2
Jourpal of Data Analysis
April 2013, Vol.8 No.2, pp.1-30

Process Mining: Process Model from Event Logs

Dennis K. J. Lin'* Yun-Shiow Chen? Min-Hsun Kuo®

Abstract

Modeling a workflow design is a complicated and time-consuming process in today’s
competitive market. It has received a great deal of attention in many fields, such as
software engineering and workflow management. Process mining is such a technique to
analyze the streamn-data from the workflow process. Modermn information technologies
allow us to collect complete global stream-data in an efficient manner. Process mining
helps In understanding the actual process from these stream-data. In this paper, we
develop an algorithm for process mining by modifying the a-algorithm to handle complex
activity relationships involving concurrence and alternative. The detailed procedure of
the proposed algorithm is discussed, with an example for a thorough illustration. A
real-life case study is provided, and comparison with existing algorithms is also made. Tt
is shown that our proposed method can handle more complicated situations than the

existing methods.

Keywords: o-algorithm, Petrd nets, Process model, Stream-data.

' Department of Stafistics, Pennsylvania State University, University Park, TUSA and Department of

Statistics, Fudan University, Shanghai, China.

? Department of Industrial Engineering end Management, Yuan Ze University, Taoyuan, Taiwan.

* Department of [ndustrial Engineering and Management, Yuan Ze University, Taoyuan, Tatwan.
*Comrespondence to : Dennis K. I. Lin, Department of Statistics, 317 Thomas Building, Penmsylvania
State University, University Park, P4 16802-2111, USA. E-mail: DKL5(@psu.edu

Manuscript received: 2012.8.7 ; Revised: 2012.11.26 ; Accepted: 2013.3.1

ERD: EEREAE S

1. INTRODUCTION

Process mining is a process management technique which analyzes business
processes based on event logs. It is often used when no formal depiction of the process
can be obtained by other approaches, or when the guality of an existing documentation is
doubtful. This is a relatively new area, but has increasingly received attentons In various
fields; for example, the audit irails of a workilow management system, the transaction logs
of an ERP system, and the log of the exchange of messages with other parties of
Business-to-business (BZB) systems [17].

Take Table I as an example The business processes are first collected and tabuiated
in an event logs data. An event logs table basically consists of two columns (contributes),
case number and task number, as shown in Table 1 (adapted from [7]). All cases are then
summarized into traces, as shown in Table 2. This can be easily done. Based upon all
these traces, the ultimate goal here is to build tp a process model describing all workflows.
One solution is the one shown in Figure 1, which is capable of capturing all traces in Table
2.

For the basic utilization of a process model, Humphrey et al.[l11] infroduced four
desirable properties, including enabling effective communication regarding the process,
facilitating process rense, supporting process evolution and facilitating process
management. They suggested that a process model should be able to (1) represent the way
the work is actually preformed; (2) provide a flexible and understandable, vet powerful,
framework for representing and enhancing the process; and (3) be refinable to whatever
level of detail is needed. The relationship of activities can be classified into four basic
patierns: sequent, concurrence, alternative, and loop [7, 20].- A relationship that involves
concuirence and altemaﬁve simultaneously is called an “option”. An option is rather
common in practzce but is difficult to identify using most existing alcrouthms Owur

objective here is to propose an algorithm for building up an understandable process model

4 oot 8 B2 H

which is able to (a) incorporate all traces contained in event logs and (b) deal with the
problem of the identifying options.

This paper is organized as follows. In Section 2, a literature review of the process
mining is presented. ~Section 3 proposes a new algorithm for process mining with detailed
descriptions. An example to illustrate the proposed method is presented in Section 4.
Section 5 presents a case study from a hospital in Taiwan. Both the proposed algorithm
and the traditional algorithm are implemented and compared. Discussion and
comparisons with other existing algorithms are given in Section 6. Section 7 provides a

conclusion and firture work.

Table 1. Sample event logs

Case Task
identifier identifier
Case 1 Task A
Case 2 Task A
Case 3 Task A
Case 3 Task B
Case 1 Task B
Case 1 © Task C
Case 2 “Task C
Case 4 Task A
Case 2 Task B
Case 2 Task D
Case 5 Task E -
Case 4 Task C
Case 1 Task D
Case 3 Task C
Case 3 Task D
Case 4 Task B
Case 5 Task F
Case 4 Task D

Table 2. Sample Events Logs Data (by Case)

Case 1: A>B>C->D {ABCD}
Case 2: A2C>B->D ({ACBD}
Case 3: A>B-2>C5D {ABCD}
Case 4: A>C>B->D {ACBD}
Case 5: EF {EF}

Figure 1. A process model corresponding to the process logs in Table 1 [7]
2. LITERATURE REVIEW

Process mining was initially applied in software engiﬁeering to design a realization of
the performance processes of a system. Cook and Wolf [3, 4] developed three methods
(RNet, Kiail, and Markov) based on grammar inference. These propased methods are
limited, merely suitable to handle a process model with sequential. Cock and Wolf [§]
later added four matrices (entropy, event type counts, periodicity, and causality) to model
concurrent behavior. Agrawal er al [1] applied process mining in the confext of
workflow management. For process mining, Van der Aalst ez al. [2, 6, 18, 19] presented

eleven challenges for process model mining. Some of them remain unsolved.

6 EEEOAHT 8482 B

The a-algorithm is based upon the relationship of activities and represents the process
in Petri net language. The a-algorithm has been applied in supporting secarity efforts at
various levels, ranging from low-level mstruction detection to high-level fraud prevention
[16]. Recently, Van der Aalst ef al[17] used the a-algorithm to capture concurrency in
business processes. Many modified o-algorithms have been developed. Van der Aalst
et al. [7] improved the w-algorithm to the a+-algorithm for handling short-loops. The
att-algorithm was developed for dealing with more complex problems such as
non-free-choice consiructs. The process mining software “Litile thumb™ was proposed by
{18] to handle loops and noise by considering direct and indirect successors. Huang ef al.
[10] developed an algorithm for capturing & process in execution zccording to Synchro-Net.
Synchro-Net is a synchronization-based model of workflow logic and workflow sernantics.

Huang’s algorithm is able to deal with problems such as hidden tasks and short-loops.

iOther related work can be found in Schimm ef al. [13, 14], Herbst et af. [8, 9], Cook
etal [4], Vander Aalstefal [12, 19, 20], Wainer er af. [23], Van der Aalst [21]-, and
De Medetros ef al [2,15]. Most algorithms can handle the simple relationships of
activities like simple sequent, concurrence, alternative, and loop, but none of them can deal

with the option properly.
3. PROPOSED METHOD

“Options™ are very common in practice—they simultaneously involve two patterns of
 the relationship of activities: concurrence and altemative. The popular a-algorithm does
not work well for options. In this paper, we modify the w-algorithm to improve its ability
to handle options. Qur proposed process model is represented by Petri nets. Basically, a
Petri net consists of a series of fransitions, places and arcs. Transitions and places are
connected through directed arcs in such a way that (i) places and transitions have at least
one mcident edge and (if) in every path, transitions and places alternate (no place is

connected to a place and no transition is connected to a transition).

We frst define two matrices: an Activity-place matrix is used to describe the route
from an activity to a place; while a Place-activity matrix to present a route from a place to
an activity. Once these two matrices are constructed, it is rather straightforward to build
up our process model, by a proper combination of the basic elements in Petri nets. A
basic elernent in Petri nets includes sequent, AND (concurrence) and OR (alternative), as
shown in Figure 2. Specifically, from the original event logs, a From-To table can be
copstructed. Al activities can then be classified into sequent, concurrence, alternative, or
loop (see detailed description below). Based on the classification results, we then modjfy
the From-To table to comstruct Activity-place and Place-activity matrices. From these
two mairices, our final model can then be established. Detzils will be discussed in

Section 3.3,

:

(z) Sequent

5
W

=
Z
Y
g
=T
nl
=
ot
C
o
3

)
x

{f) OR-Split {21 OR-Jdoin

Figure 2. The basic components in the ¢-algorithm

When building up a process model based on the g-algorithm, two problems
need fo be resolved © (1) how to distinguish between concurrence and a 2-length
loop (a loop invoived with only two activities), and (2) how to distinguish between

concurrence and alternative. We next discuss these problems m detail.

8 BlpootT 8|2

3.1. Concurrence and 2-length loop

When a process model includes a 2-length loop, we are unable to distinguish between
concurrence and the Iéop using the From-To matrix. For example, if 2 loop involves
activity B and activity C, there are two possibilities s shown in Figure 3(a) and (b). Note
that the relationship of activities B and C in Figure 3(c) ié a concurrence. Potential traces
are {ABCD}, {ABCBCD}, {ABCBCBCD}... {ABCBC...CD} in Figure 3(a); {ABD},
{ABCBD}, {ABCBCBD}... {ABCBC....BD} in Figure 3(b); and {ABCD} and {ACBD}
n Figure 3(c). From the From-To matrices based upon these traces in Figure 3(a), (b) and _
(¢), we are unable to distinguish the exact reletionship between B and C directly.
However, we can distinguish them by their predecessors and successors. In Figure 3(a),
the predecessors of activity B are activities A and C and the only predecessor of activity C
18 activity B. On the other hand, the only successor of activity B is activity C and the
successors of activity C are activities B and D. This implies that there exists a sequential
rule between activities B and C starting from activify B and endiﬂg at activity C. A
similar situation can be found in Figure 3(b). In Figure 3(5), the predecessors of activity B
are activities A and C and the predecessors of activity C are activities A and B; on the
other hand, the successors of activity B are activities C and D and the successors of activity
C areiactivities B and Dj there is no sequential rule between activities B and C. It fumns
out that we can distinguish concurrence and loop by the predecessors and successors of ail
activities imvolved. Namely, if the predecessors and successors are the same, the

refationship is a concurrence; otherwise, it is a loop.

3.2. Concurrence and Alternative

We next consider three types of concurrence and alternative, including simple

concurrence, simple alternative, and complex concurrence & alternative.

(1) Simple concurrence

TR B S o

When mutually exclusive sets of activities have the same predecessor and all the
mvolved activities are contained in the same traces, then they are a simple concurrence.
For example, in Figure 4, the relationship of activity B and activity C only includes
concurrence and they always appear together in a trace (see also Figure 2(b)).

(2) Simple altemative

When mutually exclusive sets of activities have the same predecessor and no more
than one set of activities appears in the same traces, then they are a simple alternative. In
Figure 5, for example, the relationship of activity B and activity C only includes an

alternative and they have never occurred simultanecusly in aﬁy trace (see also Figure 2(c).

(3) Complex concurrence and alternative
We subdivide the cormnplex concurrence and alternative case info three types:
Type 1: multi-sets of relationships of activities involving simple concurrence;

Type 2: multi-sets of relationships of activities mvolving simple concurrence or

simple alternative; and
Type 3: the relationship of activities including both concurrence and alternative.

The relationship of activities including both concurrence and alternative is the most
difficult te model. Detailed ilhistrations are shown as follows,

10 BigndT 8% 25

]

{a) loop {type D)

]

(b} loop (type LI

(N Y

N R ¥
A D
2 @05

(€} concurrence

Figure 3. Examples of loop and concurrence

B I B
" — w
— O c
Figure 4. Simple concurrence) Figure 5. Simple alternative

Type I1: multi-sets of relationships of activities involving simple concurrence

Here, the involving activifies include several groups and the relationship of activities
i the same group is a simple concurrence, while different groups might have the same
activities. For example, for the process model shown as Figure 6, its fraces could be
{ABCE}, {ACBE}, {ADCE} and {ACDE}. Activities B and C belong to a group involved

a concurrence and activities C and D also belong to another group involved a concurrence,

TESRED BRI i 1

We thus set a place to connect with activity C and another place to connect with activities
B and D, since there are only two actions following activity A: one goes to activity C and
the other goes to activity B or D, However, if these involved relationships of activity can
not be successfully merged without relationship, then these activities should be tregted as

an alternative by adding suitable fictitious activities,

~"Q“"_‘i‘“”o“

RN
N
ne

L]

Figure 6. Concurrence and alternative: Type 1

Type 2: multi-sets of relationships of activities imvolving simple concurrence or alternagive

Here, the involving activities can be divided into several groups based upon their
traces. For example, from an event log including traces {ABCD?, {ACBD}, {AED} and
{AFD}, the involving activities B, C, E, and F can be divided into three groups., The first
group contains the éctivities B and C, the second group contains the activity B and the third
group contains activity F. Only the first group involves concurrence. Also, the groups
appear alternately in the traces. The number of the actions after activity A depends on the
selection of groups. If the first group is involved, there are two actions—activities B and C.
For the other two groups, there is only one action—activity E or F. To overcome such a
problem, we set a place to connect the above-mentioned three groups. The relationship of
activities B and C is concurrence and two places are needed to show the refationship in
Petri nets. Furthermore, to match the requirements of Petri nets, we add two fictitious

activities to this model to handle this conflict. The process model is shown as Figure 7.

12 BigaAT 8FB2H

—(O—1
—r] Eas
= O—

THO——

)
N

el
L

Figure 7. Concurrence and alternaiive: Type 2
Type 3: the relationship of activities including both concurrence and alternative

Here, the relationships of the involving activities are concurrence for some fraces,
alternative for other traces, or they do not occur at all. For example, from traces {ABCD},
{ACBD}, {ABD}, {ACD} and {AD}, we find that activities B and C involve concurrence
in the first two traces, but they involve alternative in the third and fourth fraces, and none
in the fifth trace. We thus set places to connect activity A with its successors in alf fraces. If
4 successor occurs in some traces, we set 2 place to connect a fictitious activity. Take
traces {ABCD}, {ACBD}, {ABD} and {AD} as an example. In the first two traces, the
relationship of activities B and C is concurrence; but in third frace, there is only activity B,
and in the fourth trace, both activities B and C are not involved. The successors of
activity A should include activities B, C and D; activity D is also the successor of activities
B and C, therefore, the fourth trace can be considered a2s neither activities B nor C, after
activity A and before activity D. Figure 8 presents the model for this case. In Figure 9,

*No B” and “No C7 are the fictitious activities.

TEERE B S 13

Figure 8. Concurrence and alternative: Type 3

3.3 The propoesed algorithm

Step 1 : Buildupa nxn From-To table, based on the event logs. The (1,j)-th element in
the From-To table, A/ s » 1s the path from activity a, toactivity a which can be
defined as -

i

_ i1, factivity g . is directly after activity a,;
0, otherwise .

Step 2 Build up a modified nx# From-To table by distinguishing concwrrence from

loop.

EM, =M, =1, but M, # M

relationship between activities «, and a, is a loop. If M, =M 4 =1, and

«» for ¢=1, 2, ... n (ad c#i), then the
M,=M_=1for ¢=1,2,.. n (and ¢ #1,), then we have to further investigate
the relationship between the activities a, and a; from the event logs. If two
activities @, and g ; have never occurred -successively, then the relationship
between these activities only involves concurrence; otherwise the relationship is a
complex concurrence & loop. If it is a simple concurrence, we modify the From-To

table by replacing 0 to the valuss of M y and M ..

I

14 BaEfT 8E 257

Step 3 ! Build up a relationship table by distinguishing concirrence from alternative to

describe the relationship of activities, as previously discussed.

Step4 : Setupan (n+x)xS Activity-place matrix based on the first two columns in the
relationship table: “Predecessors” and “Places”. The (ij}th element mn the
Activity-place matrix, A, is the path from activity g, toplace 5, with

|1, if activity a, is directly after place S ;;
g 0, otherwise .

Step 3 ! Setup an Sx(n+x) Place-activity matrix based on the last two columns in the
relationship table: “Places” and “Successors”. The (ij)-th element n the

Place-activity matrix, P, is the path from place S;to activity @, where

P, 1is defined as:

1, if place S, is directly after activity a ;
P 0, otherwise .

Step 6 : Generate a graphical process mode! using Petri nets according to the Activity-place

and Place-activity matrices obtained in Steps 4 and 5.

3.4 ADetaﬂed Description for the Construction of the Relationship Table

The relationship of activity table consists of three columns, “Predecessors”, “Places”,
and “Successors”, A start-activity and an end-activity are also given. A start-activity is
one whose column sum is minimal in the From-To table, while an end-activity is one
whose row sum is minimal in the From-To table. Suppose activity a, is a predecessor

of activities @, and 4. The following expression will be used:

® g — ({a,}{a;}), when the activity between «, and a; isa simple concurrence;
® a,—>a, g —>a;, a,—>a, when the activity between &, and 4, is a simple

loop;

TESRE: ERENERES Hk 15

H

® a,—>{al{a}).a, >a,,a, > a, when the activity between a, and g is a

concurrence & loop.

For each non-zero entry in the modified From-To table in Step 2, we generate one
row in the relationship table for both the Predecessor (From) and Successor (To) elements,
taking into ac-count the above classification. Once this is completed, we next compress
the relationship table by merging those rows with identical Predecessors. The
corresponding successors will be integrated accordingly. Special care is pseded for
concurrence—a Actitious activity (say, no-g ») will be required when a concurrence only
appears in some cases. Finally, we assign the places to the middle column in the
relationship table. The number 5f braces in the set of successors is the number of places we

have assigned to each row of the Places column.
4. ANILLUSTRATION EXAMPLE

The proposed algorithm is lustrated viz a simple example as shown in Table 3 below.
This example contains 5 cases and 7 different activities.

The procedure of creating a process model is as follows:
Step 1: Convert the event logs data in Table 3 into the From-To table as Table 4 below.

Step 2: Table 4 ndicates that there are both B> C and C>B (as well as ESF and F>E).
The relationship of activities B and C only involves concurrence, because there is no
sequential order between them; while the relationship of activities E and F is a loep,
because they have no common predecessor and successor. We thus modify the From»-fo

table and get a Modified From-To table as in Table 5.

16 BT 882 H

Table 3. Event logs of an example

Step\Case ID | Case 1 | Case2 | Case3 | Cased | Case |
1 S S S S S
2 B C D B B
3 C B E E E .
4 E E F F F
5 F F E G E
6 E G F F
7 F G G
2 G
Table 4. From-To matrix
FromTo | S B C D E F G
S 0 1 1 1 0 0 0
B 0 0 1 G 1 0 0
C 0 1 0 0 1 0 0
LD G 0 8 0 1 ¢ 0
B ¢ 0 G 0 0 1 0
F 0 0 0 0 1 0 1
PG 0 0 4] 0 4] Q 0

Table 5. The modified From-To matrix After reconsidering {B,C} and {E,F}

From\To S B | C D E r G
3 0 1 B 3 0 0 0
B 0 0 0 0 1 0 0
C 0 0 0 0 1 0 0
D 0 0 10 0 i 0 0
E 0 0 0 0 0 1 0
F 0 0 0 0 1 0]
G 0 0 0 0 0 0 0

Step 3: From Table 5, activities S and G are chosen to be the start-activity and the
end-activity, respectively. Table 6(a) is constructed, based upon all non-zero entries in
Table 5. Table 6(b) is the result of compressing all identical Predecessors in Table 6(a).
The concurrence ({B}{C}) needs further investigation. A fictitious activity No-C (NC) is

created because C did not occur in some cases when B occurs, and thus ({B}{C}) is

TERE EEREENE AR 17

modified to be ({B}{C, NC}). Likewise, since the successors of 5 and the predecessors
of E also involve concurrence, we create fictitious activities A ge and X
respectively for the connection of S to ({B}{C, NC}) and {{B}{C,NC}) o E, as shown in
Table 6(c). After adding the proper number of places for each predecessor to be

connected to its successors Table 6(d) displays the final relationship table.

Table 6(a). The table for the original relationship of activities

Predecessors Places (name) _ Successors
.8 {BH{C}
S D
{BY{C} E
D E
B F
F E
F G
G

Step 4 : A 10x10 Activity-place matrix is built to record the route from each activity to
a place. If the route exists, then & “1” is marked in the corresponding location; otherwise

a “0” is marked, as displayed in Table 7.

Table 6(b). The table for the first step to establish relationship of activities

Predecessors Places (name) Successors
S . 1B {CY.
{({BY{C}), D} ' E
E E
F {E. G
L G ‘

18 BEafT 8&2H

Table 6(c). The table for the second step to establish relationship of activities

Predecessors Places (name) Successors

S {Xsne, D }
Xsic ({B}{QNC}\)'
{(Xpee. D } E
({B}{CNC}H Kary

B E

F {E, G}

G

Table 6(d) The table for the final step to establish rélatiorzship of activities

Predecessors Places (name) Successors
S0 S

S S1 {Xepr. D}

Xspe 52, 83 ({B}{C.NCH

{Xace, D} S4 B

{{BHCNCH S5, 56 Xarr

B 57 F

F S8 {E, G}

F sS4 E

G | Bnd

Step 3; Likewise,a 10x10 Place-activity matrix is constructed and displayed in Table 8.

Table 7. Modified Activity-place matrix

Fromo ;S0 {81 |s2 183 1s4 185 |ss |7 (s8 | End
S 0 |1 o Jo_Jo Jo 1o o lo o
Xeme [0 10 11 11 1o lo 40 lo 1o o
B 0 10 o 1o jo 11 lo 1o 1o 'o
C 0 10 1o Jo Jo o 11 1o o o
NC 0 _lo_ 0 1o o jo_ 11 1o 1o lo
D 0 Jo fo o 11 Jo 15 -lo lo o
E o_ 1o Jo Jo lo ta lo i 1o lo
F 0 10 1o Je 11 1o do o |1 o
Xeee |0 10 10 10 11 4o 1o 1o 1o 1o
G 0 1o Jo Jo Jo Jo lo lo 1o |1

Titre) BRI HR 19

Table 8. Modified Place-activity matrix

&

From'to
30
S1
52
53
34
85
Sé
S7
S8
End

us)
5

i
.

o lo|lo o oo o o o - |n
o e io oo lo oo |-~ o
oo oo iloio|lo - |lo o |m
oloilolo oo |- oo o |n
o lo oo oo |~ o |lois

Lo e [I Lo T [I [e I (e T { s O o B V'
O S = o OO o o o (o (ki
DD D e e D O (D [O

Q»—AODOOODODQ

Step 6: Tables 7 and 8 above allow us to develop & process model using Petri nets
followed by the Activity-Place and the Place-Activity matrices obtained. Figure 9 depicts

the resulting process model.

(O

:
N
I

O
@

Figure 9. The resulting process model
5. CASE STUDY

The proposed algorithm has successfully implemented in the Pediatrics Department at
a private Taiwan hospital. Due to the shortage of staff nurses, the superintendent hopes to

mvestigate the workflow of the staff nurses in details. The ultimate goal here is to lighten

20 BEohT 8T 2H

the working loads without causing any medical negligence. This is now becoming possible,

due to the support of modem nformation system.

The database consist daily activities of 85 nurses (Cases). The first five cases are
given in Appendix, as examples. There are a total of 33 different activities in a daily
nurse work. FEach nurse will mvoivé most of them (but not ali}—the actual activities
involved depends on the number of patients in the specific day (the average number of
activities imvolved is around 30, among all 85 cases). The detailed description on each
activity (sign in”, “exchange__reparf’, etc.) is not listed here, but is available upon request.
Both the proposed algerithm and the o/et++-algorithm are applied for the comparison
purpose. The resulting process models are displayed respectively in Figure 10(z) and
Figure 10(b), for the g+t-algorithm and the proposed algorithm (note that the
g+t-algorithm used here is downloaded at the website <http://promtools.org/prom5/>).

The current workflow process is mainly based vpon experience. Our workflow
process model provides a clear presentation and understanding for the enfire procedure.
As shown in Figure 11(b), a “typical” workflow is clearly illustrated. ~Specifically, a staff
nurse first signs in (“sign in”) at the hospital and participates a meeting hosted by the
night-shift leader of reporting the patients’ current situations (“exchange report™). Nexi,
the staff nurses will do one of the followings: (&) reviewing the techniques of caring of the
sickness (“exchange TR”}—typically held on Monday, Wednesday and Frday, or (bj
reporting some special cases (“exchange_CR”}—typicaﬂy held on Tuesday or {c) do
nothing on special date {“fict 17), and so on.

The resulting workflow model given in Figure 10{b) is proved fo be useful to the
superintendent—not only s/he has a much better understanding the entire process for future
improvements, but also s/he is able to identify some important details being ignored.
This will be reported elsewhere. Here we will focus on the comparisons of the models
given in Figures 11(a) and 10(b}. It is shown that Figure 10(b) obtained bj.f the proposed

algorithm 15 much closer to the reality than Figure 11(a). For example, the nurse needs to

help patients putting updated medical information in order ("MC_A"); checking the
intravenous drip (“MC_B™); checking the oxygen mask ("MC_C”); and checking the
patient with unusual BT (“MC_D™). These four activities need to perform concurrently.
However, in reality, these four activities could be accomplished by team, and not
mecessarily by individual (meaning, they may be dome by different nurses—not every
 single nurse needs to do them all). Case 5 in the Appendix B, for example, indicates that
this nurse completed “MC_A”, “MC_B” and “MC_C”, but not “MC_D”, However, Figure
10(a)—the process model constructed by thea/a++ -algorithm, is not capable to deal with
such an option. It indicates that all these four activities need to be done concurrently;
while Figure 10(b)—the process model constructed by the proposed algorithm, is more
realistic to reflect the facts.

The proposed algorithm is a modification of the “algorithm by including more
complicate processes—the proposed algorithm has an additional task to confirm the
inferred relationship of activities which involving concurrence and alternative. It will
take more times to perform. In this case study (85 cases and 33 potential activities), the
computing times of the pfopgsed algorithm is longer than that of «/a+ +-algorithm, but
the difference is marginal (10 minutes versus 2 minutes). Fowever, when the data is
huge, the computing time for the proposed algorithm could be far more than that for wa +

+-algorithm. The processing time is indeed an issue that to overcome.

22 EEBiT 842]

..vm;_n:o!m —
. on call_a [P

oncall m

|
discharged
change Bed

f

A 4

accep! pm

O

=1

—

Q

% excha

——— exchange report
¥
—
xchange TR |

&
=

-
O
|

are_work

=8
[
=%

4 time(2)

rocess model by o/o -+ +-algorithm

hy

The m

Figure 10 (a).

Sif
i
.
I |r

. TR RIS 23

v

v Y

lexchaﬂgeﬂTR] Laxchange_CE]

T o/ mwy, P

bINL.ém_check] E fict 13 T

(ot P

Y

ne,

Figure 10 (b). The process model by the proposed method

24 Zagorft 8E2H

6. DISCUSSION AND COMPARISON

The proposed algorithm, basicaﬂy built upon the core idea of the -algorithm, is to
resolve the important situation of options. ‘The comparison among our method, the
a-algorithm and other related algorithms (including, the | -algorithm, and the
. -algorithm) is shown in Table 9. The items/criteria to be compared include basic
concurrence, alternative and concurrence, basic loops, arbitrary loops, and hidden tasks.
Specifically, “Basic concurrence” means the relationship of activities including simply
concurrence, while “Alternative and concurrence” indicates the relationship of activities
imvolving alternative end concurrence simultaneously. A “Basic loop” represents 2 loop
concerning only one or two activities, also known as a “short-loop.” A “Hidden task™
expresses that some activities should have been recorded, but these activities are not
scheduled in the process model. If an algorithm has the ability to resolve the issue, we

indicate this by a “Yes”; otherwise by a “No™.

Table 9. Comparison among proposed method and a- related algorithms

The o-algorithm o4+-algorithm at++-algorithm
Basic Yes Yes Yes Yes
Alternative Yes No No No
Basic foop Yes Yes Yes Yes
Hidden task Yes No No No

As indicated in Table 9, all these methods are able to handle the simple situations,
such as basic concurrence and basic loops. The proposed algorithm is capable of solving
for the more complicated situations of options, i.e., “Alternative and Concurrence”. Note
that we only modify the -algorithm to resolve the option problem. Thus, the comparison
here is based on how many relationships can be resolved, not the efficiencies among the

algorithms.

7. CONCLUSION

Qur study here is to develop an algorithm for determining a process model based on
the most confined data. Specifically, we partition the relationships of activities into three
different kinds, simple concurrence, simple alternative, and complex concurrence &
alternative. Compared with other existing algorithms, the a-algorithm the w+-algorithm
and the at-+-algorithm, only our proposed algorithm is capable to handle problems
involving opticns (for which complex concurrence and alternative occur simultaneously).
The proposed algorithm in this paper is able to catch all the traces in the event logs with
more complex relationships of activities involving options. The proposed algorithm
basically is a creative modification over -algorithm, by adding a key step on checking
the inferred relationships of activities from the traces. Thus it takes longer processing time
than -algorithm. Indeed, this could be a problem for large dataset (an important
problem to overcome). However, for any modest dataset, the difference on compﬁting

times is rather marginal (as shown in our case study).

The search for an “optimal” process model is rather primitive in the literature.
Besides computational complexity, one optimality criterion currently under consideration
is the “minimal process model” for which the resulting process model can not only capture
all events in event logs, but also generate least amount of additional flow. This is currently
under study. Another interesting problem is how to develop the process mining for event
logs with noises. Cook et al. [4] and Van der Aalst et al. [12, 19, 207 presented a heuristic
approach to comstruct workflow nets based on counting frequencies of dependencies
between activities, We anticipate more decent research in this area can be accomplished

mn the near future.

26 BiEotT 8E2H

REFERENCE

10.

Agrawal R, Gunopulos D, Leymann F. Mining process models from workflow logs.
Lecture Notes in Computer Science 1998; 1337:469.D0O1:10.1007/BFb0100972

Alves de Medeiros AKX, Weijters ATMM, Van der Aalst WMP. Genetic process mining;
a basic approach and ifs challenges. In BPM 2005 Workshops. LNCS 3812, Bussler C
et. al. (eds.). Springer-Verlag Berlin Heidelberg, 2006; 203-215.

Cook JE, Wolf AL. Automating process discovery through event-data analysis. 4CAf
ICSE 95 1995; 73-82.

Cook JE, Wolf AL. Discovering models of software processes from event-based data.
ACM Transactions on Software Engineering and Methodology 1998; 7: 215-249.
Cook JE, Wolf AL. Event-based detection of concurrency. ACM SIGSOFT Software
Enginzering Notes , Proceedings of the 6" ACM SIGSOFT international symposium
on Foundations of software engineering SIGSOFT ‘98/FSE-6 1998; 35 - 45,

De Medeiros AKA, Van der Aalst WMP, Weijters ATMM. Workflow mining: Current
status and future directions. In CooplS/DOA/ODBASE 2003. LNCS 2888, Mccrsman
Reet. al. (eds.). Sprﬁlger—Verlag Berlin Heidelberg, 2003; 389-406.

De Medeiros AKA, Van Dongen BF, Van der Aalst WMP, Weijters ATMM. Process
mining: Extending the g-algorithm to mine short loops.

http:// fp,tm.tué.nl/beta/publications/working%lOpapers/Beta_WP 113.pdf [1 August
2007} '

Herbst J, Karagiannis D. Integrating Machine Learning and Workflow Management
to Support Acquisition and Adaptation of Workflow Models.
http://citesesr.ist.psu.edi/cache/papers/cs/25888/http:zSzzS zhome.t-online.dezSzhom
ezSzjoachim.herbstzSzijisafm00.pd/herbst98integrating. pdf. [1 August 2007]

Herbst J, Karagiannis D. Workflow mining with InWoLvW. Computers in Industry
2004; 53: 245-264. DOL 10.1016/j.compind.2003.10.002.

Huang XQ, Wang LF, Zhao W, Zhang SK, Yuan CY. A workflow process mining
algorithm based on sﬁch&net. J. Comput. Sci. & Technol 2006; 21: 66-71.

TR BRI s 27

I1.

12.

14,

16.

17.

18.

19.

20.

Humphrey WS, Kellner MI. Seftware process modeling: principles of entrry procass
models. ACM 1989; 331-342. .

Maruster Laura, Weijters AIMM, Van der Aalst WMP, Van den Bosch A. Process
mining: Discovering direct successors in process logs. In DS 2003. LNCS 2534,
Lange S, Satoh K, Smith CH (eds.). Springer-Verlag Berlin Heidelberg 2002;
364-373.

Schimm G Mining exact models of concurrent workflows. Computers in Industry
2004; 53: 265-281. DOT:10.1016/. compmd 2003.10.003 _
Schimm G Mining Most Specific Workflow Models from Event Based Data. In BPM
2003, LNCS 2678, Van der Aalst WMP et al. (eds.). Springer-Verlag Rerlin
Heidelberg, 2003; 25-40.

~ Van der Aalst WMP, Alves de Medeiros AK, Weijters ATMM. Genetic process mining.

In Applications and Theory of Petri Nets 2005. INCS 3536, Cortadella J, Reisig
W(eds.). Springer-Verlag Berlin Heidelberg, 2005; 48-69.

Van der Aalst WMP, Alves de Medeiros AK. Process mining and security: Detecting
anomalous process executions and checking process conformance. Electronic Notes
in Theoretical Computer Science 2005; 121:3-21. DOIT: 10.1016/j.entcs.2004.10.0.13.
Van der Aalst WMP, Reijers HA, Weijters ATMM, Van Dongen BF, Alves de
Medeiros AK, Song M, Verbeek EMW. Business process mining: An industrial
application. fnformation Systems 2007; 32:714-732. DOI:10.1016/1.i5.2006.05.003.
Van der Aalst WMP, Van Dongen BF, Herbst I, Maruster L, Schimm G, Weijters
AIMM. Workflow mining: A survey of issues and approaches. Data & Knowledge
Engineering 2003; 47:237-267.

Van der Aalst WMP, Weijters A JMM. Process mining: a research agenda. Computers
in Industry 2004; 53: 231-244. DOI:10.1016/j.compind.2003.10.001

Van der Aalst WMP, Weijters AIMM, Maruster L. Workflow Mining: Discovering
Process Models from Event Logs. |
hitp://is.tm.tue nl/staff/wvdaalst/BPMcenter/reports/2004/BPM-04-06.pdf [1 August
2007] |

21.

22.

23.

24.

Van der Aalst WMP. Matching observed behavior and modeled behavior: An
approach based on Petri nets and integer programming. Decision Support System
2006; 42:1843-1859. DO1:10.1016/].dss.2006.03.013.

Van Dongen BF, Mendling J, Van der Aalst WMP. Structural patterns for soundness
of business process models. Proceedings of the 10th IEEE International Enterprise
Distributed Object Computing Conference (EDOC’06) 2006; 00:116 — 128. DOL
10.1109/EDOC.2006.56.

Wainer J, Kim K, Ellis CA. A workflow mining method through model rewriting. Tn
CRIWG 2005, LNCS 3706, Fuks H. Tukosch S, Salgado AC (eds.). Springer-Verlag
Berlin Heidelberg, 2005; 184-191. '

Wem L, Van der Aalst WMP, Wang J, Sum J. Mining process models with
Non-free-choice constructs.

http://is.tm tue .nV/staffwvdaalst/BPMeenter/reports/2006/BPM-06-23 pdf [1 August
2007]. '

TERE EEmEEER R

29

Appendix. Partial dataser of the Case Study

(the complete data is available upon request)

Step Case 1 Case 2 Case 3 Case 4 Case §
1 sign_in - sign_in sign_in sign_in sign in
2 lexchange report| exchange report | exchange report exchange report | exchange report
3 | Prepare_work exchange TR exchange CR |HN.L.Prn_exchange| exchange CR
4 MC_A HN.I.Prn_exchange|/HN.L.Pra_exchange epare work HIN.L.Pm_exchange
3 MC B Prepare work Pray MC A Prepare work
6 MC C MCD Prepare work maintain m MC A
7 | maintain m MC B MC _C Record Dr MC B
8 | Record Dr MC A - MC B discharged MC C
9 discharged MC C MC D record(l) maintzin m
01 record(l) maintain m MC_A clean Record Dr
tl oncall m Record Dr maimtain_m accept_pm discharg:ad
121 record(1) discharged Record_Dr record(2) change Bed
13 clean change Bed discharged E BT n record(1)
14 accept_pm record(l) change Bed accpet_pn oncall m
15 record(2) clean record(l) oncall_n record(})
16 accpet_pn accept_pm clean - time(2) clean
17 oncall n record(2) accept_pm teaching accept_pm
18 time(2) time(1) record(2) accept_pa record(2)
19 E BT n EBTn time(2) on call_a EBTn

1 20 teaching on caﬂ_n EBTnn E BT a accpet_pn
21 accept pa teaching oncall n Recheck time(2)
22 E_BT_a accept _pa accpet_pn Exchange end teaching
23 oncall a oncall a teaching accept_pa
24| Total /O E E BT a accept pa Total /O E.
25 Recheck Recheck oncall a oncall a
26 | fixchange end | HN.LPm check E BT a E BT a
27 Exchange end Recheck Recheck
28 HN.L.Pro_check Exchange end
29 Exchange end

TR BRI

SR
" OE

EES TR SNESTET B IR R RS R BT Ay
RRFFLAESNE FERS RS S TR e RS - AR R
ISR T ISR ER - R TR R TR Ry TR A
TUEARAL DU A T R S e RS - B B
STHTEERES REEHEE a-slporitm (R E BB S R AAE At = v s
B IS MR RS RS BN LS A TR R o Ry
RHEEERMREERGT BEUBTERMTFRLY EEEY galgodtm
RS B E A S A -

RREEE: c-algorithm ~ YREHERS ~ FliER - BEaEl

| ZEENNTTASRE R 5T

PIEAETETHATEER &5

P EABIETESEEST B

*Correspondence to : Dennis K. J. Lin, Department of Statistics,317 Thomas Building, Pepmsylvania
State University, University Park, PA | 6802-2111, US4, E-mail: DKL3@psuedu
BfFREE - 2012917 EREE 20121126 EZEE 2013231

