
   

  

   

   
 

   

   

 

   

   384 Int. J. Experimental Design and Process Optimisation, Vol. 3, No. 4, 2013    
 

   Copyright © 2013 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Understanding multistage experiments 

Chumpol Yuangyai* 
Department of Industrial Engineering, 
King Mongkut’s Institute of Technology, 
Ladkrabang, Bangkok 10520, Thailand 
E-mail: chumpol.yuangyai@gmail.com 
*Corresponding author 

Dennis K.J. Lin 
Department of Statistics, 
The Pennsylvania State University, 
University Park, PA 16802, USA 
E-mail: DKL5@psu.edu 

Abstract: Current advanced manufacturing processes are composed of multiple 
complex stages which prohibit experimenters from conveniently employing 
traditional statistical experimental designs due to restrictions on randomisation. 
In this paper, we demonstrate, and summarise how split plot design and its 
variants have been used for multistage experimentation, and present several 
multistage experiment scenarios with comments for practitioners and 
researchers. 

Keywords: process configuration; robust parameter design; RPD; split block; 
split plot. 

Reference to this paper should be made as follows: Yuangyai, C.  
and Lin, D.K.J. (2013) ‘Understanding multistage experiments’, Int. J. 
Experimental Design and Process Optimisation, Vol. 3, No. 4, pp.384–409. 

Biographical notes: Chumpol Yuangyai is currently an Assistant Professor at 
Department of Industrial Engineering, King Mongkut’s Institute of Technology 
Ladkrabang (KMITL). He earned his PhD in Industrial Engineering and 
Operations Research from Pennsylvania State University in 2009, MEng in 
Industrial Engineering from Asian Institute of Technology in 2000, and BEng 
in Mechanical Engineering from Prince of Songkhla University in 1995. In 
addition to his academic career, he had been working in industry for a decade. 
His current research interests are in the area of statistical experimental designs, 
statistical process control, quality engineering, productivity improvement using 
simulation and operations research tools. 

Dennis K.J. Lin is currently a University Distinguished Professor of Statistics 
and Supply Chain Management at Penn State University, as well as an 
Honorary Chair Professor at Fudan University. His research interests are 
quality engineering, industrial statistics, data mining and response surface. He 
has published near 200 professional (SCI/SSCI) papers in a wide variety of 
journals, and serves or served as associate editor for (more than ten) various top 
journals. He is an elected fellow of ASA, IMS, ASQ, an elected member of ISI, 
a lifetime member of ICSA, and a fellow of RSS. 

 



   

 

   

   
 

   

   

 

   

    Understanding multistage experiments 385    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

Advanced manufacturing processes, such as new material development (Freibert et al., 
2002), nanomanufacturing (Yuangyai and Nembhard, 2009), and pharmaceutical 
manufacturing (Peterson et al., 2009) have become very complex. Typically, these 
processes consist of multiple stages. We first present two examples here. The first 
process is the development of a new alloy by a group of researchers at Los Alamos 
National Laboratory (Freibert et al., 2002). They developed a process (shown in Figure 1) 
for synthesising a plutonium alloy with a high decay rate. Their process consists of  
four stages: melting, heat treatment 1, heat treatment 2, and heat treatment 3. The  
process begins with melting the material, which is poured into a cast once it reaches its 
melting point. Then it is heated three separate times to obtain the desired material 
properties. 

Figure 1 The synthesis process of a plutonium alloy 

 

The second process is a nanomanufacturing process developed by a group of researchers 
at Penn State (Antolino et al., 2009a, 2009b). The process is called the lost mould  
rapid infiltration forming (LMRIF) process. It is comprised of six sub-processes:  
particle preparation, mould fabrication, monomer addition, colloid deposition, sintering 
and final dressing. The process flow is displayed in Figure 2. The process begins by 
preparing a nano-scale particle using an attrition milling chamber. The particle is  
then mixed up with a monomer and cross-liking agent to form gel properties,  
making it ready to fill the mould using a nano-scale lithography process. Once the 
moulds are filled, they are kept in a nitrogen environment and are then put 2 in an ethyl 
alcohol bath to ease the drying process and prevent cracks. The moulds are then placed in 
furnaces to sinter the fabricated devices, after which the devices are removed and 
dressed. 

Figure 2 The LMRIF process 

 

These two processes are complicated and consist of several sub-processes or stages. It is 
difficult to improve product and process performance because experimenters face the 
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inability to completely follow the randomisation principle by randomly assigning the 
treatment combinations to experimental units and resetting each factor level. It is almost 
impossible to reset all factors because some factors (especially those in the first few 
stages) are hard to reset or change because of resource constraints. Labour, raw materials, 
and energy are all used to set up each experimental run. 

For instance, assume that experimenters would like to study five factors, each with 
two levels over six stages. Based on full factorial design, they would have to prepare  
32 settings for each stage, or 32 × 6 = 192 total settings. It would be almost impossible to 
randomly assign those 192 settings to experimental units. Furthermore, once experiments 
are complete, experimenters tend to analyse the results as if the data were taken from 
completely randomised designs, allowing the results to be misinterpreted and ultimately 
slowing down the development process. 

These situations are not uncommon and they usually happen in industry where 
process improvement or new product development is involved. To deal with these 
situations where restrictions on randomisation exist, researchers have been focusing on 
using split plot design and its variants in situations where there are only two stages in a 
process, such as the work done by Box and Jones (1992), Huang et al. (1998), Bingham 
and Sitter (1999, 2001, 2003), Ju and Lucas (2002), Kowalski (2002), Kowalski et al. 
(2002), Goos (2002), Goos and Vandebroek (2001, 2004), Goos and Donev (2007), 
Vivacqua and Bisgaard (2004, 2009) and McLeod and Brewster (2004, 2006).  
Recent reviews for split plot design and its variants are found in Jones and Nachtsheim 
(2009) and Arnouts et al. (2009). However, relatively few works have considered 
experiments with three-or-more stages, with the exception of Mee and Bates (1998), 
Butler (2004), Paniagua-Quinones and Box (2008), Bingham et al. (2008) and Yuangyai 
et al. (2009). 

For a long time, multistage experimentation has received little attention in  
industry experimentation, as most experimental design textbooks and research articles 
have focused on cases of completely randomised design or completely randomised  
design in block. Although split plot design has existed for decades, it has been  
adopted more by agriculture than industry. In this paper, we present a comprehensive 
review of articles that consider experiments with multiple processes both in design 
construction and statistical analysis. We also suggest several scenarios for further 
investigation. 

First, we will discuss the uniqueness of the multistage experiment, followed by a 
review of the existing research on two-stage, three-stage, and four-or-more-stage 
experimentation. Several scenarios for multiple process environments will  
then be presented, with a discussion on future research opportunities and final remarks at 
the end. 

2 Uniqueness of multistage experiments 

To illustrate the uniqueness of multistage experiments, consider only two sub-processes 
of LMRIF: particle preparation and immersion, as shown in Figure 3. We assume that in 
the preparation process there are two factors of interest [percent of binder volume (x1) 
and solid volume (x2)] and that each factor has two levels (– and +). In the colloid 
deposition process, there is one factor of interest [type of immersing chemical (x3)] and 
this factor has two levels. The response (y) is the process yield. 
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Figure 3 Two-stage process 

 

Figure 4 Three possible arrangements for two-stage experiments (a), (b) and (c), (a) CR design 
(b) split plot design (c) split block design (see online version for colours) 

  
(a)     (b) 

 
(c) 

To conduct this experiment, three possible arrangements can be used. In the first 
arrangement, eight samples are prepared at different times, and each sample is placed into 
the immersion bath at different times [see Figure 4(a)]. In the second arrangement, only 
four sample preparations are required. Each of the samples is split into two sub-samples. 
Then each sub-sample is placed into the immersion bath at a different time. Therefore, 
there are four sample preparations and eight immersion settings [see Figure 4(b)]. In the 
third arrangement, only four samples are prepared (similar to the second arrangement), 
then each is split into two sub-samples, similar to those in the split plot design. However, 
these sub-samples are then regrouped and placed into the bath together at either the low 
level or the high level. This reduces the immersion settings from eight to only two  
[see Figure 4(c)]. Experimenters tend to use the third arrangement because the number of 
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settings in each stage is minimised as in Table 1. Once the experiments are done based on 
these three arrangements, the data is collected as in Table 2. Because traditional statistical 
design is heavily focused on complete randomisation or complete randomisation in block, 
the analysis is usually done as if the experimental data were collected from the first 
arrangement as in Figure 4(a). Unfortunately, this approach may lead to misinterpretation 
as discussed by several authors (e.g., Letsinger et al., 1996; Bisgaard, 2000; Yuangyai  
et al., 2009). 
Table 1 Number of settings for each design 

Number of settings in 
Arrangement 

Particle preparation Immersion 
Number of runs 

1 [Figure 4(a)] 8 8 8 
2 [Figure 4(b)] 4 8 8 
3 [Figure 4(c)] 4 2 8 

Table 2 Factors of interest 

Factor 
No. 

x1 x2 x3 
% yield 

1 –1 –1 –1 y1 
2 –1 –1 +1 y2 
3 –1 +1 –1 y3 
4 –1 +1 +1 y4 
5 +1 –1 –1 y5 
6 +1 –1 +1 y6 
7 +1 +1 –1 y7 
8 +1 +1 +1 y8 

The second and third arrangements can be referred to as split plot and split block 
structure, respectively. (The split block structure is also called strip block or strip plot.) 
The main advantage of a split plot or split block arrangement is a reduction in the number 
of settings required in each stage. However, the disadvantage is that the analysis becomes 
more complex due to multiple error terms because of the restrictions on randomisation. 

From the previous example, it is clear that complex multistage manufacturing 
processes make it difficult to use a completely randomised design. Why is the 
randomisation principle important? Randomisation allows for the detection of all sources 
of variation affecting the final outcome except those due to the treatment itself. 
Randomisation tends to reduce the confounding of uncontrolled factors and controlled 
factors. It is very important in experimental analysis because it is required in order to 
have a valid estimation of random error. For more details about the randomisation 
principle, see Box et al. (2005) and Hinkelmann and Kempthorne (2008). 

The uniqueness of multistage experimentation does not allow for the use of the naïve 
approach (which is based on the randomisation principle) because the approach treats 
stages independently. In multistage experimentation, the experimental units depend upon 
the previous stages, and the treatment combinations are not randomly assigned to those 
experimental units. Multistage experimenters use the split plot approach to reduce the 
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cost of experimentation in exchange for losing some degrees of freedom when estimating 
error terms. 

As advanced process development becomes more complicated (i.e., the process 
consists of more than two stages), the three arrangements described earlier may not 
appropriately address experimental structures. Not only does the number of setting 
preparations in each stage increase, but there are also many design choices to be 
considered. What is the appropriate design? How can designs be recognised when there 
are processes in series or in parallel? How and when should multistage designs be used? 
The answers to all of these questions are important considerations when modifying 
existing designs in response to the uniqueness of multistage experiments. Sometimes, a 
completely new methodology for design and analysis is required. Unfortunately, few 
research studies focus on complex processes, and there is no generalised solution for 
multistage statistical design and analysis. In the next section, we summarise the existing 
methodology for multistage experiments. 

3 Existing methodology 

In many manufacturing settings, multistage processes exist when it is expensive or 
difficult to change the levels of some of the factors, or there are physical restrictions on 
the process. In the past, researchers have focused their efforts on effectively employing 
split plot designs (and their variants) for two-stage processes. The term ‘split plot’ is 
originated from agricultural experiments in which large plots of land are split into 
subplots. The original work on split plots was completed by Fisher (1925), with 
developments offered by Yates (1937), Kempthorne (1952), Box and Jones (1992), and 
many others. 

Figure 5 Split plot and split block design in agricultural experiments (see online version  
for colours) 

 



   

 

   

   
 

   

   

 

   

   390 C. Yuangyai and D.K.J. Lin    
 

    
 
 

   

   
 

   

   

 

   

       
 

Experimentation on a plot of land is shown in Figure 5. Suppose that we are considering 
two factors (A and B) and each has three levels, requiring nine treatments in total. If a 
completely randomised design is used, all nine treatments are randomly assigned to nine 
subplots of land. If the split plot arrangement is used, factor A is used as a whole plot 
factor, and its three levels are randomly assigned on three plots of land with levels of 
factor B randomly assigned within each subplot. In split block, three levels of both factor 
A (A1, A2, and A3) and B (B1, B2, and B3) are randomly assigned across the land. 

The split plot design is one that has a two-factor factorial arrangement of a whole plot 
factor and a subplot factor and the whole plot experimental units are split into subplot 
units. This is to be distinguished from the split block design, where the whole plot unit is 
split and then regrouped before applying the subplot treatments. 

To extend the idea of split plot and split block to a two-stage experiment, the whole 
plot factors become the Stage 1 factors, and the subplot factors become Stage 2 factors. 
Additionally, for the split block design, the column factors and the row factors become 
either Stage 1 or Stage 2 factors depending on which ones come first in the process flow. 

To our best knowledge, Table 3 provides a summary of research related to multistage 
experimental design in industry, the development of two-, three-, and four-stage 
experiments are presented in separate subsections. 
Table 3 Research on multistage experimentation in industry 

No. of
stages Design types 

Paper 
2 3 ≥

4

ART 
Fu
ll 

2L
F 

3L
F 

MI
X 

RS
M 

OP
T 

RP
D OTH 

Box and Jones (1992)   SP, 
SB 

        

Letsinger et al. (1996)   SP         
Huang et al. (1998)   SP         
Bingham and Sitter (1999)   SP         
Bisgaard (2000)   SP         
Bingham and Sitter (2001)   SP         
Goos and Vandebroek (2001)   SP         
Trinca and Gilmour (2001)   SP         
Ju and Lucas (2002)   SP         
Kowalski (2002)   SP         
Kowalski et al. (2002)   SP         
Bingham and Sitter (2003)   SP         
Bingham et al. (2004)   SP         
Goos and Vandebroek (2004)   SP         
McLeod and Brewster (2004)   SP         
Vining et al. (2005)   SP         
McLeod and Brewster (2006)   SP         
Parker et al. (2006)   SP         

Notes: ART: design arrangement; Full: full factorial design; 2LF: two-level fractional 
factorial design; 3LF: three-level fractional factorial design; MIX: mixture design; 
RSM: response surface design; OPT: optimal design; RPD: robust parameter 
design; OTH: other design, 1: Latin square fraction design, and 2: linear graph. 
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Table 3 Research on multistage experimentation in industry (continued) 

No. of
stages Design types 

Paper 
2 3 ≥

4

ART 
Fu
ll 

2L
F 

3L
F 

MI
X 

RS
M 

OP
T 

RP
D OTH 

Parker et al. (2007)   SP         
Goos and Donev (2007)   SP         
Cheng and Tsai (2009)   SP         
Miller (1997)   SB        1 
Gilmour and Trinca (2003)   SP         
Vivacqua and Bisgaard (2004)   SB         
Vivacqua and Bisgaard (2009)   SB         
Arnouts et al. (2009)   SB         
Acharya and Nembhard (2008)   SP         
Jones and Goos (2009)   SP         
Paniagua-Quinones and  
Box (2008) 

  SB         

Yuangyai et al. (2009)   SP 
and
SB 

        

Mee and Bates (1998) SB        2 
Butler (2004) SB         
Bingham et al. (2008) SP         
Yuangyai and Nembhard 
(2013) 

 SP 
and
SB 

        

Notes: ART: design arrangement; Full: full factorial design; 2LF: two-level fractional 
factorial design; 3LF: three-level fractional factorial design; MIX: mixture design; 
RSM: response surface design; OPT: optimal design; RPD: robust parameter 
design; OTH: other design, 1: Latin square fraction design, and 2: linear graph. 

3.1 Two-stage experimentation 

We present the following examples to illustrate the nature of two-stage experiments. 
These two examples follow the split plot and split block structure, respectively: 

1 Bingham and Sitter (1999) described a wood product experiment using split plot 
structure. The experiment involves a two-stage process: the mixing stage and the 
processing stage. The objective is to study the effects of eight factors, with two 
levels each. These factors are divided into two groups: five factors in Stage 1 and 
three factors in Stage 2. Due to process restrictions, the experiment was conducted 
by first randomly preparing batches with different treatment combinations of the five 
factors in Stage 1. Then each batch was divided into sub-batches. Each sub-batch 
was then applied a treatment combination of the three factors in Stage 2 to further 
facilitate the forming process. 
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2 Another experiment was conducted in split block structure and described by 
Vivacqua and Bisgaard (2004). A battery manufacturer conducted a battery cell 
experiment. Four factors in the assembly process (Stage 1) and two factors in the 
curing process (Stage 2) were investigated in order to improve the open circuit 
voltage for a certain type of battery. Due to budget limitations, the experimenters 
first randomly assembled battery cells and then simultaneously applied the same 
curing conditions to the assembled cells. 

3.1.1 Design construction 

In each stage, the structure of an experiment can be chosen from several traditional 
designs, including full factorial, fractional factorial, response surface, mixture, optimal, 
and robust parameter. How should a design be chosen? We recommend that 
experimenters consider whether the designs serve their experimental objectives. For 
example, if experimenters wish to study only a first-order model, the fractional factorial 
design may be appropriate, whereas response surface design may be suitable for  
first-order and second-order modelling. If experimenters have some prior knowledge 
about the existing process, optimal design may be used. Jones and Nachtsheim (2009) 
reviewed several cases where the split plot arrangement was used, and Arnouts et al. 
(2009) reviewed several using the split block arrangement. We summarise them as 
follows: 

• Full factorial design: Box and Jones (1992) first discussed the full factorial design in 
split plot. The main advantage of the full factorial design is the ability to estimate all 
main effects and all interactions under the replicated condition. If an unreplicated 
design is conducted, some higher order interactions in the split plot factors and 
whole plot factors need to be pooled and used as error terms. In addition, Box and 
Jones (1992) further considered the situation where a split block arrangement is used 
and there are three sources of error involved. 

• Fractional factorial design: To reduce the number of runs and the number of settings 
in each stage, Huang et al. (1998) and Bingham and Sitter (1999, 2001) proposed a 
design plan based on maximum resolution and minimum aberration. Another method 
was proposed by Bisgaard (2000) using split plot confounding. These proposals 
focused on only split plot structure. Vivacqua and Bisgaard (2004, 2009) proposed 
an optimal design based on split block structure and they also provided a catalogue 
design based only on minimum aberration criteria using a post-fractionation 
technique. In addition, Butler (2004) proposed a new method called ‘grid 
representation’ to determine a design catalogue based on split block structure. 

• Response surface design: To optimise process or product performances, response 
surface methodology is used. This allows us to estimate the first- and second-order 
polynomial terms. Two available designs include central composite design and Box 
and Benhkin design. Letsinger et al. (1996) first discussed the RSM in split plot 
arrangement. Other studies include the mixture experiment and the RSM by 
Kowalski (2002), Kowalski et al. (2002) and Vining et al. (2005). 

• Mixture design: The mixture design is different from other types of design in  
which all factor levels are independent. In mixture design, it is assumed that 
relationships among factors exist. Suppose that in a chemical mixing experiment of 
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two chemicals, the experimenter would like to test how the quantity of each chemical 
affects the properties of the mixed chemical. In this case, we would use the previous 
design. However, if the experimenter wanted to study the effect of the chemical ratio 
of two substances such as 1:3 or 1:2, a mixture design would be used under the 
constraint that summation of the ratio must be equal to one. Examples of mixture 
design can be found in Kowalski (2002), Kowalski et al. (2002) and Goos and Donev 
(2007). 

• Optimal design: The pioneering work on optimal design using split plot structure 
with D-optimality was done by Goos and his colleagues (Goos, 2002; Goos and 
Donev, 2007; Goos and Vandebroek, 2001, 2004). Recall that this type of design is 
used when an experimenter has some information about the process and it can be 
specified by a response model. In addition, it is helpful when there are restrictions on 
the physical design region. Additional discussion on split block structure with  
D-optimality can be found in Trinca and Gilmour (2001), Gilmour and Trinca (2003) 
and Gilmour (2006). 

• Robust parameter design (RPD): Oftentimes, new products are successfully 
produced in laboratory settings, but when production is transitioned to a full-scale 
manufacturing process the results are reversed due to fluctuations in uncontrollable 
factors such as process parameters, raw materials, and customer usage. To solve 
these problems, Taguchi (1987) introduced the concept of RPD to the quality 
engineering community. RPD is a methodological technique to deal with two types 
of factors: controllable and uncontrollable (noise). The objective of RPD is to 
determine which controllable factor levels provide the optimal output performance 
with minimal output variability due to noise factors. [For more details, see 
Shoemaker et al. (1991).] For example, in the particle preparation stages of the lost 
mold rapid infiltration process, there are five factors of interest: solid loading, gel, 
binder, milling time, and milling chamber temperature. In laboratory settings, all five 
factors can be controlled; however, when these stages are scaled for manufacturing, 
temperature becomes difficult to control due to changes in the weather. Little 
research focuses on RPD with restrictions on randomisation. Recent developments 
are discussed by Bingham and Sitter (2003) and McLeod and Brewster (2006) who 
study how to use split plot design for RPD purposes. Therefore, it is necessary to 
develop a multistage experimentation design with the RPD concept in mind for 
situations where restrictions on randomisation exist. 

3.1.2 Analysis 

Another important issue in split plot and split block arrangements is analysis. Split plot 
has two error terms and split block has three, which differs greatly from completely 
randomised design where there is only one error term used. 

Two-stage experiment with split plot structure 

For a simple case where balanced-replicated fractional and factorial design is used, the 
ANOVA model may be employed for describing the observational data from an 
experiment. In order to construct a linear model, it is necessary to understand the linear 
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model for both a split plot and a split block design. Assume that there are a levels of a 
Stage 1 factor, b levels of a Stage 2 factor, and n replicates. 

Based on the randomisation principle, a linear model for a two-stage design is 
1 2s s

hij h i j ijhi hijy μ ρ= + + + + + +α β αβε ε  (1) 

where yhij is the hij
th response of the experiment for h = 1…n, i = 1…a, j = 1…b, μ is the 

general overall mean effect, ρh is the replicate effect ~ iid 2(0, ),ρN σ  αi is the effect of ith 
whole plot factor, 1s

hiε  is the hi
th random error effect iid 

1
2(0, ),sN σ  βj is the effect of jth 

level of subplot factor, αβij is the interaction effect of ijth combination of Stage 1 and 
Stage 2 factors, and 2s

hijε  is the hij
th random error effect ~ iid 2(0, ).N σε  The ρh, 1 ,s

hiε  and 
2s

hiε  are assumed to be mutually independent. 
In addition, if we cannot replicate the design, two probability plots can be used. One 

plot involves only effects of the Stage 1 factors and the other involves effects of Stage 2 
factors and the interactions of Stage 1 and Stage 2 factors. However, for more 
complicated situations (e.g., unbalanced design), second-order polynomial analysis is 
required. The regression model in matrix form is given by 

= + +βY X Zγ ε  (2) 

where Y is the n × 1 vector of responses, X is the n × p model matrix with settings of both 
Stage 1 factors and Stage 2 factors, β is the p × 1 parameter vector of effects, Z is a n × a 
matrix with (i, j) elements, indicating that ith is one when jth run is assigned to the Stage 1 
factor and zero, otherwise, γ is the a × 1 vector of Stage 1 random effects. We also 
assume that 

( )
( )1

2

2

~ 0 , ,

~ 0 ,
n n

a as

N σ

N σ

ε I

γ I
 

and 

cov( , ) ,a n×=ε γ 0  

where In denotes and n × n identity matrix. Under this assumption, the  
variance-covariance matrix can be expressed as 

1
2 2

n sσ σ ′= +V I ZZ  (3) 

and V = diag[V1, V2,…,Vn]. The maximum likelihood estimator of β is 

( ) 11 1ˆ −− −′ ′=β X V X X V Y  (4) 

with variance-covariance matrix 

1 1ˆ( ) ( )Cov − −′=β X V X  (5) 
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Two-stage experiment with split block structure 

As for split block structure, the analysis is similar to split plot structure except that there 
is an additional error term. A linear model for a split block design is 

1 21 2 ands ss s
hij h i j ijhi hj hijy μ ρ ε ε ε= + + + + + + +α β αβ  (6) 

where yhij is the hij
th response of the experiment for h = 1…n, i = 1…a, j = 1…b, μ is the 

general overall mean effect, ρh is the replicate effect ~ iid 2(0, ),ρN σ  αi is the effect of ith 
whole plot factor, 1s

hiε  is the replicate effect ~ iid 2(0, ),ρN σ  βj is the effect of jth level of 
subplot factor, 2s

hjε  is the hjth random error effect iid 2(0, ),δN σ  αβij is the interaction 

effect of ijth combination of Stage 1 and Stage 2 factors, and 1 2ands s
hijε  is the hijth random 

error effect ~ iid 2(0, ).N σε  The ρh, 1 21 2 and, and s ss s
hi hj hijεε ε  are mutually independent. 

And for the generalised analysis, we can express the model in matrix form as 

1 1 2 2= + + +Y X Z γ Z γ εβ  (7) 

where Y is the n × 1 vectors of responses, X is the n × p model matrix of Stage 1 with 
Stage 2 setting, Z1 is a n × a matrix with (i, j) with ith where ith is one when jth run is 
assigned to the ith Stage 1 factors and zero, otherwise. Z2 is a n × b matrix with (i, j) 
where ith is one when jth run is assigned to the ith Stage 2 factors and zero, otherwise. 

1
2 2

1~ (0 , ), ~ (0 , ),n n a asN σ N σε I γ I  and (σ2In), 2
2

2 ~ (0 , ),b bsN σγ I  Cov(γ1, ε) = 0a×n, 
Cov(γ2, ε) = 0b×n, and Cov(γ1, γ2) = 0a×b, where In denotes and n × n identity matrix. The 
variance-covariance matrix can be expressed as 

1 2
2 2 2

1 1 2 2n s sσ σ σ′ ′= + +V I Z Z Z Z  (8) 

The β vector can be estimated using the generalised least squares method and it can be 
used equation (4) and equation (5). This is similar to those of split plot structure but with 
a different V matrix involved. 

Another advantage of the split plot design is the design efficiency as discussed by 
Box and Jones (1992). In split plot structure, there are two error terms 1 ,se  and 2se   
(s1 is Stage 1 factor, s2 is Stage 2 factor). Relative efficiency to completely randomised  
(CR) design is (E = expected mean square error): 2 12 2 1

2 2 2
s ss s sE σ σ nσ E= < + =  and so 

2 1 .s CR sE E E< <  Relative efficiency to a randomised block (RB) design is 2 2
2

s sE σ=  

12 1
2 2

ss sσ nσ E< + =  and so 2 1 .s RB sE E E< <  In split block structure, there are three error 

terms 1 2 1 2and, , .s s s sE E E  Relative efficiency to split plot design is 11
2 2 ,r c ssE σ mσ E× = + =  

thus, 1 2 2 2and , .s s s c r c s rE E E E E E×< < < <  Similar results are illustrated by Ju and Lucas 
(2002), in which the hard to change factor refers to Stage 1 factor and easy to change 
factor refers to Stage 2 factor. 

3.1.3 General observations 

As shown in Table 3, the majority of research heavily focuses on using split plot design 
for two-stage experiments as opposed to the split block arrangement. Much research 
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focus on fractional factorial design, relatively few focus on RSM and optimal design, and 
no studies focus on super-saturated design. In addition, criteria used in fractional factorial 
design for both structures include maximum resolution (Acharya and Nembhard, 2008; 
Vivacqua and Bisgaard, 2009), minimum aberration (Bingham and Sitter, 1999, 2001, 
2003; Yuangyai et al., 2009), maximum number of clear two-factor interaction (Kulahci 
et al., 2006), and model robustness criterion of information capacity (Cheng and Tsai, 
2009). RPD is a common area that can be extended after split plots and split 
arrangements are well defined. This indicates that RPD can also be extended for 
multistage experiments. In fact, designs were extended from the work of both Bingham 
and Sitter (2003) and McLeod and Brewster (2006). 

3.2 Three-stage experimentation 

To demonstrate three-stage experiments, we offer the following examples for illustration: 

1 Acharya and Nembhard (2008) considered an experiment on thin film 
nanofabrication in wafer development. The process consists of three main stages: 
self-assembled monolayer, anchoring catalyst, and poly brush synthesis. In Stage 1, 
monolayers are developed on substrate, then they are divided into subgroups and 
each subgroup of substrates is immersed with a catalyst at a different time. Next, all 
substrates are rinsed and dried. Then each group is divided into another subgroup 
and they are placed in a closed environment in order to synthesise the thin film on 
the substrates. 

2 Paniagua-Quinones and Box (2008) presented a three-stage experiment for the 
improvement of air batteries. This includes three main processes: the coating  
process (two factors), the curing process (two factors), and the tumbling process 
(three factors). The objective is to minimise an inference force. The experiment 
begins by preparing grommets with a treatment combination of Stage 1 factors, then 
each lot is divided and regrouped for a treatment combination of Stage 2 factors. In 
Stage 3, each group is divided and regrouped again for the treatment combination of 
Stage 3 factors. This structure is similar to only split block structures (also referred to 
as a strip strip block design). 

3 Yuangyai et al. (2009) discuss the combination of split plot and split block  
structure for three-stage experiments involving five factors which affect the yield  
of a nanofabrication process. The process involves three stages: particle milling 
(three factors), surface coating (one factor), and immersion (one factor). The 
experiment begins by milling different types of mixtures based on Stage 1 treatment 
combinations, then each mixture is divided into portions and poured into a group of 
moulds. Each group of moulds is then divided into two groups, regrouped and placed 
into a furnace. 

3.2.1 Design construction 

Design construction for three-stage designs is similar to two-stage designs. Any type of 
design can be used. However, as Table 3 indicates, most works involve only fractional 
factorial designs (Acharya and Nembhard 2008; Paniagua-Quinones and Box 2008; 
Yuangyai et al. 2009) and optimal designs (Jones and Goos 2009). 
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3.2.2 Analysis 

The data analysis for three-stage designs becomes more complicated because there are 
several error terms involved. In order to determine how many error terms exist, the reader 
should consult Hinkelmann and Kempthorne (2008) and Federer and King (2007). For 
split plot structure, there are only three error terms involved, while for split block 
structure, there are seven error terms. If Stage 1 and Stage 2 are arranged in split plot and 
Stage 2 and Stage 3 are arranged in split block, there are six error terms. 

In the case of a balanced-replicated full and fractional factorial design, the ANOVA 
model is used. Assume that there are a levels of Stage 1 factors, b levels of Stage 2 
factors, c levels of Stage 3 factors and n replicates. The ANOVA models can be shown in 
different structures as follows: 

Three-stage experiment with only split plot structure 

The following model is called for in experiments where there are only split plot 
arrangements: 

31 2 i
ss s

ghij g h i h j hj ij hijgh ghi ghijy μ ρ ε γ γ γ ε= + + + + + + + + + + +α β αβ α α β αβ  (9) 

where yghij is the ghijth response of the experiment for g = 1…n, h = 1…a, i = 1…b,  
j = 1…c, μ is the general overall mean effect, ρg is the gth replicate effect ~ iid 2(0, ),ρN σ  
αh is the effect of hth level of Stage 1 factor, 1s

ghε  is the ghth random error effect ~ iid 

1
2(0, ),sεN σ  βi is the effect of ith level of Stage 2 factor, 2s

ghiε  is the ghith random error 

effect ~ iid 2
2(0, ),sεN σ  αβhi is the interaction effect of hith combination of Stage 1 and 2 

factors, γj is the effect of jth level of Stage 3 factor, βγij is the interaction effect of ijth 
combination of Stage 1 and Stage 2 factors, αβγhij is the interaction effect of hijth 
combination of Stage 1 and Stage 2 factors, and 3s

ghijε  is the ghijth random error effect  

~ iid 3
2(0, ).sεN σ  The ρh, 31 2, , and ,ss s

gh ghi ghijε ε ε  are mutually independent. 

Three-stage experiment with only split block structure 

The following model is used for experiments where there are only split block 
arrangements: 

1 2 31 2

1 3 2 3 1 2 3

and

and and and and 

s s ss s
ghij g h i hi j higi gjgh ghi

s s s s s s s
ij hijgijghj ghij

y μ ρ ε ε ε γ ε γ

ε γ ε γ ε

= + + + + + + + + + +

+ + + + +

α β αβ α

β αβ
 (10) 

where yghij is the ghijth response of the experiment for g = 1…n, h = 1…a, i = 1…b,  
j = 1…c, μ is the general overall mean effect, ρg is the gth replicate effect ~ iid 2(0, ),ρN σ  
αh is the effect of hth level of Stage 1 factor, 1s

ghε  is the ghth random error effect ~ iid  

1
2(0, ),sεN σ  βi is the effect of ith level of Stage 2 factor, 2s

ghiε  is the gith random error effect 

~ iid 2
2(0, ),sεN σ  αβhi is the interaction effect of hith combination of Stage 1 and Stage 2 

factors, 1 2ands s
ghiε  is the ghith random error effect ~ iid and1 2

2(0, ),s sεN σ  γj is the effect of jth 



   

 

   

   
 

   

   

 

   

   398 C. Yuangyai and D.K.J. Lin    
 

    
 
 

   

   
 

   

   

 

   

       
 

level of Stage 3 factor, 3s
gjε  is the gjth random error effect ~ iid 3

2(0, ),sεN σ  βγhi is the 

interaction effect of hith combination of Stage 1 and Stage 2 factors, 2 3ands s
gijε  is the gijth 

random error effect ~ iid and2 3
2(0, ),s sεN σ  αβγhi is the interaction effect of hith combination 

of Stage 1 and Stage 2 factors, 3s
ghijε  is the ghijth random error effect ~ iid 

1 2
2

and and 3(0, ),s s sN σ  the ρh, 1 2 2 3 1 2 331 2 and and and and, , , , , ands s s s s s sss s
gi gjhi ghi ghij ghijε ε ε ε ε ε  are mutually 

independent. 

Three-stage experiment with the combination of split plot and split block 
structure 

The following model is used for experiment arrangements where there are split plot 
designs in Stage 1 and Stage 2 and split block designs in Stage 3. 

1 2 31

1 3 2 3 1 2 3

and

and and and and gij

s s ss
ghij g h i hi j higjgh ghi

s s s s s s s
ij hijghj ghij

y μ ρ ε ε γ ε γ

ε γ ε γ ε

= + + + + + + + + +

+ + + + +

α β αβ α

β αβ
 (11) 

where yghij is the ghijth response of the experiments for g = 1…n, h = 1…a, i = 1…b,  
j = 1…c, μ is the general overall mean effect, ρg is the gth replicate effect ~ iid 2(0, ),ρN σ  
αh is the effect of hth level of Stage 1 factor, 1s

ghε  is the ghth random error effect ~ iid  

1
2(0, ),sεN σ  βi is the effect of ith level of Stage 2 factor, αβhi is the interaction effect of hith 

combination of Stage 1 and Stage 2 factors, 1 2ands s
ghiε  is the ghith random error effect ~ iid 

and1 2
2(0, ),s sεN σ  αγhj is the interaction effect of hjth combination of Stage 1 and Stage 3 

factors, 1 3ands s
ghiε  is the ghjth random error effect ~ iid and1 3

2(0, ),s sεN σ  γj is the effect of jth 

level of Stage 3 factor, 3s
gjε  is the gjth random error effect ~ iid and1 3

2(0, ),s sεN σ  βγij is the 

interaction effect of hith combination of Stage 1 and Stage 2 factors, 2 3ands s
gijε  is the gijth 

random error effect ~ iid and2 3
2(0, ),s sεN σ  αβγhi is the interaction effect of hith combination 

of Stage 1 and Stage 2 factors, 3s
gjε  is the ghijth random error effect ~ iid 3

2(0, ),sεN σ  the 

ρh, 1 2 1 3 2 33 31 and and and, , , , , ands s s s s ss ss
gjhi ghi ghj ghij ghijε ε ε ε ε ε  are mutually independent. 

3.2.3 General observations 

The most common design used in this area is fractional factorial design, although optimal 
design is also discussed. However, there are no studies on RSM, saturated design or super 
saturated design. For fractional factorial design, maximum resolution and minimum 
aberration criteria are generally used. Unlike two-stage experiments, at the three-stage 
level, there is only a single type of design used for each stage. In addition, analysis issues 
are not well studied, especially when split plot and split block structures are combined. In 
addition, there are no studies on design efficiency. 
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3.3 Four-or-more stages 

Four-or-more stage experiments can be extended from three-stage experiments, however, 
very few research studies focus on this area. When more stages are involved, complexity 
increases for both design and analysis. 

For the fractional factorial design, Mee and Bates (1998) introduced the concept of 
the multistage experiment. They presented an experiment over nine stages but did not 
provide the design catalogue. Butler (2004) provided the optimal design catalogue for a 
four stage experiment based on split block structure. Bingham et al. (2008) provided a 
general algorithm for fractional factorial design. 

Analysing these experiments is very complicated. It is easier to analyse the data  
based on split plot structure because the number of error terms are equal to  
number of stages. For the split block structure, the number of error terms are equal to 

2 1;
1 2

nn n n
n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 where n is the number of stages. Whereas, for the 

combined structure, the number of error terms will be determined based on the structure 
we consider: the number will be between n and 2n – 1. The design and analysis problem 
is not well defined and is difficult to generalise. Several design and analysis issues 
require further investigation, and will be discussed in a later section. 

4 Multistage experimentation 

Multistage experimentation is an extension of split plot design and its variants. It can be 
thought of as having a single whole plot and a subsequent series of subplots. The format 
of the series of subplots can be either split plot structure or split block structure based on 
the nature of the experiment. 

4.1 Definition 
A multistage experiment is an experiment that involves more than two stages. A stage 
can be defined by experimenters based on the nature of the process itself, a process 
location, or a group of operations in which treatment combinations among factors can be 
conveniently applied to experimental units in each stage. To illustrate the idea of 
multistage experimentation, we consider several scenarios based on: 
• number of stages (two stages, three stages, four-or-more stages) 
• process type (series or parallel) 
• nature of experimentation (nested structure) 
• ability to replicate the design 
• blocking structure. 

To display the different scenarios, Table 4 shows the descriptions that are used to explain 
the different process configurations as well as how experimental units are treated among 
stages. For example, Figure 6 displays a schematic diagram for a two-stage process 
where Stage 2 follows Stage 1, which is a series structure. Based on this process, Figure 7 
could be an alternative. An experiment could be conducted using replication, with two 
replicates in Stage 2. In each replicate, the Stage 2 treatments would be applied at the 
same time to the experimental units. 
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Table 4 Representation of a multistage experiment (see online version for colours) 

Representation Description 

 

Indicates the Stage i. 

 

Indicates the process flow from Stage i to Stage j. 

 
Indicates the experimental unit in Stage i. 

 
Indicates that treatment combinations of Stage i 
factors are applied the experimental unit in that stage. 

 
Indicates the replication unit. 

 
Indicates that treatment combinations are applied at 
the same time. 

Figure 6 A schematic diagram of a two-stage process 

 

Figure 7 Experimental units for a two-stage process (see online version for colours) 

 

4.2 Process configuration 

To illustrate scenarios of multistage experimentation, Tables 5, 6, and 7 provide  
different process configurations for two-stage, three-stage, and four-or-more-stage 
experimentation. Some scenarios have been explored by several researchers, whereas 
others require further investigation. 

4.2.1 Two-stage experiments 

Prior to discussing two-stage experiments, we would like to briefly address those 
involving a single process. A single process experiment allows us to randomly assign 
treatment combinations to experimental units. An experiment (Case 1A) can be done 
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using either completely randomised design or randomised design in block. Another type 
of design is a nested design (Case 1B), which involves different factors in each treatment. 
Typical designs (e.g., full factorial, fractional factorial, response surface, saturated , and 
supersaturated), are suitable for single process experiments, where one error term is used. 
[See more details in Box et al. (2005), Montgomery (2009) and Wu and Hamada (2000); 
for saturated design, see Lin (2003); for supersaturated design, see Lin (1993)]. 

For a two-stage experiment, a basic example is Case 2A which is arranged in split plot 
structure. Many researchers have studied this case in deep detail (see Box and Jones, 
1992; Bingham and Sitter, 1999, 2001; Huang et al., 1998). Case 2B is arranged in split 
block structure. Studies on this structure include Vivacqua and Bisgaard (2004, 2009) and 
Miller (1997). 

Other designs include Cases 2C–2H which are constructed based on both case 2A and 
2B. Case 2C describes an assembly process where Stage 1 and Stage 2 are each prepared 
independently. Once experimental units from each stage are complete they are then 
assembled and the rest of the design is similar to split block structure. 

In Cases 2D–2F experiments are conducted based on experimental units in a stage 
which are replicated only once, prepared, and then are split for replication in Stage 2. The 
treatment combination of Stage 2 factors is applied based on either split plot (2D), split 
block (2E), or a combination of the two (2F). The estimation of error terms for each 
becomes difficult, but the number of terms remains the same. Case 2G covers a situation 
in which each stage has its own nested factors. Analysis of this design can be done by 
combining the nested design analysis with split plot analysis. 
Table 5 Several possible scenarios for two-stage experimentation (see online version  

for colours) 

No. Configuration Experimental unit structure 

1A 

 
 

1B 

 
 

2A 

 

 
2B 
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Table 5 Several possible scenarios for two-stage experimentation (continued) (see online 
version for colours) 

No. Configuration Experimental unit structure 

2C 

 

 
2D 

 

 
2E 

 

 
2F 

 

 
2G 
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4.2.2 Three-stage experiments 

Conducting experiments on three-stage processes can be accomplished by extending 
ideas from two-stage experiments. The design structure of each stage can be any of the 
traditional designs. The simplest case (3A) is conducted with only split plot structure. 
After experimental units of Stage 1 are applied with a treatment combination of Stage 1 
factors, they are split for Stage 2 and then for Stage 3. In Case 3B where only split block 
is used, at each stage the experimental units are split and regrouped for treatment.  
Cases 3C1 and 3C2 represent situations where both split plot and split block are used. 
Their analyses were shown in the previous section. 

Case 3D is extended from Case 2C which is used in the assembly line. After 
assembling the experimental units for Stage 1 and Stage 2, the treatment combination of 
Stage 3 factors is applied randomly, in either split plot or split block arrangement.  
Case 3E represents new process development. Experimenters may consider adding or 
skipping Stage 2 in order to improve the process. If Stage 2 is added, there are other 
factors to be studied. 
Table 6 Several possible scenarios for three-stage experimentation (see online version  

for colours) 

No. Configuration Experimental unit structure 

3A 

3B 

3C1 
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Table 6 Several possible scenarios for three-stage experimentation (continued) (see online 
version for colours) 

No. Configuration Experimental unit structure 

3C2 

3D 

 

 
3E 

4.2.3 Four-or-more stage experiments 

Cases 4A and 4B are the simplest arrangements for experiments in four stages. They  
are extended from Cases 3A and 3B. Case 4C is more complicated, as its structure  
is the combination of 3C1, 3C2 and 3D. At each stage, the design can be either type of 
design. 

In summary, as shown in Tables 5, 6, and 7, in the simplest cases where there are 
only two stages, several scenarios (2A, 2B, 2C) have already been studied. Some 
multistage scenarios have also already been explored (3A, 3B, 3C). Experimenters can 
consider these cases and match them to their specific environments. However, there are 
many multistage scenarios which still need to be studied (e.g., 2D – 2H, 3D – 3E, and 
4C). In these cases, some are simply extended from existing designs, some require 
modifications to the existing methodology, and some must be completely redesigned. 
When experiments involve three- or four-or-more stages, we still do not fully understand 
several issues surrounding design and analysis, especially when split plot and split block 
are combined. 
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Table 7 Several possible scenarios for four-stage experimentation (see online version  
for colours) 

No. Configuration Experimental unit structure 

4A 

 
4B 

 
4C 

 

5 Final remarks 

In this paper, we introduced the concept of multistage experimentation in advanced 
manufacturing. We summarised the current methodology which is mainly based on split 
plot and split block arrangements for two-stage experimentation. It is recognised that 
two-stage experimentation is well studied and developed. These two-stage experiments 
are then extended to three-stage experiments or more. We then provided several scenarios 
for multistage experiments and showed that there are gaps between formal statistical 
design and analysis methods and experimentation in practice. 

Here, we present some research opportunities that may have a high potential impact 
on research and applications. This is especially true when experiments involve three-or-
more stages because both experiment design and data analysis become more complex. In 
addition, the research in this area cannot be generalised for multistage experiments. 

• In terms of analysis, when a process become larger and larger (many stages), several 
questions arise. For example, is it reasonable or practical to use traditional statistical 
methods (ANOVA, GLS, etc.) to analyse these types of data? Are there any other 
techniques that can be used? In this case, it is difficult to understand the error 
structure for practitioners. When more stages are involved, more degrees of freedom 
are lost when estimating each error term. This leads to the loss of contrast 
information. Another analysis issue includes the design efficiency of multistage 
experiments compared to those with completely randomised designs or completely 
randomised designs in block. 

• Fractional factorial design is a common type of design used in this area. Designs are 
developed based on maximum resolution and minimum aberration criteria which 
have been popularly used in broad applications. It is also necessary to develop a 
design based on an experimenter’s specific interest. Kulahci et al. (2006) points out 
that there are other important criteria such as the maximum number of clear main 
effects, and maximum number of clear two-factor interaction effects for fractional 
factorial split plot design. Therefore, it is necessary to develop an algorithm to set up 
a design catalogue based on the criteria for these designs. We believe that it would 



   

 

   

   
 

   

   

 

   

   406 C. Yuangyai and D.K.J. Lin    
 

    
 
 

   

   
 

   

   

 

   

       
 

be inappropriate to generate a design based on a single criterion. A design catalogue 
with several criteria may provide more benefits to experimenters. 

• Most designs used in multistage experimentation involve a single type of 
experimental design (e.g., two-level fractional factorial design, response surface 
method, or optimal design). Few studies focus on the combination of existing 
designs, although Vining et al. (2005) studied the combination of mixture design and 
response surface methods. One must also consider combined structures in traditional 
design, such as saturated design and fractional factorial design. The supersaturated 
designs are used when the number of runs is small compared to the number of 
interested factors. These combined designs may present other alternatives to 
experimenters when the focus of experiments is only on the main effects. They 
would allow experimenters to reduce costs more than using only fractional factorial 
design. Another potential area for research is the combination of traditional designs 
and optimal design. These designs may allow experimenters to use their prior 
information to gain new knowledge. 

• The application of other statistical methods for product and process improvement  
is based on the complete randomisation principle. One example is in the area of 
design for reliability. Unlike data from general experimental design, the data from a 
reliability study is not normally distributed, is non-negative, and tends to be censored 
(Wu and Hamada, 2000). To incorporate the reliability data, two tasks need to be 
further explored for multistage experiment design: how to deal with estimation 
problems with censored data, and how to analyse reliability data with multiple error 
terms. Another application is gage reproducibility and repeatability (R&R). Although 
gage R&R studies have been used for years, little research has focused on how to 
conduct and analyse gage R&R based on split plot structure (Burdick et al., 2005). 

Although statistical designs of experiments have been developed and used for decades in 
industry, they are not used much in the area of multistage environment. Multistage 
experiments represent a new class of experimental design used to overcome physical 
difficulties in experiments with randomisation restrictions. Significant advancements  
in these areas would allow experimenters to speed up both process and product 
improvement while revolutionising the use of quality engineering tools in industry. 
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