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a b s t r a c t

Latin squares have been widely used to design an experiment where the blocking factors
and treatment factors have the same number of levels. For some experiments, the size of
blocks may be less than the number of treatments. Since not all the treatments can be
compared within each block, a new class of designs called balanced incomplete Latin
squares (BILS) is proposed. A general method for constructing BILS is proposed by an
intelligent selection of certain cells from a complete Latin square via orthogonal Latin
squares. The optimality of the proposed BILS designs is investigated. It is shown that the
proposed transversal BILS designs are asymptotically optimal for all the row, column and
treatment effects. The relative efficiencies of a delete-one-transversal BILS design with
respect to the optimal designs for both cases are also derived; it is shown to be close to
100%, as the order becomes large.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

A Latin square of order k, denoted by LS(k), is a k� k square matrix of k symbols, say 1,2,…,k, such that each symbol
appears only once in each row and each column. Two Latin squares of the same order are said to be orthogonal, if these two
squares when superimposed have the property that each pair of symbols appears exactly once. For detailed constructions of
Latin squares and orthogonal Latin squares (OLS) refer to Denés and Keedwell (1974, 1991).

Latin squares of order k have been widely applied to design an experiment in which three factors each at k levels are
investigated by randomly assigning the k levels of the three factors to the rows, columns and the symbols of the squares,
respectively. When both row and column factors are treated as two blocking factors, then one treatment factor
corresponding to the symbols of the square can effectively be studied by removing the inter-row and inter-column
variations. For detailed discussion refer to, for example, Wu and Hamada (2000). It should be noted that such a design
supposes that each block's size is exactly equal to the number of treatments, i.e., a complete block design is adopted for each
blocking factor.

For some experiments, however, the size of blocks may be less than the number of treatments. Since not all the
treatments can be compared within each block, a new class of incomplete Latin square (ILS) has to be adopted. An
incomplete Latin square of order k and block size r ðrokÞ, denoted by ILSðk; rÞ, is an incomplete Latin square of order k in
which each row and each column has r non-empty cells. If an ILSðk; rÞ satisfies the condition that each symbol appears
exactly r times in the whole square, then the ILSðk; rÞ is called a balanced incomplete Latin square, denoted by BILSðk; rÞ.
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For example, Table 1 presents an example of Latin square of order six, LSð6Þ. If the six cells in boldface are removed, then the
rest of the cells form a BILSð6;5Þ.

The rest of the paper is organized as follows. Section 2 introduces a general method for constructing all kinds of BILS by
an intelligent selection of certain cells from a complete Latin square via orthogonal Latin squares. Section 3 gives the
application of a BILS design on a practical experiment, which works as nearly equally well as the complete Latin square
design. Section 4 reviews the optimality criteria based on the information matrices for the effects of interest in a linear
model, and then investigates the optimality of a BILSðk; k−1Þ design among all designs corresponding to any discrete
distribution on a complete Latin square. It is shown that for a given LS(k), the uniform design on the k2 cells is optimal for all
the row, column and treatment effects. The relative efficiencies of a BILSðk; k−1Þ design with respect to the foregoing optimal
design for both cases are derived to be close to 100% as the order k becomes large. Section 5 concludes this paper with some
remarks.
2. Construction of BILS

A natural way of constructing a BILS is to select certain cells from a complete Latin square such that the remaining cells
satisfy the condition of balanced occurrence of symbols. It can be done by removing one or more “transversal”. For a given LS
(k), a transversal is a set of k cells such that only one cell is allowed in each row and in each column, and furthermore, each
symbol appears in each cell exactly once. It is known that for two orthogonal Latin squares of the same order k, any k cells of
one square corresponding to the same symbol of the other square form a transversal. Bose et al. (1960) showed that there
always exist at least two orthogonal Latin squares for any order k≥4 except for k¼6. Thus the following conclusion can be
obtained.

Construction method. For any order k≥4 (except for k¼6), a BILSðk; rÞ can be constructed by removing k−r disjoint transversals
from a LS(k) via a pair of orthogonal Latin squares for any 3≤r≤k−1.

Note that if ro3, the BILSðk; rÞ design does not offer enough degrees of freedom for data analysis, so we will focus on the
cases r≥3.

Example 1. For k¼4, the two orthogonal LS(4) are given in Table 2(a), denoted by L1 and L2, respectively. There are four
disjoint transversals in L1 corresponding to symbols 1, 2, 3, and 4 in L2, respectively. If we remove the transversal
corresponding to 1, i.e., the cells with symbols in boldface, a BILSð4;3Þ is obtained, as displayed in Table 2(b).

For the BILSð4;3Þ in Example 1, each pair of symbols occurs two times in the same row or the same column. Actually, the
following result can be verified.

Proposition 1. For every BILSðk; k−1Þ, the number of times each pair of symbols occur in the same row (or the same column) is
k−2.
Table 1
LS(6) and BILS(6,5).

Table 2
Two orthogonal LS(4) and a BILS(4,3).
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3. Example

Consider the wear experiment (Wu and Hamada, 2000, p. 70) for testing the abrasion resistance of rubber-covered fabric
in a Martindale wear tester. The original design is the complete Latin square L1 in Table 2(a), where symbols 1, 2, 3, 4
represent the four types of material A, B, C and D, respectively. The response is the loss in weight in 0.1 milligrams (mgm)
over a standard period of time. Two blocking variables “application” and “position” are assigned to the rows and columns,
respectively. The weight loss data is given in Table 3. Now we consider the BILSð4;3Þ design obtained in Example 1, i.e., the
data along the diagonal in Table 3(a) are removed, as shown in Table 3(b).

The underlying linear model for a BILSðk; rÞ design is

yijl ¼ μþ αi þ βj þ τl þ ϵijl; ð1Þ

where i; j take values in f1;2;…; kg and l is the symbol in the (i,j)-th cell of the BILSðk; rÞ, μ is the overall mean, αi is the ith row
effect, βj is the jth column effect, τl is the effect of the lth treatment, and the errors ϵijl are independent Nð0; s2Þ. Note that the
triplet ði; j; lÞ takes on only the kr values dictated by the particular BILSðk; rÞ chosen for the experiment. For the estimability of
all effects, three zero-sum constraints are as usual imposed on the row, column and treatment effects, i.e., α′1k ¼ 0, β′1k ¼ 0,
τ′1k ¼ 0, where 1k is the k-dimensional vector of ones, α¼ ðα1;…; αkÞ′, β¼ ðβ1;…; βkÞ′ and τ ¼ ðτ1;…; τkÞ′.

Test first the null hypothesis of no treatment effect difference, i.e., H0 : τ1 ¼⋯¼ τk. The linear model under the null
hypothesis H0 is reduced to

yijl ¼ μþ αi þ βj þ ϵijl: ð2Þ

By using the extra sum of squares principle, the ANOVA table for the BILSð4;3Þ wear experiment is obtained, as shown in Table 4.
Therefore, we conclude that at the α¼ 5% level the treatment factor (material) has the most significance as indicated by a
p-value of 0.02179. This is consistent with the result of the complete LS(4) design in Section 2.6 of Wu and Hamada (2000).

When such an H0 is rejected, multiple comparisons of the k treatments should be performed. For a BILSðk; k−1Þ design
based on a given LS(k), denote by S the set of kðk−1Þ triplets ði; j; lÞ's dictated by the BILSðk; k−1Þ design. Note that l is the
symbol in the (i,j)-th cell of LS(k). Let S be the set of the remaining k triplets which are deleted from the LS(k). For l¼ 1;…; k,
let ðil; jlÞ be the cell containing symbol l in S. Under model (1), it is known that the overall sum of squares of errors is
∑ði;j;lÞ∈Sðyijl−μ−αi−βj−τlÞ2. Differentiating it with respect to μ, αil , βjl and τl, and equating to zero, we obtain

kðk−1Þμ¼ y���ðk−1Þμþ ðk−1Þαil−βjl−τl ¼ yil ��;

ðk−1Þμþ ðk−1Þβjl−αil−τl ¼ y�jl �ðk−1Þμþ ðk−1Þτl−αil−βjl ¼ y��l;

where y��� is the sum of all the kðk−1Þ y-values, yil�� is the sum of the k−1 y-values in the ilth row, y�jl � is the sum of the k−1
y-values in the jlth column, and y��l is the sum of the k−1 y-values for the lth treatment. These equations lead to the least
squares estimation of τl, that is

τ̂ l ¼ ½kðk−3Þ�−1½ðk−2Þy��l þ yil �� þ y�jl �−y����:
Table 3
Weight loss data for LS(4) and BILS(4,3).

Table 4
ANOVA table for the BILSð4;3Þ wear experiment.

Source Degrees of freedom Sum of squares Mean squares F value P value (4F)

Application 3 278.2 92.75 3.66 0.22192
Position 3 2243.5 747.83 29.52 0.03294
Material 3 3424.5 1141.50 45.06 0.02179
Residual 2 50.7 25.33
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For any two different treatments l1 and l2 ðl1; l2 ¼ 1;…; kÞ, since τ̂ l1−τ̂ l2 is a linear combination of responses yijl's, it follows
normal distribution with mean τl1−τl2 and variance 2ðk−2Þ½kðk−3Þ�−1s2. Thus the t statistics for testing τl1 ¼ τl2 has the form

tl1 l2 ¼
τ̂ l2−τ̂ l1

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk−2Þ½kðk−3Þ�−1

q ;

where ŝ2 is the residual mean square. It is known that ðk2−4kþ 2Þðŝ=sÞ2 follows a χ2 distribution with k2−4kþ 2 degrees of
freedom and is independent of τ̂ l2−τ̂ l1 . So under H0 : τ1 ¼⋯¼ τk, each tl1 l2 has a t distribution with k2−4kþ 2 degrees of
freedom. The Tukey multiple comparison method identifies treatments l1 and l2 as different if jtl1 l2 j4qk;k2−4kþ2;α=

ffiffiffi
2

p
, where

qk;k2−4kþ2;α is the upper α quantile of the Studentized range distribution with parameters k and k2−4kþ 2. The simultaneous

confidence intervals for τl2−τl1 are given by τ̂ l2−τ̂ l1 7qk;k2−4kþ2;αŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−2Þ½kðk−3Þ�−1

q
for all ðl1; l2Þ pairs.

Returning to our experiment, the regression analysis leads to the estimates

τ̂1 ¼ 32:25; τ̂2 ¼−23:25; τ̂3 ¼ 2:25; τ̂4 ¼ −11:25;

and ŝ2 ¼ 25:33. The corresponding multiple comparison t statistics are given in Table 5. By comparing with the 0.05 critical
value q4;2;0:05=

ffiffiffi
2

p
¼ 6:93 for the Tukey method, we conclude that at the 0.05 level material A wears more than B and D. If

comparing with the 0.1 critical value q4;2;0:1=
ffiffiffi
2

p
¼ 4:79, we can identify that material A wears more than B, C and D, and C

wears more than B, which is fully consistent with the result of the complete LS(4) design in Section 2.6 of Wu and Hamada
(2000), even though only 12 out of 16 experiments were conducted.
4. Optimality of BILSðk;k−1Þ designs

Consider the linear model (1) for a given complete Latin square LS(k), denoted by L, where the triplet ði; j; lÞ takes on the
k2 values dictated by L. Let X ¼ ðx1; x2;…; xk2 Þ′ be the model matrix of order k2 � ð3kþ 1Þ.

An experimental design D with the weight matrix W ¼ ðwijÞk�k is a discrete distribution of the numbers of experimental
replications on the k2 cells of L, wherewij is the design weight on the (i,j)-th cell of L, 0≤wij≤1 and∑k

i;j ¼ 1wij ¼ 1. Denote by Ω
the space of all such designs. The moment matrix of a design D is defined as follows (Pukelsheim, 1993):

MðDÞ ¼ ∑
k

i;j ¼ 1
wijxði−1Þkþjxði−1Þkþj′¼

1 r′ s′ t′
r Δr W W1

s W ′ Δs W2

t W ′1 W ′2 Δt

2
66664

3
77775; ð3Þ

where W1 is a k� k matrix whose (i,j)-th entry is the weight on the cell of L which lies in the ith row and contains symbol j,
W2 is a k� k matrix whose (i,j)-th entry is the weight on the cell of L which lies in the ith column and contains symbol j,
r ¼W1k ¼W11k, s¼W ′1k ¼W21k, t ¼W ′11k ¼W ′21k, and Δr , Δs and Δt are diagonal matrices with the elements of the
vectors r, s and t, respectively, as the diagonal entries. Here, our interest is in the optimal estimation of the treatment effects
τ and that of all row, column and treatment effects θ¼ ðα′; β′; τ′Þ′, respectively.

Let CðDÞ be the information matrix of a design D under model (1) and ϕðCðDÞÞ be a real-valued function of CðDÞ. A design
D1 is said to be ϕ�optimal in a design space D if ϕðCðD1ÞÞ ¼maxD∈DϕðCðDÞÞ. Let C1 and C2 be two information matrices
corresponding to any two designs. Throughout we only consider the optimality functions ϕð�Þ which satisfy the following
four conditions:
(i)
Table
Mult

A v

−11
isotonic to the Loewner ordering: if C1≥C2, then ϕðC1Þ≥ϕðC2Þ;

(ii)
 concavity: ϕðð1−γÞC1 þ γC2Þ≥ð1−γÞϕðC1Þ þ γϕðC2Þ for any scalar γ∈ð0;1Þ;

(iii)
 positive homogeneity: ϕðδC1Þ ¼ δϕðC1Þ for any scalar δ≥0;

(iv)
 permutation invariant: ϕðP′C1PÞ ¼ ϕðC1Þ for any permutation matrix P.
A design D1 is said to be universally optimal in a design space D if it is ϕ�optimal in the space D for all functions ϕð�Þ which
satisfy the above four conditions (Kiefer, 1975).
5
iple comparison t statistics for the BILS(4,3) wear experiment.

s. B A vs. C A vs. D B vs. C B vs. D C vs. D

.03 −5.96 −8.64 5.07 2.38 −2.68
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4.1. Optimality of BILSðk;k−1Þ designs for the effects τ

Consider the optimality of a BILSðk; k−1Þ design in Ω for the estimation of the effects τ. Following Bailey and Druilhet
(2004) and Ai et al. (2009), for any design D∈Ω, the information matrix for τ is derived from the moment matrix (3) as
follows:

CτðDÞ ¼Δt−ðt;W ′1;W ′2Þ

0
B@

1 r′ s′
r Δr W
s W ′ Δs

1
CA

− t′
W1

W2

0
B@

1
CA: ð4Þ

Here for any matrix A, denote A− as a generalized inverse of A such that AA−A¼ A. It can be checked that CτðDÞ in (4) does
not depend on the choice of the generalized inverse.

Without loss of generality, suppose that r ¼ ðr1;…; rl;0;…;0Þ′, where r1;…; rl are l positive elements of r (l≤k).
Let Δ1 ¼ diagðr1;…; rlÞ. Note that Δr ¼ diagðΔ1;0;…;0Þ and

Δ−
r ¼ Δ−1

1 Δ2

Δ3 Δ4

 !
;

where Δ2, Δ3 and Δ4 may be any three matrices with appropriate orders. It can be checked thatW ′Δ−
r r¼ s, ΔrΔ−

r W ¼W and
W ′Δ−

rΔr ¼W ′. Let Q ¼Δs−W ′Δ−
r W and 0k be the k-dimensional vector of zeros. It can be verified that the matrix given

below

0 0′k 0′k
0k Δ−

r þ Δ−
r WQ−W ′Δ−

r −Δ−
r WQ−

0k −Q−W ′Δ−
r Q−

0
B@

1
CA ð5Þ

is indeed a generalized inverse in (4). By choosing the specific generalized inverse in (5), CτðDÞ can be simplified as

CτðDÞ ¼Δt−W ′1Δ−
r W1−ðW ′2−W ′1Δ−

r WÞQ−ðW2−W ′Δ−
r W1Þ: ð6Þ

For a given LS(k), denote by Dn the design with the weight matrix W ¼ k−21k1′k. Note that for the design Dn,
W ¼W1 ¼W2 and Δr ¼Δs ¼Δt ¼ k−1Ik, where Ik is the identity matrix of order k. It can easily be verified that
CτðDnÞ ¼ k−1Hk, where Hk ¼ Ik−k

−11k1′k. It should be mentioned that the information matrix of design Dn is independent
of the choice of the original LS(k). Thus the following result, whose proof is given in the Appendix, is obtained.

Theorem 1. For any design D based on a given LS(k), ϕðCτðDÞÞ≤k−1ϕðHkÞ.
Theorem 1 shows that design Dn is universally optimal in Ω for the effects τ. Note that a BILSðk; k−1Þ design based on a

given LS(k) is typically a design on the LS(k) with the weight 0 on each of the k deleted cells and the weight ½kðk−1Þ�−1 on
each of the remaining kðk−1Þ cells. The following lemma gives the information matrix of a BILSðk; k−1Þ design. Its proof is
given in the Appendix.

Lemma 1. For any ILSðk; k−1Þ design D based on a given LS(k), the entries of CτðDÞ have the following forms

CτðDÞði; jÞ ¼
k

k−2
titj−

2½ðk−1Þti þ ðk−1Þtj−1�
ðk−1Þðk−2Þ for i≠j;

k
k−2

t2i þ
k−4
k−2

ti otherwise;

8>>><
>>>:

ð7Þ

where ti is the ith element of t. In particular, the information matrix for a BILSðk; k−1Þ design has the form ðk−3Þ=½ðk−1Þðk−2Þ�Hk.

The asymptotic optimality of a BILSðk; k−1Þ design can be revealed by its relative efficiency with respect to the optimal
design Dn under the optimality function ϕð�Þ,

Eff τðD;ϕÞ ¼
ϕðCτðDÞÞ
ϕðCτðDnÞÞ : ð8Þ

Based on Lemma 1, the following result is obtained.

Theorem 2. For any BILSðk; k−1Þ design D based on a given LS(k) and for any optimality function ϕð�Þ, we have

Eff τðD;ϕÞ ¼ 1−
2

ðk−1Þðk−2Þ : ð9Þ

Theorem 2 shows that for any BILSðk; k−1Þ design D, its relative efficiency Eff τðD;ϕÞ quickly approaches 100% as k becomes
large. Thus, a BILSðk; k−1Þ design is asymptotically universally optimal for estimating the effects τ in the space Ω.
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4.2. Optimality of BILSðk;k−1Þ designs for the effects θ

We next consider the optimality of a BILSðk; k−1Þ design in Ω for the estimation of all the row, column and treatment
effects θ. For any design D based on a given LS(k), the information matrix for θ under model (1) can be similarly derived as

CθðDÞ ¼
Δr W W1

W ′ Δs W2

W ′1 W ′2 Δt

0
B@

1
CA−

r
s
t

0
B@

1
CAðr′; s′; t′Þ: ð10Þ

For the discrete uniform design Dn based on a given LS(k) introduced in the previous subsection, we can easily obtain that
CθðDnÞ ¼ k−1I3⊗Hk, where ⊗ denotes the Kronecker product. Similar to Theorem 1, the following result can also be obtained
and its proof is given in the Appendix.

Theorem 3. For any design D based on a given LS(k), ϕðCθðDÞÞ≤k−1ϕðI3⊗HkÞ.
For any BILSðk; k−1Þ design D based on a given LS(k), since the function ϕðCθðDÞÞ is invariant under any permutation

operation of CθðDÞ; without loss of generality, we can assume that the (i,i)-th cell of the LS(k) contains symbol i for i¼1,…,k,
and the deleted k cells of the BILSðk; k−1Þ design D are exactly the k main diagonal cells. Then CθðDÞ has the form

CθðDÞ ¼ ðk−1Þ−1I3⊗Hk−½kðk−1Þ�−1131′3⊗Hk: ð11Þ
Unlike the case of optimality for the effects τ, the relative efficiency of a BILSðk; k−1Þ design D with respect to the optimal
design Dn is dependent on the choice of optimality function ϕð�Þ. Some specific classes of optimality functions ϕð�Þ have to be
defined in order to calculate the relative efficiency of a design D.

For any design D based on a given LS(k), it is easy to see that CθðDÞð1′k;0′k;0′kÞ′¼ 0, CθðDÞð0′k;1′k;0′kÞ′¼ 0, and
CθðDÞð0′k;0′k;1′kÞ′¼ 0. Hence the first three eigenvalues of CθðDÞ are zero. Let λ4≤⋯≤λ3k be the other eigenvalues of CθðDÞ.
Then the function ϕpð�Þ on the rank deficient matrix CθðDÞ can be defined as follow (see, Pukelsheim, 1993):

ϕpðCθðDÞÞ ¼

max
4≤j≤3k

λj for p¼∞;

min
4≤j≤3k

λj for p¼−∞;

 
∏

4≤j≤3k
λj

!1=ð3k−3Þ

for p¼ 0;

"
ð3k−3Þ−1 ∑

4≤j≤3k
λpj

#1=p
otherwise:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð12Þ

It is known that ϕpð�Þ cover the commonly used optimality functions as special cases. For example, ϕ0�, ϕ�1�, ϕ−∞� and
ϕ1�optimality are simply the D-, A-, E- and T-optimality. The universal optimality in Kiefer's (1975) sense must be
ϕp�optimality for p≤0, but may not for p40 (Ai and Hickernell, 2009). Since the function ϕpð�Þ can be used as an optimality
function only when p≤1, we need to only consider the p≤1 cases. As for the relative efficiency of a BILSðk; k−1Þ design based
on a given LS(k) under the above optimality functions ϕpð�Þ, we can obtain the following. The proof of the following theorem
is also given in the Appendix.

Theorem 4. For any BILSðk; k−1Þ design D based on a given LS(k), its relative efficiency in (8) under the optimality functions ϕpð�Þ
ðp≤1Þ has the following forms:

EffθðD;ϕpÞ ¼

k−3
k−1

for p¼−∞; 
k−3
k−1

!1=3 
k

k−1

!2=3

for p¼ 0;

k
k−1

"
2
3

þ 1
3

�
k−3
k

�p
#1=p

otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

Theorem 4 shows that for any BILSðk; k−1Þ design D based on a given LS(k), its relative efficiency EffθðD;ϕpÞ quickly goes to
100% as k becomes large. Thus a BILSðk; k−1Þ design is asymptotically ϕp�optimal for estimating the effects θ in the space Ω.

5. Concluding remarks

In this paper we introduce a new class of designs, called balanced incomplete Latin square (BILS) designs, to deal with the
experiments with two blocking and one treatment variables where the size of both blocks may be less than the number of
treatments. A general construction method of BILS designs is proposed via orthogonal Latin squares. An application shows



Table 6
BILS(6,3) and BILS(6,4).
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that BILS designs work well on practical experiments. Furthermore, the asymptotic optimality of BILS designs of block size k
−1 is derived. The optimality issue of the BILS designs with other block sizes becomes much more complicated and is under
investigation.

Note that when k¼6, where there do not exist two orthogonal Latin squares, the foregoing construction method cannot
be used. Table 1 presents a Latin square with one transversal consisting of the six symbols in boldface and a BILSð6;5Þ can be
obtained by removing the transversal from the complete Latin square. For the block size r¼3 and 4, computer searching
gives BILSð6;3Þ and BILSð6;4Þ with good balance property, shown in Table 6.

It should be mentioned that the concept of “balance” in the BILS simply requires equal times of occurrence of each
treatment. But the “balance” in a balanced incomplete block design (BIBD) further demands the balance condition that each
pair of treatments is compared in the same number of blocks. The BILSðk; k−1Þ designs constructed in this paper satisfy all
the balance conditions such that the designs reduce to a BIBD when only one of the two blocking factors is considered. If we
redefine all BILS designs in this strict sense, the construction of this new kind of BILS designs becomes an issue of great
sparsity, since in this strict sense of balance, BILS designs do not exist for most parameters except for block size k−1.
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Appendix A. Proofs of all theorems and a lemma
Proof of Theorem 1. For any design D based on a given LS(k), W ′Δ−
r r¼W ′1k ¼ s and W ′1Δ−

r r¼W ′11k ¼ t, whether or not
the r has zero entries. Hence CτðDÞ1k ¼ 0.
Denote by Pk the set of all possible k� k permutation matrices. Let

CτðDÞ ¼ ðk!Þ−1 ∑
P∈Pk

P′CτðDÞP:

Because P′1CτðDÞP1 ¼ ðk!Þ−1∑P∈Pk
P′1P′CτðDÞPP1 ¼ CτðDÞ for any permutation matrix P1, CτðDÞ is completely symmetric, i.e.,

CτðDÞ ¼ aIk þ b1k1′k, where a and b are two scalars. Furthermore, since 1′kCτðDÞ1k ¼ 1′kCτðDÞ1k ¼ 0 and trðCτðDÞÞ ¼ trðCτðDÞÞ,
we can obtain that a¼ ðk−1Þ−1trðCτðDÞÞ, b¼−½kðk−1Þ�−1 trðCτðDÞÞ, and so CτðDÞ ¼ ðk−1Þ−1trðCτðDÞÞHk.
Now we are ready to prove that trðCτðDÞÞ≤1−k−1. By Lemma 3.12 of Pukelsheim (1993), it is known that

ðW ′2−W ′1Δ−
r WÞQ−ðW2−W ′Δ−

r W1Þ is nonnegative definite and hence its trace is not less than zero. Then we obtain that
trðCτðDÞÞ≤1−trðW ′1Δ−

r W1Þ ¼ 1−∑k
i ¼ 1;ri≠0

r−1i ∑k
j ¼ 1w

2
ij≤1−k

−1; where ri is the ith element of r.
Thus, by applying the properties of the function ϕð�Þ, we further have that k−1ϕðHkÞ≥ϕðCτðDÞÞ≥ðk!Þ−1∑P∈Pk

ϕðP′CτðDÞPÞ
¼ ϕðCτðDÞÞ. The proof of Theorem 1 is complete. □

Proof of Lemma 1. For an ILSðk; k−1Þ design D based on a given LS(k), the weight on each of the remaining kðk−1Þ cells is
½kðk−1Þ�−1. Hence Δr ¼Δs ¼ k−1Ik, W ′Δ−

r W ¼ ½kðk−1Þ2�−1½Ik þ ðk−2Þ1k1′k�, and Q ¼ ðk−2Þ=ðk−1Þ2Hk. Then the information
matrix CτðDÞ in (6) is given by

CτðDÞ ¼Δt−kW ′1W1−ðk−1Þ2ðk−2Þ−1ðW ′2W2

þk2W ′1WW ′W1−kW ′1WW2−kW ′2W ′W1Þ: ð13Þ

For any matrix A, let Aði; jÞ denote the (i,j)-th entry of A. Note that for bothW1 andW2, there is only one entry equal to 0 in
each row, and there are kðk−1Þtj entries equal to ½kðk−1Þ�−1 and k−kðk−1Þtj entries equal to 0 in the jth column. Hence, the
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(i,j)-entries of W ′1W1, W ′2W2 and W ′1W have the following expressions:

W ′1W1ði; jÞ ¼W ′2W2ði; jÞ ¼ k−1ðk−1Þ−2fðk−1Þti þ ½ðk−1Þtj−1�Ifi≠jgg;
W ′1Wði; jÞ ¼ k−2ðk−1Þ−2½kðk−1Þti−IfW2ðj;iÞ≠0g�;

where If�g is equal to 1 when the condition f�g holds, and 0 otherwise. Furthermore, the entries of W ′1WW2 and
W ′1WW ′W1 can be derived as

W ′1WW2ði; jÞ ¼ ∑
k

l ¼ 1
W ′1Wði; lÞ �W2ðl; jÞ

¼ k−1ðk−1Þ−1titj−k−2ðk−1Þ−3fðk−1Þti þ ½ðk−1Þtj−1�Ifi≠jgg;

W ′1WW ′W1ði; jÞ ¼ ∑
k

l ¼ 1
W ′1Wði; lÞ �W ′W1ðl; jÞ

¼ k−2ðk−1Þ−2ðk−2Þtitj þ k−3ðk−1Þ−4fðk−1Þti þ ½ðk−1Þtj−1�Ifi≠jgg:
Applying the above expressions in (13), the formula (7) is obtained. For a BILSðk; k−1Þ design, the conclusion follows just by
letting t1 ¼⋯¼ tk ¼ k−1 in (7). □

Proof of Theorem 3. Denote by P3
k the set of all permutation matrices of the form P ¼ diagðP1;P2;P3Þ, where P1, P2 and P3

are any three k� k permutation matrices. Let

CθðDÞ ¼ ðk!Þ−3 ∑
P∈P3

k

P′CθðDÞP:

For any design D based on a given LS(k), following the proof of Theorem 1, we get

CθðDÞ ¼ ðk−1Þ−1diagð1−r′r;1−s′s;1−t′tÞ⊗Hk:

Because r′r, s′s and t′t are all not less than k−1, we have that CθðDÞ≤k−1I3⊗Hk. Then k−1ϕðI3⊗HkÞ≥ϕðCθðDÞÞ≥ϕðCθðDÞÞ. □

Proof of Theorem 4. Since Hk has ðk−1Þ eigenvalues equal to 1 and one equal to 0, I3⊗Hk has ð3k−3Þ positive eigenvalues
equal to 1 and 131′3⊗Hk has ðk−1Þ positive eigenvalues equal to 3. Note that ðI3⊗HkÞð13�3⊗HkÞ ¼ ð13�3⊗HkÞðI3⊗HkÞ. Since
those two matrices can be diagonalized simultaneously, it can easily be verified that the information matrix CθðDÞ in (11) has
three eigenvalues equal to zero, ðk−1Þ eigenvalues equal to ðk−3Þ½kðk−1Þ�−1 and ð2k−2Þ eigenvalues equal to ðk−1Þ−1. Then the
expression of EffθðD;ϕpÞ follows directly for different values of p≤1. □
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