Journal of Statistical Planning and Inference 143 (2013) 1954-1967

Contents lists available at ScienceDirect N | ‘

journal of .
statistical planning

and inference

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

Optimal design for prediction in multiresponse linear models @Cmsmk
based on rectangular confidence region™

Xin Liu?, Rong-Xian Yue ”* Dennis KJ. Lin €

@ College of Science, Donghua University, Shanghai 201600, China

b College of Mathematics and Science, Shanghai Normal University, and Scientific Computing Key Laboratory of Shanghai Universities,
Shanghai 200234, China

¢ Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA

ARTICLE INFO ABSTRACT

Article history: This paper proposes a class of optimal design criteria for prediction in linear regression
Received 10 January 2013 models with r responses based on the volume of the rectangular confidence region,
Received in revised form termed R}-optimality. A general equivalence theorem and a geometrical characterization
4 June 2013 of the R;-optimal design are established, which are used to obtain or verify the Rj-

Accepted 18 June 2013

Available online 12 July 2013 optimality. Several examples are given for illustration.

© 2013 Elsevier B.V. All rights reserved.

Keywords:

Elfving's theorem

General equivalence theorem
Multiresponse linear models
Optimal design

Rectangular confidence region

1. Introduction

Consider the design problem for prediction in multiresponse linear regression models of the form
Y(x) = F(x)0 + ¢, M

where Y(X)=(y;(x),...,y,(x))" is the vector of r responses, X=(X1,...,Xq) is a setting of q control variables, F(x)=
(f1(0). ....f-x)" is an rx p matrix of regression functions, 6 is a vector of p unknown parameters, and ¢ is a vector of
random errors with mean 0 and (known or unknown) variance-covariance matrix ~. The experimental design region is X,
which is a compact subset in the g-dimensional Euclidean space.

Multiresponse experiments are frequently encountered in applications, such as chemical engineering, food science,
manufacturing, biological and medical studies, etc. The optimal design problem for multiresponse models has been
discussed by many authors. For example, Draper and Hunter (1966) developed a criterion for parameter estimation of a
multiresponse model. Fedorov (1972, Chapter 5) established a theoretical foundation for multiresponse experiments and
also developed a recursive algorithm for generating multiresponse approximate D-optimal designs. Chang (1994) studied
the properties of D-optimal designs for multiresponse models. Khuri and Cornell (1996) devoted a chapter of their book to
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multiresponse experiments. Gueorguieva et al. (2006) considered the optimal design problem for multivariate response
pharmacokinetic models. Jin and Yue (2008) studied the D- and A-optimal designs for mixture multiresponse experiments.
Wang and Yue (2008) developed an equivalent theorem of Bayesian optimal design for multiresponse linear regression
models. Atashgah and Seifi (2009) proposed a unified formulation for the multiresponse optimal design problem using
semi-definite programming and generated D-, A- and E-optimal designs. Zhu et al. (2010) considered robust designs against
outliers for multiresponse models. Sagnol (2011) computed the multiresponse optimal design problem by second-order
cone programming. Liu et al. (2011) proposed a new class of optimum design criteria for the linear regression model with r
responses based on the volume of the predictive ellipsoid for the vector of responses on a predetermined interval 2. The I;-
optimality criterion reduces to I;-optimality proposed by Dette and O'Brien (1999) in a single response situation.

In this paper, an alternative criterion for prediction is proposed in the multiresponse linear regression model (1) based on
the Bonferroni confidence rectangle. This optimality is a generalization of R-optimality proposed by Dette (1997) to the case
of multiresponse experiments.

The paper is organized as follows. Section 2 introduces the optimality criteria for linear regression models with r
responses, termed Rj-optimality. An equivalence theorem and a new geometric characterization of Elfving (1952) type for
the Rj-optimal design problem are derived in Section 3. Several illustrative examples are given in Section 4 and some
concluding remarks are given in Section 5. All proofs are presented in the Appendix.

2. Development of Rj-optimality

Throughout the paper we consider approximate designs of the form

X1 e X
¢= wy e ows (7

or &= {xy,wy}; _, for short, where the support points xi,...,xs are distinct elements of the design region XcRY, and
corresponding weights wy,...,ws are nonnegative real numbers which sum to unity. Denote the set of all approximate
designs with positive semi-definite information matrix on & by =. The information matrix of ¢ for model (1) is

M(©) = /X FT(0s1F(x) de().

and it is assumed that Range {F' (x)}c Range {M(&)} (vxeX)), which implies that the r responses are estimable by the design &.

We assume the matrix F(x) to be defined on a set Z that may be larger than the design region X. It is assumed that X and
Z are bounded, and x denotes a probability measure on Z. For a point ze Z the variance-covariance matrix of the r predicted
responses at z under the design ¢ is

V(z,9)=FeM ' &F ). 2)
Throughout the paper by Vj;(z, &) we denote the (ij)th entry of the r x r matrix V(z,¢), i.e.,
Viz.&) =elV(z,oe;, ije(l1,2,....1},

where e; is the ith unit vector in R". When there is no possibility of confusion we omit the dependence of M(¢), V(z, &) and F
(z) on & and z.

Definition 1. For Le[1, c0) a design & is called R;-optimal in = if it minimizes

L /L
(= { /. (-1_]1 vii(z,¢)> amz)} @)

over =.

Remark 1. This definition can be extended to allow the case L = oo by taking . (£) = sup,c-[]}_ ; Vi(z, . It can be shown
that y (&) = lim; _, oy (¢) if supp(x) = Z and each element of the r x p matrix F(z) of regression functions is continuous on Z,
where supp(x) denotes the set of support points of u. Obviously, the R. -optimality criterion minimizes the maximum
volume of the prediction rectangle. It is clear that the R;-optimality is coincided with the I;-optimality when r=1, and can
be viewed as a generalization of G-optimality to multiresponse situations.

Remark 2. Yue and Liu (2010) show that I}-optimal designs for hierarchically ordered system of regression models do not
depend on the variance-covariance matrix of the responses. However, as will be shown in Section 4, the R;-optimal designs
may depend on the correlation of the responses.

Remark 3. Comparing with Kiefer's @, class, a good property of R;-optimality is that it is invariant with respect to model
reparameterization. Thus the matrix F(x) can be replaced by G(x):=F(x)A for any nonsingular p x p matrix A and 6 replaced by
p:=A"10. This is also noted for I;-optimality by Dette and O'Brien (1999, Theorem 1).



1956 X. Liu et al. / Journal of Statistical Planning and Inference 143 (2013) 1954-1967

3. An equivalence theorem and Elfving's theorem for R;-optimality

The general equivalence theorem plays an important role in verifying optimality of a design. Here we present an
equivalence theorem for Rj-optimality to characterize R;-optimal designs.

Lemma 1. Let Ps denote the set of all n x n positive definite matrices and A be a fixed m xn (n>m) matrix. Then
gB)=]T" 1(AB’1AT),-,» =T[™ ,eTAB 'ATe; is convex on Ps.

i=1%i

This lemma is a special case of results in Gaffke and Heiligers (1996, p. 1153). From this lemma and (3), we have the
following.

Lemma 2. For the criterion function y; defined by (3) we have

(i) wy is convex on =;
(i) the directional derivative of y, at ¢ in the direction of €, denoted A, (), is
Ay, (6,8) =1y &)=y 1O M~ OMEM ' (©)QL(9)},
where
r r FT(z)e;e’ F(z)
- % — U du(z); 4
o= [ (iH] Le, 5)) 3 et D duce @

(iii) for any fixed & with nonsingular information matrix, the directional derivative
8,60 = [ @00 i, @Bz x=

is linear in &, where sye= denotes the Dirac measure at x.

Note that & is RZ—optimal in = if and only if infxexA,, (&, 8x) = 0 (see Whittle, 1973). The following theorem can thus be
established.

Theorem 1. For all Le[1,c0), a design &€= is Rj-optimal in = if and only if

sup tr(M ™ (EDFT (= FoM et =7 | T Vice. &) du@). ®)

XeXx

Moreover, the supremum is achieved at the support points of &.

To compare R;-optimal design to other designs, e.g., I1- and I’ -optimal designs obtained in Liu et al. (2011), we define the
T . . . I . .
R;-efficiency of a design & with respect to a R;-optimal design & as

Ri-Eff(o) = "L, ©

It is clear that O <R]—Eff(¢) <1 for all ¢ée=. The following corollary provides a lower bound for R]—Eff(¢) that follows
immediately from Theorem 1.

Corollary 1. For Le[1, c0), let

(M OF 0= FOM ™ (©Qu&)
[T 1 Viz. &) du@)

Then R} —Eff(&)>1 + r—supycr i (X, &).

)

PL(x,9) =

In terms of the function ¢;(x, &) at (7), we can restate Theorem 1 as follows.

Theorem 1'. For Le[1,00), a design &€= is Ri-optimal in = if and only if

sup ¢ (x, &) =r.
xeX

Moreover, the supremum is achieved at the support points of & .
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The equivalence theorem can also be extended to the case L = co (see, Dette and O'Brien, 1999). For any £€= we define the
answering set (Danskin, 1967, p. 21)

A(E) = {zez

T T
I1 Viiz, &) =sup [] Vii(Z'af)}-
i=1 zezi=1
Let u* be a probability measure on A(¢) and define

o r T . T
Po(X.8) = tr{M1(§)FT(X)Z‘1F(X)M1(§) 5 F@ee @

du* . 3
Jagish Vilz9) # (Z)} (8)

Theorem 2. A design &% €= is R._-optimal in = if and only if there exists a probability measure y* on A(&%) such that

SUP oo (X, E5 ) =T.
xeX

Moreover, the supremum is achieved at the support points of &%..

Other useful methods for the determination of the optimal design are geometric characterizations. Elfving (1952)
characterizes the c-optimal designs in single response experiments, and shows that the optimal design can be found at the
intersection of a vectorial straight-line. This result was generalized by Studden (1971) to optimal designs for parameter
systems AT6. Sagnol (2011) gave a generalization to the case of multiresponse experiments. It is worth mentioning that
Elfving-type characterizations are also available for other optimality criteria, and we refer the reader to, e.g., Dette (1993a,b,
¢, 1996), and Holland-Letz et al. (2009). We now present a geometric structure which can be used for the characterization of
optimal designs with respect to the R;-optimality criteria for multiresponse experiments.

Define an Elfving set by

Rp = conv{FT (x)= 12K |xex,KeR™P, |K|| = 1} = RP*P, 1))

where conv(B) denotes the convex hull of matrices B< RP*P, and |K|| is the Frobenius norm of the matrix K, i.e.,
K112 = tr(KTK). Rp is a compact, symmetric and convex subset of RP*? and contains the point 0. Let A(¢) be an p x p matrix
satisfying

%QL(f) for Le[1, +00),
AGAE =1 4 ' Fl e F2)
F fA(g)iE]Wdﬂ (Z) for L= + oo.

A geometric characterization of the R;-optimal designs can be established.

Theorem 3. For a given Le[1, c0], a design & = {x,,wy}} _ ;€= is Rj-optimal in = if and only if there exist a positive number y and
matrices K1,K>, ..., Ks such that

(i) 7A@ = X5 _ woF ()= 2K,;
(ii) yA(¢) is a boundary point of the set R, with a supporting hyperplane DeRP*?;
(iii) |Kyll=1, v=1,..,s.

4. Illustrative examples

In this section, we present three examples of R} - and R__-optimal designs for bivariate (r=2) response models. Example 1
considers a linear and a quadratic regression model, and both R}- and R]_-optimal designs are constructed. In Example 2,
optimal design for a multi-factor polynomial model is constructed and its optimality is proved by means of the equivalence
theorem. Example 3 considers a parallel linear model with two responses, and shows that the D-optimal design is also R} -
and R._-optimal by Theorem 3. To simplify the notation in three examples, we replace R; and I; by R; and I,, respectively.

Example 1 (Linear and quadratic regression). Consider two responses and one controllable variable. The experimental
region and the prediction region coincide, i.e., X = Z =[-1, 1], and the assumed regression model is
Y1(X) =610 + 011X + £1,
2 (10)
Yo(X) =020 + 021X + 022X° + €3.
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Denote X as the variance-covariance matrix of the random vector e = (e1, &3)". Let = and its inverse ! be of the following
forms:

s 011 012 1 el 12
“\oa om )’ T \g2l g2 )
where 613 = 021 = p./d11022. Further, let x be the uniform measure on Z, i.e., du(z) =% dz.

For this model, the matrix F(x) becomes

1x000>

HX)Z(O 01 x

and the vector of parameters is 0 = (610, 611, 020, 021, 622)". For a design ¢&, the information matrix is then

sy olls; 25y ol2s; ol2s,
0'1151 0.1152 0'1251 0.1252 O.1253
M) = 0'1250 01251 0’2250 0'2251 62252 S
o125, o125, o225, o225, ¢%2s;
o125, ol2s3 o225, 253 o22s,

where s, is the kth moment of ¢, ie., sp= [ Xx" dé. Obviously we have 0<s, <1 and 3 <s4 <s,. Note that if & denotes the
reflection of ¢ at the origin, then & and & have the identical even moments, while a reversed sign for the odd moments. It
follows that M(Z) = TM(&)T, with T=Diag(1,—1,1,—1,1). This implies that M~(Z) = TM~1(&)T and y (&) =, (¢). Thus, if & is
R;-optimal, then  is R;-optimal. This implies that the symmetrized design & = (&£ + £)/2 is alsoR;-optimal due to the
convexity of the R;-criterion. It is thus sufficient to search for R;-optimal designs among the symmetric designs on X. For a
symmetric design & we have s; =s3 =0 and

011622(X? + $2)[(1—p?)$2X* + (54 + 29?53 —353)x? + $254—p?S3]
s2(s4—53) '
Noting that y;(¢) :%(ﬂ1 ht(x,&) dz)'/* depends on ¢ only through the moments s, and s4, we denote y; (&) = 5;(s2, S4). Only
the cases L=1 and L = co will be considered.
1(a). For L=1, it is straightforward to show that
011022[(1058% + 70s; + 21)54—105p%s3 + 35(p%—3)s3 + 21(p2—2)s3 + 15(1—p?)s3]
105s2(s4—53)

1)

2
hix, &)= .l:[] Vii(x, &) =

n1(52,54) =

and

dﬂ1(52,54) _ 0‘110‘22(1—p2)(—10553 + 355% + 21s,—15) -

0.
dsy 1055;(s4—53)>

It follows that for a fixed s, and s2 <s4 <3, 771(S2,54) decreases in ss. Consequently,

011622[—105p253 + 350253 + (21p? + 28)s; + 36—15p?]
105s3(1-s5)

11(52,54)211(S2,S2) =

with equality holds if and only if s4 =s,. Therefore, for the optimal moments, we have s} =s% and s; =s3 =0. However
s4 =S, is only possible when the support points supp(¢)c{—1,0, 1} and since s; vanishes, —1 and 1 must appear equally
often in & Hence let s5 be a minimizer of ;(s2,s2) on [0, 1] then the following design

. -1 0 1
AR "

is Ry-optimal. Note that the optimal moment s¥ depends only on the correlation coefficient p, but not on o1 and o2,. In
particular, if p = 0 then s = (24/22-5)/7. For 0 < |p| < 1, the value of s} can be found numerically. Table 1 shows the values of
s% for various p in (-1, 1).

1(b). For L = oo, it is not difficult to find that

h(1,&)  (s4>c(s2));
Woo(&) =max {h(0, %), h(1,8)} = { h(0, &) o;hen/\fise

Table 1
Values of s3 in (12) for various p in (=1,1).

Il 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
s5 0.626 0.627 0.629 0.634 0.640 0.650 0.663 0.693 0.713 0.767 0.906
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where h(-,¢) is given in (11), and

S2[(p?—1) + 2—p?)s2 + (3—p?)s3]
1+2s, :

Note that the minimum of y (&) is attained when h(0, &) = h(1, ¢), which simplifies to s4 = c(s,). Therefore, we have

c(s2) =

(1—p?)s? _ 352 + 2551
c(s2)—s3  s5+5-1

N00(525S4) 2115 (52,C(S2)) = 1 +

and

dino(s2,¢(52))  s3—4s,—1
ds; (s245—-1)

It follows that 7.,(S2, c(s2)) decreases in s, on [0, 1], and thus
p?—/5p4—20p2 + 24 p? +/5p4—20p2 + 24
<<
6—-2p2 6—-2p2
due to the restriction s3 <s4 <s5. Thus, v (&) = 11,,(S2, S4) attains its minimum when s, = (p? + /5p*—20p2 + 24) /(6—2p?) and
S4 = C(S2) = S2. Therefore, R..-optimal design &% is as follows:

-1 0 1 2 /5,4_20,2
*_{ } Wheres’z‘—p +Vori—20p +24. (13)

[ ! _
R R EC A 622

Fig. 1 shows the optimal weights w* at + 1 versus |p| corresponding to the R;-optimal design & for L=1 (solid line) and

L = oo (dashed line), respectively.
It is worthwhile to compare the R;- and R..-optimal designs with D-, I;- and I.-optimal designs. The D-optimal design

for model (10) on X =[—1,1] is (see Krafft and Schaefer, 1992)

; -1 0 1
=193 1 3
8 4 8

0.5

0.45

0.35

0 0.2 0.4 0.6 0.8 1

a b
1 __/K Ol "
08F osf
) -—§§\~ 3 ___.—.-‘—_.—_—‘_—,:‘:___
& 06 & 06— —————————3 T -
‘© D-opt. design © D-opt. design
5 R_-opt. desi it R;-opt. desi
W g4} |- - - R.-opt. design ? 04| | = = = Ry-opt. design
L 1,-opt. design r |- = I,—opt. design
02rt |_-opt. design 1 02p |_—opt. design
0 0
0 0.5 1 0 0.5 1
Il Il

Fig. 2. (a) The R;-efficiencies of & (solid), & (dash), ¢} (dash-dot) and ¢* (dot) with respect to &; (b) the R..-efficiencies of & (solid), & (dash), ¢% (dash-
dot) and % (dot) with respect to &%.
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a b
1 — 11— -
'~ o K4
08 _ o ________X> 0.8 o
= | > e = m e : : _____
S 06 — g 06 :
S D-opt. design ) D-opt. design
ﬁ 04l |- = = l.-opt. design ' ﬁ 04| |- - - l;-opt. design
= || - = R;-opt. design e N R,-opt. design
021 . R_-opt. design ' 020 R_.-opt. design
0 0
0 0.5 1 0 0.5 1
] [Pl

Fig. 3. (a) The I;-efficiencies of & (solid), % (dash), & (dash-dot) and & (dot) with respect to ¢%; (b) the I-efficiencies of & (solid), ¢§ (dash), & (dash-
dot) and & (dot) with respect to % ..

The I41- and I.-optimal designs for model (10) on X = Z =[-1, 1], denoted by ¢} and &%, respectively, are as follows (see Liu
et al., 2011):

) 1 0 1 . (-1 0 1
=225 122/ 235> $o=1 6 {_6 6
14 7 14 6 3 6

Note that the D-, I;- and I.-optimal designs have the same structure as the R;- and R.,-optimal designs but do not depend
on X. In addition, in the case p=0, the R;- and R..-optimal designs coincide with the I;- and I.-optimal designs,
respectively. Compared with the D-optimal design, the R..-optimal design is always concentrated at the endpoints + 1 since
s5/2>3/8; while the R;-optimal design puts more concentration at the origin when |p| <4+/3523/271~0.8761.

Fig. 2 shows the R;-efficiencies and R, -efficiencies of the D-, R;-, R..-, I;- and I.-optimal designs. These are calculated
according to (6). Fig. 3 shows the [ -efficiencies and I -efficiencies of the D-, Ri-, R-, I;- and I-optimal designs. The I;-
efficiency of a design ¢ is the relative efficiency of & with respect to a I;-optimal design under the I;-optimality defined in Liu
et al. (2011).

The following factors are observed for the multiresponse model (10):

(i) the R;-optimal design for the multiresponse model depends on the covariance matrix X of the two responses only
through the correlation coefficient p;

(ii) the loss of efficiency might be moderate or substantial, if a rectangular confidence region is constructed on the basis of a
[;-optimal design and a D-optimal design, or a confidence ellipsoid is constructed on the basis of a Rj-optimal design
and a D-optimal design;

(iii) the performance of the I,-optimal design is worse than the D-, R,,- and I;-optimal designs for constructing rectangular
confidence region based on R;-optimality;

(iv) the performance of the I;-optimal design is worse than the D-, Ry- and I.-optimal designs for constructing rectangular
confidence region based on R.,-optimality.

Example 2 (Multi-factor polynomial). Consider an experiment involving two responses with m controllable variables, and
X = Z=[-1,1]". The assumed regression model is

m
Vi) =011+ 3 01X + €1,

i

m (14)
Vo) =621+ X Oxi + X OXiX; + €.

i

I<i<j<m

Let the variance-covariance matrix of the two responses be ¥ and its inverse be as in Example 1. The uniform factorial2™-
design & assigns equal weight 2™ to each of the 2™ extreme points (+ 1, + 1, ..., + 1). It can be shown that & is R;-optimal
design for L=1 and L = co. We next verify its optimality by Theorem 1’ and Theorem 2.

Denote g,(x) = (1,X1,....%n)" and g,(X) = (X1X2, ..., Xm_1Xm)' . Then

gl 0 0
F ("):< 0 gl g§(x>>'
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The information matrix of &; and its inverse are given by
M 271®1m+l 0 M- 2QIm 1 0
(Gv) = 0 sy )’ (Gv) = 0 Ll |’
where [, denotes the k x k identity matrix. It follows that

1181281 (2) 01281(2)81(2) )

_ -1 Ty
V@t =FaM CF @ = <olzg¥(z)g1(Z) 0281212 + 5 85282

This gives

2 m m 1
hz, &y)= T1 Vi(z éy) =on (1 + X le> {022 (1 + X sz> += X ZIZZJZ:|
i=1 i=1 i=1 0" 1<i<j<m

Thus, for L=1 we have

2 _
45 +34m 4+ 5m +U“(m m)(ll m 2)

W1(§u)=/gh(z>§*) du(z) = 611022 5 o2 g0+ 54 )
and
V28128l (2) 0 0
FT TF
(H Vi(z, :U)> 3 % - 0 Vg 2gl@ Vigi(2gh@
=1 e 0 Vig@gl@ V11820852
Therefore,
2 F'(2)eie!F(2) B 00
Q= [ 11 Viz.co y F@eet@, o B o]
z\i=1 =1 Viz &)
0 0 B
where
(m+3)a22+ e 22 0
B, = )
1 0 ((szg)m +5m2;r()3:;;8)> In B
and
5 @t don 0 g (5m+ 230
D= 0 (szg)gzz Im 3 = T (m2—m)/2-

It follows that

FOM ™ (0)Q1(Ep)M ™" (Ep)F" (%)
gl(x)(a2,B1 + 02,B2)g (%) gl (x)(c11012B1 + 612022B2)g1(X)

£1(0(011012B1 + 0120228810 £10) (01,1 + 03,B2)810) + () Z30Bago(0)

and thus

tr{ M~ E)F 0z FeM™ G Qi G }
= o“g?(x)(a%lBl + 02,B2) g1 (%) + 26'%g] (X)(11012B1 + 612622B2)g; (X)

1
a22g1(x)(0%,B1 + 03,B2) 81 (X) + zzgz(x)BBgz(x)

=gT(X)(c11B1 + 522B2)g1 (%) + ﬁgz(X)Bz,gz(x)
_ 2(5m+9)0'110'22 (5m2 +3m—8)0'1] meos
= < 45 T 27002 RIS
(5m + 23)a14 2.2, 2Am+ o110y | (MP—m)oy;
3502 2 5% 3 18522
2(5m + 9)0’11022 (sz + 3m—8)()'11
S( 45 T 27002 m
(5m + 23)51; M2—m L 2m+ 31102 (m?—m)o1;
1354522 2 3 18522

1961
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-2 011022(45+34m+5m2)+(m27m)(5m+23)a“
- 45 2700522
=2y1(u).

From the above, it is clear that ¢;(x,&,) is nonnegative for any xe[—1,1]", and attains its maximum r=2 at
xe{(+1, +1,..., + 1)}, the support points of &;. It follows from Theorem 1’ that the design & is R;-optimal over the class

=

For the case L = co, the answering set corresponding to & is

Agy) = {ZGZ

I1 Vitz.&0) = sup TT V,»,»(zc:w} ={(+1. +1,... £ D}

Take the probability measure x* = &;, we have that both V11 (z, &y) = e]V(z, &y)er and Vo (z, &y) = €5V (z, &)e, are constants on
A(fu), i.e.,

m?—m
V@) =onm+1), V@ ly) =onm+1) +——-.

Straightforward calculation gives

T G 0 0
/ F@eeir@ s o ¢ o],
Acy Vi@ éu) 0 0 G

where
Ci=Vitlmi, Co=Vxlmin, C3= Vizll(m2—m)/2~
It follows that

2 FT(z)e;el F
Poo(X, éu)=tr{21F(x)M‘l(5U) (/Z X F @eieiF2)

du*(z) | M~ 1(&)FT
= Viz &y ,u(Z)) (€u) (X)}

1
=g](*)(011C1 + 022C2)g1 (%) + ﬁgg(X)ng(X)
1 N[ & 2 1 2.2
= (011V11 +022V22) Txitl]+—5Vyh XXX
i=1 g 1<i<j<m

=2

s

_ _ _ym?—m
S(UnVn] + 022szl>(m D)+ Vo S

where the equality occurs at any support points x=(+ 1, + 1, ..., + 1). Therefore, the design & is R..-optimal over the class
Z by Theorem 2.

Example 3. Parallel linear model with two responses. In this example we determine the R;- and R..-optimal designs for the
following parallel linear model:

{JH(X) =001 + 01X1 + €1,

Y2(X) =002 + 01X2 + €2, (15)

where x=(x;,X)eX =Z=[-1,11>. The variance-covariance matrix X of the two responses is assumed to be
X =(1-p)y + pJ,, where I, is the 2 x 2 identity matrix and J, is the 2 x 2 matrix of one's.

In this model, r=2, p=3 and
10 X1 T
F(x)= 01 %) 0= (601, 002,61)

The D-optimal design for estimating ¢ in this model obtained by Huang et al. (2006) is

=1L 1,-D .
5;:{ 12 1 } if p> 0, (16)

-1L.-1H 1.1 .
5’5:{ 172 1/2} if p<0. 17)

Now by Theorem 3, we can verify that this D-optimal design is also R;- and R..-optimal for model (15). Only the case p > 0 is
shown below. The case p <0 can be treated in the similar way.

and
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First, find the set R3 defined in (9). Let H(x) = (Hj)3,3 = F' ()=~ /2K for x = (x1,X;)eX =[—1,1]? and KeR**> with ||K|| = 1.
Letting

S DS DS B B
N e AN eV e R

and a straightforward calculation gives
aKi1 +bKay  aKys +bKyy  aKys + bKos
H)= | K11 +aKyr bKip +aKay  bKis + aKas

H31(x) H3a(x) Hi3(x)

>

where

Hs1(x) = (ax1 + bx2)K11 + (bx1 + ax)Ka1 =X Hi1 + X2Ha,
H3y(x) = (ax1 + bx2)K1z + (bxy + axz)Kap =X Hiz + X2 Hao,
H33(x) = (ax7 + bx2)K13 + (bx1 + axz)Ka3 = X1Hi3 + X2Has.

Note from

Hi1 Hiz Hiz 12k
Hy; Hy Hos

and [|K||? = tr(KTK) = 1, we have
2 3 3
iZ1j=1 is1

For p > 0, it is not difficult to obtain

R3 = {(Hij)3><3

2 3 3
> X Hi2j+2/) > HyjHy; <1, |H3j| <|Hqj—Hy;l|, f=1,2,3},
i=1j=1 j=1

and the boundary of R3 is obtained from the points x=(—1,1) and x = (1, —1). Therefore, the support points (-1, 1) and
(1,-1) of &; are also the support points of the Ry-optimal design in the case p > 0. We take

5 ~1/2 6
= Vi(z, &) d ==,
! { zi1:_11 () ﬂ(z)} 7—p
o [T=p. (116
A(f[))— 3 dlag<2,2>6>:
and
; 23 2pV/3 0
D=yM ' (&)A(E) = ——| 20v3 2V3 0

2V7=r\ 0 V2(1-p)

Corresponding to the two support points (1,—1) and (—1,1), we take
Ki=x="2F1,-1)D
1 V3W/T+p+V/1-p) VB/T+p—/1-p) V2/1-p
T 2T\ V3T +p—/T-p) BWp+1+/1-p) —V2/1-p )

and
Ky == Y2F(-1,1)D
1 V3W/T+p+/1-p) B 1+p—/1-p) —V2/1—p
T2V7Tp \ V3T +p—/1-p) BGp+1+/1-p) V2 /1-p |
It can be verified that conditions (i), (ii) and (iii) of Theorem 3 are satisfied. Therefore, the design &} for p >0 is also Ry-

optimal for model (15).
Similarly, for L = oo, it is easy to verify that & for p > 0 satisfies the conditions in Theorem 3 by taking

., [A-D 1) @D (-1,-1)
=Y 174 14  1/4 14 [
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and y =1,
10 0 1 p 0
Ag)=—2_lo1 o p=—1_|r1 0 |
3—/) 00 3—/) 00 ﬁ(;—p)

Vo)
. <1+ VI VItV ﬁm>
23 \VTEVIT VTV VAV

1

T+p+V/1—p V1+p-/1-p V2 /1
<«/1+p 1—p V1+p+/1—p V2 /1-p >

Therefore, the design &} for p > 0 is also Ry-optimal for model (15).

5. Concluding remarks

The new optimality for designing multiresponse experiments are studied in this paper. The R;-optimal design minimizes
the volume of the r-dimensional rectangular confidence region for predicting the r responses in the multiresponse linear
regression model. We established a general equivalence theorem and a geometrical characterization of the Rj-optimal
design, which are useful for obtaining or verifying the R;-optimality of designs. The analytic solutions in three examples are
provided which are found by the general equivalence theorem and the geometrical characterization of the Rj-optimal
designs. It is to be noted that the R;-optimal design must be calculated numerically in most cases. In general, the R;-optimal
design may highly depend on the covariance matrix of the responses.

Note also that the D-optimal design minimizes the volume of the ellipsoid of concentration for the vector of unknown
parameters, and the I;-optimal design minimizes the volume of the confidence ellipsoid of the r-dimensional response
vector. The loss of efficiency might be moderate or substantial, if a rectangular prediction confidence region is constructed
on the basis of a D-optimal design or an I;-optimal design, or a prediction confidence ellipsoid is constructed on the basis of
a D-optimal design or an R;-optimal design. However, in some particular multiresponse models, some of the D-, Rj- and I}~
optimal designs coincide.

Appendix A
A.1. Proof of Lemma 2

(i) The convexity of y; follows immediately from Lemma 1 and Minkowski's inequality.
(ii) Let & &€=, ae(0,1) and &, = (1—a)é + aé. We have

i=1 =
i#i

% ‘li Vii(z,&,) = _z (f[ (2. €2) )eZF(z)M*(5(»(M(f)—M(E))M*(@)FT(z)ei.

For all Le[1, 00),

z . d
AV/L (‘§> ‘f) — lim %

a—0"

=y © /Z (ﬁl vl-%‘){i] (ﬁ J,)eTFM ©MEO-M@)M " (OF'e }

r eTEM 1 EMEM ' (&)F e;
—rn@-vi ™ [ ( 1 L) y an ORE O Ay,

i=1

=1y &)~y HE) M (EOMEM " (E)QL(&)).

(iii) The linearity of 4,, (&, &) in & can be obtained by noting that M(¢) = [,M(5x) d&(x), and the proof is complete.
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A.2. Proof of Theorem 3

We present the proof for the case of Le[1,00), while the case of L=oco can be treated similarly. For Le[1,00) let
&=[xy,W,]_ €= denote an R-optimal design. By Theorem 1’ we have

M OF 0z FOM ™ (9Qu©) _,

PLx,9)= (18)
" szir: 1V1'Li(z> &) du(2)
for all xex, and
-1 T -1 -1
o) — T OF ) TFO)M Q@) _ o)

LTI Viz, &) duz)

forallv=1,...,s. Let

- ~1/2
y: </ Il Viz.o) df‘(Z)) and D=yM (A
Zi=1
It follows that
AO=MED= 3 wF o)z K,
v=1

where K, = > 12F(x,)D, v=1, ...,s. This proves the representation given in (i).
Eq. (19) and the representation of yA(¢) yield
Ky |12 = tr{KiKv}
- tr{DTFT(xV)Z’lF(xV)D}
= {2AQO" M OF ()= )M ©A®) }

= tr{ M OF ()= Fx )M (9AGAQ) |

_hxd)
r

s

and shows condition (iii).
From the inequality (18) and the Cauchy-Schwarz inequality we get

r{DTFT (x)=~12K})? <tr{K"K}tr(D"F' (x)=~1/2x~1/2F(x)D} <1

for all xeXx, whenever the matrix K satisfies the equation ||K|| = 1. Moreover,
S
tr{DTyA(f)} - tr{DT 3 WVFT(XV)2‘1F(XV)D}
v=1

= i wy tr{DTFT(xV)Z*1F(x‘,)D}

v=1

tr{2AOM ™ OF ()= )M~ (9A© |

i Wy
v=1
2w tr{2M 7 OF ()= Fex) M OAGAG) }
— i Wvd’L():'v,f)

v=1

S
> wy=1.

v=1

Therefore, yA(¢) is a boundary point of R, with supporting hyperplane D which proves (ii).

To prove sufficiency let D denote a supporting hyperplane to the convex hull R, at the boundary point yA(¢). Thus we
have for all xeXx and K satisfying ||K|| =1

[tr{DTFT ()=~ 12K} <1. (20)

Especially, by taking K :Z*‘/ZF(X)D/\/tr{DTFT(x)Z*‘F(x)D}, (20) implies
tr{D'FT(x)=~'F(x)D} <1 for all xex. (21)
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Because D is a supporting hyperplane to R, at the boundary point yA(¢) we obtain from (20) (used at x=x,) and the
representation (i) that

S S
l=tr{DTyA(§)}=tr{DT Y WVFT(xV)Z‘l/zKV}: 3wy tr{DTFT (x,) 712K ) <1
v=1

v=1

and this implies tr{D"F'(x,)>~1/2K,} =1, v=1,...,s. By an application of the Cauchy-Schwarz inequality we now get for
v=1,...,s

1= (tr{DTFT(x,)= 12K, })? <tr{KTK,}tr{D"F (x,)=~'F(x,)D} <1, (22)

where the last inequality results from (21) and condition (iii). Therefore we have K, =21,2"'/2F(x,)D for some A,eR,
v=1,...,s. From the normalizing conditions on the K, in (iii) we thus obtain

1=tr{KTK,} = 22 tr{DTFT ()= 'F(x,)D} =2, v=1,....s. (23)
On the other hand, we have from the property that yA(¢) is a boundary point of R, with supporting hyperplane D

1=tr(D'/A@} = 3 wy tr{D'F (x,)= 12K,
v=1

S S
= Y Wy triDTFT ()= 1Ky} = Y wydy.
v=1

v=1

Eq. (23) and w, >0 with ¥$_,w, =1 now show that A, =1, which implies K, =>"12F(x,)D, v=1,...,s. From this
representation we finally obtain

HAO= 3 WF %)= 2K, = 3 wF (6)= F(x,)D = M(9)D.
v=1 v=1
It follows that

1= tr{DTyA(g)}
=7 u{M ' ©A0AQ }

LM 00,0}

r r el -1 T ;
— é/ <H Vfri(z’ 5)) Y wdﬂ(@
z
2

i=1 i=h Vii(z, &)
_r 1w . eV e
T /Z(iHI Vi §)> i§1 Vii(z, &) du@

-7 (f{ v,ﬁ-(z,a> du(z),
Z\i=1

and the inequality (21) yields
(M~ ©F (0= TFM " (5)Qu(&)}
ST Viz. ) du@)
_ rtriM_ @F 0= FoM T (OAGA®")
JITE_ 1 Vidz. &) du(2)
_ rtrA@ M OF 0T FM T (©A©)
JITE_ 1 Viz. &) du(2)
=rtr{D"F'(x)> 'F(x)D} <r

¢]_(X, 5) =

for all xex. By an application of Theorem 1’ it now follows that the design ¢ is Rj-optimal, which completes the proof of
Theorem 3.
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