) 
= exp(E(̂log π0)). Is there any direct ap-
proach possible for an unbiased estimate of π̂0?

Also, Cartesian grid points in Qi may not be Cartesian (or
even uniform) in the transformed πj . The criteria on these two
different design spaces are actually comparing different aspects
of performance. How can we measure and compare the perfor-
mances of designs on the two totally different design spaces in
a fair and reasonable fashion?

3. MISSING KEY VARIABLE

The authors stated in Section 4 that “the reverse error—
omitting an independent variable when it is active—is usually
fatal.” Indeed, missing key variable(s) is always an important
issue. However, we believe that this is a common issue for al-
most all scientific investigations. DA is merely one of them.
An empirical model will also suffer when key variables are
omitted. We thus disagree with the authors for the fourth advan-
tage of empirical strategy in Section 4.1. How can we quantify
the loss due to missing key variables for both DA model and
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Figure 2. Scatterplots and estimates of Phoenix 78 data. (a) Original dataset. Different symbol stands for different date; (b) Transformed data
and LOESS fits for four different dates; (c) Empirical model and conventional model based on the transformed dataset.

Figure 3. Design spaces for ANAC’s cylinder drag example. Several transformations are presented. Uniformly sampled points and boundary
points from domains of pre-DA variables are displayed under the above dimensionless transformations. (a) ANAC form; (b) Reciprocal form;
(c) Log-transformation.
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expectation–maximization (EM) model, so that we can have a
legitimate comparison?

Here, we further investigate the consequence of missing key
variables for DA procedure. Suppose the response quantity is
Q0 and the predictors are Q1, . . . ,Qp, and the basis dimensions
of all quantities under consideration are d1, . . . , dk , where di is
one of the following seven fundamental physical dimensions:
mass M, length L, time T, temperature 
, electric current I (or
charge Q), amount of substance mol, and luminous intensity Iv.

Denote Di as the set of basis dimensions, which constitutes
Qi for i = 1, 2, . . . , p. Consider the loss when variable Qa is
missing. For an arbitrary basis dimension dj ∈ Da , we have the
following scenarios.

Case 1: dj only appears in Qa .
If Qa is observed, Qa will be omitted after DA
because it cannot be represented by other quantities.
Thus, the missing of Qa will not change the result
of DA. There is no loss.

Case 2: dj appears in at least three quantities including
Qa (say, Qa , Qb, and Qc).
If Qa is observed, select Qb as the basis quantity.
By DA, we will obtain two dimensionless variables:
�a(Qa,Qb) and �c(Qc,Qb).
On the other hand, if Qa is missing, the dimension-
less variable will be �c(Qc,Qb). The loss is only
one variable, Qa itself.

Case 3: dj only appears in both Qa and Qb.
If Qa is observed, one of Qa and Qb should be the
basis quantity. Qa and Qb will combine in some
way to cancel dj to get a dimensionless variable
�a(Qa,Qb).

On the other hand, if Qa is missing, Qb is the
only one having dj in dimension and thus should be
omitted after DA. The loss is two variables, Qa and
Qb. This is the worst scenario.

As a result, only Case 3 leads to a deletion of other relevant
quantities. By missing Qa , the additional number of quantities
deleted is at most the number of fundamental dimensions in
Da . This is exactly the case in the ball deformation example
with [E] = ML−1 T−2 and DE = { M,L,T}. For the dimensions
within DE : M only appears in ρ and E, via [ρ] = ML−3; T only
appears in V and E, via [V ] = LT−1. So the missing of E results
in missing of ρ and V . Generally, the total number of quantities
deleted will be small.

Case 3 often occurs when one certain basis dimension dj ap-
pears only in one variable Qb (and the missing variable Qa—of
course, this is unknown to us). If no professional knowledge
is available, our recommendation is to include a dimensional
constant with dimension dj so that we will not eliminate
Qb.

4. DEPENDENCY BETWEEN VARIABLES

Consider the questions: (a) will DA change the dependency
structure between input variables and response? and (b) will
these changes generate spurious features in model building?

When transforming variables into dimensionless quantities, we
multiply or divide the original variables with basis quantities
by a power law. The correlations between transformed response
and covariates are changed, indicating that the effects of vari-
ables are also changed. For illustration, consider the simplest
example, with the response Y , the covariate X, and the basis
quantity D. After DA, we have (Y/D) for the response and
(X/D) for the covariate. We have the following four potential
scenarios:

1. Y and X are uncorrelated; and (Y/D) and (X/D) are also
uncorrelated.

2. Y and X are correlated; and (Y/D) and (X/D) are also
correlated.

3. Y and X are correlated; but (Y/D) and (X/D) are uncor-
related.

4. Y and X are uncorrelated; but (Y/D) and (X/D) are
correlated.

Here, we use “uncorrelated” instead of “independent” to avoid
potential confusion. In Scenarios 1 and 2, it is clear that DA does
not have impact on the dependency between X and Y .

In Scenario 3, suppose linear regression will yield a signif-
icant effect of X on Y , but an insignificant effect of (X/D) on
(Y/D). That is, (Y/D) = a + b(X/D) with b insignificant. We
could conclude Y = aD and thus D, instead of X, has a signif-
icant effect on Y . Because Scenario 3 typically occurs when
D explains most of the dependency between Y and X, the
conclusion of significant effect of D, in place of X, will not
cause any problem.

For Scenario 4, as an illustrative example, consider the data
in Figure 4 where the scatterplots and linear fits of response and
covariate before and after DA are displayed. It can be seen that
the effect of X is insignificant before DA but is significant after
DA. A linear regression after DA, (Y/D) = a + b(X/D), im-
plies that Y = aD + bX, namely, Y and X are now correlated.
This contradicts the fact and a spurious correlation is resulted.
Note that Scenario 4 is the only case where DA reaches a con-
tradictory conclusion. An efficient test is needed to identify
whether Scenario 4 occurs. This deserves further studies in the
future.

5. QUANTITIES IN DA PROCEDURES

In physics, there are many constants that also carry dimen-
sions, such as the Boltzmann constant, the gravitational con-
stant, and the speed of light. These constants (a.k.a., “parame-
ters” in statistics) are to be estimated, not to be controlled. Thus,
they cannot be treated as experimental variables. It is important
that the constants relative to the physical background should
also be included in the model before DA. Otherwise, the DA
procedure may falsely rule out significant factors due to their
dimensions.

A key step in DA (see Section 2.4) is to identify a com-
plete, dimensionally independent subset of the input variables
(as the chosen basis quantities). However, such a subset is
not unique. Will a different choice of such a subset lead to a
different consequence, especially in design stage? If so, what
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Figure 4. Different relationships before and after DA with linear fits and confidence intervals.

will be the “optimal” choice of the basis quantities and what
will be an appropriate optimization criterion? Note that, in
canonical engineering, basis quantities are usually the base-
line scales of the quantities in the system; in our meteorol-
ogy example, these are the velocity scale w∗ and the length
scale zi .

One problem with the power-law form of the derived
quantities is that the denominator can be zero. It is quite
common to have zeros for physical quantities, resulting some
dimensionless quantities to be undefined. This problem may
be avoided by properly designing the experiments in certain
situations., but does occur in general.

Our experience indicates that polynomial fitting may not be
realistic in DA modeling. Unless there is strong (physical) sup-
port for any specific model (and consequently D-optimality can
be defined), we believe that U-optimality is more appropriate
here. A U-optimal design has more power, especially when a
nonlinear model is employed. Furthermore, other design cri-
teria may also be useful and worth exploring (for example,
I-optimality).

6. CONCLUSION

Albrecht, Nachtsheim, Albrecht, Cook’s article pertains a
fresh perspective in combining DA and design of experiments.
The authors introduce DA to statisticians and propose relative
difficulties and solutions. They emphasize the use of experimen-
tal designs for the improvement of the DA procedure. Congrat-
ulations again for this outstanding work. We are grateful for this
opportunity to be part of the discussion.
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