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A first-order saturated design is the smallest design resulting in unbiased estimates for
all main effects. It could be misleading in the presence of interaction effects. This arti-
cle provides a simple class of first-order saturated designs in which specific two-factor
interactions are orthogonal to many of the main effects, while keeping rather high design
efficiencies.
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1. Introduction

Consider the first-order model of k variables in n runs,

y = β01 + β1x1 + . . . + βkxk + ε = Xβ + ε,

where y is an n × 1 vector of observations, 1 is an n × 1 vector whose entries are all ones,
xi is an n × 1 vector for the ith factor, β is the (k + 1) × 1 vector of coefficients to be
estimated, and ε is the noise vector. When n = k + 1, the design matrix X is a (k + 1) ×
(k + 1) square matrix. This is the smallest design possible to estimate all βi’s; such a design
is called a saturated (first-order) design. This is especially popular when the experimental
costs are high. Construction of saturated design has received a great deal of attention in the
literature. One main concern for a saturated design is that its estimates for the βi’s may be
misleading in the presence of two-factor interactions.

This article proposes a new class of saturated (first-order) design in which specific
two-factor interactions are orthogonal to as many main effects. It can be shown that the
proposed designs are as near efficient as the optimal (D-optimal, say) design, but main
effects are orthogonal to some two-factor interactions. For simplicity of presentation, all
proofs are given in Appendix A.
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726 D. K. J. Lin and L. Xiao

2. Proposed Design

Consider a two-level design matrix X of the form

X =
(

X1 X2

X1 −X2

)

where X1 is an (n/2) × k1 matrix whose entries in the first column are all ones, X2 is (n/2) ×
k2 matrix, and k1 + k2 = n, n is even. Divide the factors into two groups A and B. Factors

in Group A follow the design of

(
X1

X1

)
, while factors in Group B follow the design of(

X2

−X2

)
. It is obvious that all factors in Group B keep the foldover property, namely, all

main effects are orthogonal to their two-factor interactions (see, e.g., Li and Lin 2003).
Furthermore, we have the following property.

Property 1:

1. All main effects of xi and xj are orthogonal, for all xi in Group A and xj in Group B.
2. All two-factor interactions xixj are orthogonal to main effect xk, for

(a) all xi and xj in Group A, and xk in Group B;
(b) all xi and xj in Group B, and xk in Group B;
(c) all xi in Group B, and xj and xk in Group A.

In short, all main effects in Group A are orthogonal to all main effects in Group B.
If X1 and X2 are both orthogonal designs, X will be an orthogonal design. All main effects
in Group B are orthogonal to two-factor interactions within Group B and within Group A,
while all main effects in Group A are orthogonal to all two factor interactions with one
factor in Group A and the other in Group B. Such a design will be rather robust against
potential interaction effects (a nice property by foldover), but with only half the run size
required of a full foldover. It is thus desirable to have as many design columns in Group B
as possible. Property 2 given next, however, indicates that the maximal number of columns
possible in Group B is k2 = n/2 for the design matrix to be nonsingular.

Property 2: If X is full rank, then k1 = k2 = n/2.

Without loss of generality, each design column is coded ±1 for high and low levels.
Take D-optimality as an example, which maximizes the determinant of the X

′
X matrix,

‖ X′X ‖. Other optimalities can be used as well. It can be shown that:

Property 3: ‖ X′X ‖= 2n× ‖ X′
1X1 ‖ × ‖ X′

2X2 ‖.

With Property 3 in mind, it is natural to employ D-optimal design of size (n/2) for
both X1 and X2 matrices. These D-optimal saturated designs are available in the literature,
especially for small n (see, e.g., http://www.indiana edu/maxdet).

Take n = 6 as an example; n/2 is 3 and a D-optimal 3 × 3 saturated design is known
to be

X1 = X2 =
( 1 −1 −1

1 −1 1
1 1 −1

)
.
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Saturated First-Order Design 727

Therefore, the proposed saturated design for five factors is

X =
(

X1 X2

X1 −X2

)
=

I x1 x2 x3 x4 x5⎛
⎜⎜⎜⎜⎜⎝

1 −1 −1 1 −1 −1
1 −1 1 1 −1 1
1 1 −1 1 1 −1
1 −1 −1 −1 1 1
1 −1 1 −1 1 −1
1 1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎠

.

The design matrix has the following properties:

1. Main effects of factors x1, x2 are orthogonal to main effects of factors x3, x4, x5.
2. Main effects of factors x1, x2 are orthogonal to two-factor interactions of x1x3, x1x4, x1x5,

x2x3, x2x4, x2x5.
3. Main effects of factors x3, x4, x5 are orthogonal to two-factor interactions of x1x2, x3x4,

x3x5, x4x5.
4. ‖ X′X ‖= 214.

If a 6 × 6 D-optimal design is used, its determinant is ‖ X′X ‖= 52 × 210. In terms
of d-efficiency (as explained later) the proposed design has 92.8% d-efficiency. However,
none of main effects for the D-optimal design are orthogonal to any two-factor interactions
(except the trivial cases that interaction xixj is always orthogonal to main effects xi and xj).

Table 1 displays the comparisons of d-efficiencies between the n × n D-optimal
designs and the proposed saturated designs, for 2 ≤ n ≤ 60. Define (see, e.g., Lin 1993)
d-efficiency =‖ X′X ‖1/n /n, and the relative ratio RR is defined as

RR = d-effP

d-effD
,

where d-effP and d-effD are the d-efficiencies for the proposed design and the D-optimal
design, respectively.

From Table 1, it is obvious that the loss of d-efficiency is rather limited—the rela-
tive ratio is between 90.5% and 100%. However, the proposed design is robust to many
(although not all) interaction effects. The same observation can be made for larger designs.
Comparisons for 62 ≤ n ≤ 120 are given in Appendix B. It is interesting to note that the
proposed design for n = 94 results in a higher d-efficiency than the published D-optimal
design (see, e.g., Koukouvinos et al. 2000).

To use these newly proposed designs in practice, the experimenter should group all
factors into two groups, such that potential two-factor interactions only occur within each
group, but not between groups. Then assign sensitive factors to Group B.

3. Final Remarks

As pointed out by one referee, “Clearly for any saturated first-order design every 2-factor
interaction must be confounded (partially or completely) with at least one main effect.”
With foldover structure, the proposed designs allows some specific two-factor interactions
to be orthogonal to as many main effects as possible. The general property is described in
Property 1 for practical uses.
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728 D. K. J. Lin and L. Xiao

Table 1
Comparisons of d-efficiencies between D-optimal design and the proposed design

n d-effD(%) d-effP(%) RR(%)∗ n d-effD(%) d-effP(%) RR(%)∗

2 100 100 100 32 100 100 100
4 100 100 100 34 98.0† 96.6 98.6
6 90.5 84.0 92.8 36 100 96.7 96.7
8 100 100 100 38 98.4 95.4 97.0

10 94.1 94.1 100 40 100 100 100
12 100 90.5 90.5 42 98.6 97.6 99.0
14 95.7 87.8 91.7 44 100 96.8 96.8
16 100 100 100 46 98.7 95.8 97.1
18 96.7 93.2 96.4 48 100 100 100
20 100 94.1 94.1 50 98.8 98.8 100
22 96.8† 91.5 94.5 52 100 97.7 97.7
24 100 100 100 54 98.9 96.7 97.8
26 97.7 97.7 100 56 100 100 100
28 100 95.7 95.7 58 98.7† 98.0 99.3
30 98.0 94.1 96.0 60 100 98.0 98.0

∗RR = d-effP/d-effD, where d-effP and d-effD are the d-efficiencies for the proposed design and
the D-optimal design, respectively.

†These designs are believed to be D-optimal, but have not been proved to be so.

If A-optimality is preferable (rather than the D-optimality), it can be shown that
Property 4 holds:

Property 4: tr(X′X) = 2tr(X′
1X1) + 2tr(X′

2X2).

Thus, to obtain the largest tr(X′X), an A-optimal design should be employed for X1

and X2. Other optimalities can be investigated in a similar manner. Other criteria can be
evaluated as well. For example, if average squared correlation (Miller and Sitter 2005) is
considered, it can be shown that the proposed designs perform well in general.

Furthermore, a more general class is design of the form

X =
(

X1 X2

X3 −X2

)
,

where X1 �= X3. Since

X′X =
(

X′
1 X′

3
X′

2 −X′
2

)
×
(

X1 X2

X3 −X2

)
=
(

X′
1X1 + X′

3X3 X′
1X2 − X′

3X2

X′
2X1 − X′

2X3 2X′
2X2

)
,

thus, if X′
1X2 − X′

3X2 = 0, then main effects of factors in Group A will be orthogonal to
main effects of factors in Group B. This deserves further investigation.

Acknowledgments

Professor Jagdish N. Srivastava has been a true leader in our society and has been a strong
supporter for young fellows. His original work on search design (among others) had a

D
ow

nl
oa

de
d 

by
 [

71
.5

8.
76

.1
52

] 
at

 2
0:

20
 1

5 
A

ug
us

t 2
01

3 



Saturated First-Order Design 729

siginificant impact on this work. It is our great privilege to contribute this work to this
special issue in honor of Professor Srivastava. He will always be remembered. Thanks also
go to two referees who provide a great set of constructive comments.

References
Koukouvinos, C., M. Mitrouli, and J. Seberry. 2000. Bounds on the maximum determinant for

(1, −1) matrices. Bull. Inst. Combin. Appl., 29, 39–48.
Li, W., and D. K. Lin. 2003. Optimal foldover two-level fractional factorial designs. Technometrics,

45, 142–149.
Lin, D. K. 1993. Another look at first-order saturated designs: The p-efficient designs. Technometrics,

35, 284–292.
Miller, A., and R. Sitter. 2005. Using folded over non-orthogonal designs. Technometrics, 47,

502–513.

Appendix A: Proofs for All Properties

Proof of Property 1

1. Since factor xi is from Group A and factor xj from Group B, the correspond-
ing columns are (x1i, x2i, . . . , xn/2i, x1i, x2i, . . . , xn/2i)′ and (x1j, x2j, . . . , xn/2j, −x1j,
−x2j, . . . , −xn/2j)′, respectively. The inner product of the two vectors is

∑n/2
m=1 xmi ×

xmj +∑n/2
m=1 xmi × (−xmj) = 0.

2. (a) The interaction of two factors is (x1i × x1j, x2i × x2j, . . . , xn/2i × xn/2j, x1i × x1j, x2i ×
x2j, . . . , xn/2i × xn/2j)′; then the inner product of the main effect of factor xk and this
interaction is

∑n/2
m=1 xmi × xmj × xmk +∑n/2

m=1 xmi × xmj × (−xmk) = 0.
(b) The interaction of two factors is (x1i × x1j, x2i × x2j, . . . , xn/2i × xn/2j, (−x1i) ×

(−x1j), (−x2i) × (−x2j), . . . , (−xn/2i) × (−xn/2j))′; then the inner product of the main
effect of factor xk and this interaction is

∑n/2
m=1 xmi × xmj × xmk +∑n/2

m=1(−xmi) ×
(−xmj) × (−xmk) = 0.

(c) The two-factor interaction is (x1i × x1j, x2i × x2j, . . . , xn/2i × xn/2j, (−x1i) × x1j, (−x2i) ×
x2j, . . . , (−xn/2i) × xn/2j)′. Then the inner product of the main effect of factor xk and this
interaction is

∑n/2
m=1 xmi × xmj × xmk +∑n/2

m=1(−xmi) × xmj × xmk = 0.

Proof of Property 2

For any square matrix, if X is full rank, then X must be full rank of its columns. Thus

rank

(
X2

−X2

)
= k2,

where X2 is an (n/2) × k2 matrix. For an (n/2) × 1 vector with elements ±, the largest
number of linear independent vectors is n/2.

If k2 > n/2, there exists a set of k2 scalars, α1, α2, . . . , αk2 , not all zeros, such that

α1x21 + α2x22 + . . . + αk2 x2k2 = 0

where x2i denotes the ith column vector of X2, i = 1, 2, . . . , k2. Then we have
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730 D. K. J. Lin and L. Xiao

α1

(
x21

−x21

)
+ α2

(
x22

−x22

)
+ . . . + αk2

(
x2k2

−x2k2

)
= 0.

This implies that

rank

(
X2

−X2

)
< k2,

which conflicts the proposition that

rank

(
X2

−X2

)
= k2.

Thus, k2 must be ≤ n/2. Applying the same argument to X1, we have k1 ≤ n/2. Since
k1 + k2 = n, thus the claim of k1 = k2 = n/2.

Proof of Property 3

X′X =
(

X′
1 X′

1
X′

2 −X′
2

)
×
(

X1 X2

X1 −X2

)
=
(

2X′
1X1 0
0 2X′

2X2

)

Therefore,

‖ X′X ‖=
∥∥∥∥∥

2X′
1X1 0
0 2X′

2X2

∥∥∥∥∥ = 2n× ‖ X′
1X1 ‖ × ‖ X′

2X2 ‖ .

Proof of Property 4

Assume λ is an eigenvalue of X
′
X, we have ‖ λIn×n − X′X ‖= 0. Now,

‖ λIn×n − X′X ‖ =
∣∣∣∣
∣∣∣∣
(

λIn/2×n/2 0
0 λIn/2×n/2

)
−
(

2X′
1X1 0
0 2X′

2X2

)∣∣∣∣
∣∣∣∣

=
∣∣∣∣∣
∣∣∣∣∣
λIn/2×n/2 − 2X′

1X1 0
0 λIn/2×n/2 − 2X′

2X2

∣∣∣∣∣
∣∣∣∣∣

= ∣∣∣∣λIn/2×n/2 − 2X′
1X1

∣∣∣∣× ∣∣∣∣λIn/2×n/2 − 2X′
2X2

∣∣∣∣ .

Thus, ‖ λIn/2×n/2 − 2X′
1X1 ‖ × ‖ λIn/2×n/2 − 2X′

2X2 ‖= 0. This implies that (a) λ/2 is
an eigenvalue of either X′

1X1 or X′
2X2 and (b) if λ/2 is an eigenvalue of X′

1X1 or X′
2X2, then

λ is an eigenvalue of X
′
X. So we have

tr(X′X) = 2tr(X′
1X1) + 2tr(X′

2X2).
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Appendix B: Comparisons of d-efficiencies between D-optimal design
and the proposed design (for 62 ≤ n ≤ 120, as a supplement to
Table 2.1)

Table 2
Comparisons of d-efficiencies between D-optimal design and the proposed

design (for 62 ≤ n ≤ 120)

n d-effD(%) d-effP(%) RR(%)∗ n d-effD(%) d-effP(%) RR(%)∗

62 99.1 97.0 97.9 92 100 98.7 98.7
64 100 100 100 94 94.1† 97.9 104‡

66 99.1 98.1 99.0 96 100 100 100
68 100 98.0 98.0 98 99.4 98.5 99.1
70 98.0† 96.8 98.8 100 100 98.8 98.8
72 100 100 100 102 99.4 97.7 98.3
74 99.2 98.8 99.6 104 100 100 100
76 100 98.4 98.4 106 99.4† 98.5 99.1
78 99.1† 97.4 98.3 108 100 98.9 98.9
80 100 100 100 110 99.4 97.9 98.5
82 99.3 99.3 100 112 100 100 100
84 100 98.6 98.6 114 99.5 99.1 99.6
86 99.3 97.4 98.1 116 100 98.7 98.7
88 100 100 100 118 99.5 98.5 99.0
90 99.3 98.3 99.0 120 100 100 100

∗ RR = d-eff P/d-eff D, where d-eff P and d-eff D are the d-efficiencies for the proposed design and
the D-optimal design, respectively.

†These designs are believed to be D-optimal, but have not been proved to be so.
‡The proposed design for n = 94 is shown to have a higher d-efficiency than the published

D-optimal design (see, for example, Koukouvinos, Mitrouli and Seberry (2000)).

D
ow

nl
oa

de
d 

by
 [

71
.5

8.
76

.1
52

] 
at

 2
0:

20
 1

5 
A

ug
us

t 2
01

3 


