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Abstract: TheD-optimalminimax criterion is proposed to construct fractional factorial designs. The resulting

designs are very efficient, and robust against misspecification of the effects in the linear model. The criterion

was first proposed by Wilmut & Zhou (2011); their work is limited to two-level factorial designs, however.

In this paper we extend this criterion to designs with factors having any levels (including mixed levels) and

explore several important properties of this criterion. Theoretical results are obtained for construction of

fractional factorial designs in general. This minimax criterion is not only scale invariant, but also invariant

under level permutations. Moreover, it can be applied to any run size. This is an advantage over some other

existing criteria. TheCanadian Journal of Statistics41: 325–340; 2013 ©2013Statistical Society ofCanada

Résumé: Les auteurs proposent le critère minimax D-optimal pour l’élaboration de plans factoriels frac-

tionnaires. Les plans obtenus sont très efficaces et robustes à la spécification erronée des effets du modèle

linéaire. Le critère a d’abord été proposé par Wilmut et Zhou (2011), dont les travaux se limitent aux plans

factoriels à deux niveaux. Dans le présent article, les auteurs généralisent ce critère aux plans présentant

des facteurs avec un nombre arbitraire de niveaux, y compris des niveaux mixtes, et ils examinent plusieurs

propriétés importantes de ce critère. Ils obtiennent des résultats théoriques pour la construction de plans

factoriels fractionnaires en général. Ce critère minimax est non seulement invariant à une transformation

d’échelle, mais il est aussi invariant aux permutations de niveaux. De plus, il peut être appliqué à des essais de

n’importe quelle taille. Il s’agit d’un avantage par rapport à d’autres critères existants. La revue canadienne
de statistique 41: 325–340; 2013 © 2013 Société statistique du Canada

1. INTRODUCTION

Fractional factorial designs are very useful in industrial experiments. Various optimal design

criteria have been studied based on the effect hierarchy principle (Mukerjee &Wu, 2006): namely

(1) lower order effects are more important than higher order ones, and (2) the same-order effects

are equally important. Box&Hunter (1961a, b) proposed themaximum resolution criterion. Since

maximum resolution designs are not unique, the minimum aberration criterion was developed in

Fries & Hunter (1980) to further discriminate among those designs to minimize the lower-order

confounding. The clear effects criterion inWu&Chen (1992)maximized the number of clear two-

factor interactions. The maximum estimation capacity criterion in Sun (1993) aimed at selecting

a design that could estimate all the main effects and as many two-factor interactions as possible.

Other related developments can be found inMukerjee&Wu (2006). Zhang et al. (2008) proposed a

general minimum lower-order confounding criterion, which was based on a more detailed aliased

effect-number pattern than the word length pattern.
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AD-optimal design minimizes the determinant of the covariance matrix of an estimator, and a

minimum G2-aberration design (Tang & Deng, 1999) minimizes the bias sequentially. Since it is

important to consider both the variance and the bias of the estimator in a design criterion, Wilmut

& Zhou (2011) studied a D-optimal minimax criterion to construct two-level fractional factorial

designs. The criterion is based on the mean squared error of the least squares estimator (LSE). The

resulting D-optimal minimax designs are very efficient and also robust against misspecification

of the effects in the fitted model. Most design criteria for fractional factorial designs can only

be applied to certain run sizes, especially for regular fractional factorial designs. However the

D-optimal minimax criterion can be used for any run size.

The minimax criterion has been used to construct designs for many regression models. See,

for example, Huber (1981), Wiens (1992), Fang & Wiens (2000), and Zhou (2001, 2008). The

resulting designs are robust against small departures from model assumptions. Such departures

include the misspecification of the response function (Huber, 1981;Wiens, 1992; Zhou, 2008), the

misspecification of the correlation structure of the errors (Zhou, 2001), and the misspecification

of the error variance (Fang & Wiens, 2000).

In this paper, we explore the D-optimal minimax criterion for fractional factorial designs and

investigate several invariance properties. Theoretical results are derived to construct D-optimal

minimax designs. Specific applications are given for three-level and mixed-level fractional fac-

torial designs. The rest of this paper is organized as follows. Section 2 provides the basic ter-

minologies and problem formulation. In Section 3, properties of D-optimal minimax designs are

investigated and obtained. Examples of D-optimal minimax designs are presented in Section 4.

Section 5 provides some concluding remarks. All proofs are given in the Appendix.

2. LINEAR MODEL AND D-OPTIMAL MINIMAX CRITERION

Suppose that there are k factors, F1, . . . , Fk, to be investigated through an experiment, where

factor Fi has ai (ai ≥ 2) levels, and a full factorial design has N = a1a2 · · · ak runs. Through a

full factorial design, all the main effects and interactions can be estimated.

2.1. Orthogonal Effects
Let u1, u2, . . . , u(N−1) be N − 1 orthogonal columns containing all the main effects and inter-

actions for a full factorial design with N runs. Define li = (u�
i ui)

0.5 to be the vector norm of ui,

i = 1, . . . , N − 1. For example, if ui is the column representing the main effect for a two-level

factor, then ui has N/2 elements being −1 and N/2 elements being +1 and thus li = N0.5. If

ui is the column representing the linear component of the main effect for a three-level factor,

then ui has N/3 elements being −1, N/3 elements being 0 and N/3 elements being +1 and

thus li = (2N/3)0.5. For the quadratic component of the main effect for a three-level factor, ui

has N/3 elements being −2, 2N/3 elements being +1, and thus li = (2N)0.5. Let the matrix

U = (1, u1, u2, . . . , u(N−1)), where 1 is the column of ones. It is obvious that U�U is a diagonal

matrix with elements N, l21, . . . , l
2
N−1, and we write U�U = diag{N, l21, . . . , l

2
N−1}.

2.2. Linear Model
Let R0 be a requirement set including all the main effects and some interaction effects. The

main purpose of the experiment here is to efficiently estimate all the effects in R0. Define a

set of subscripts for the columns of U corresponding to the effects in R0, that is, J0 = {j :

uj is a column representing an effect in R0}. Without loss of generality, we can assume J0 =
{1, 2, . . . , m}, where m is the total number of effects in R0 (say, by rearranging the columns in

U). Since the total number of main effect components is
∑k

i=1(ai − 1) and the requirement set

R0 includes all the main effects, it is necessary that m ≥ ∑k
i=1(ai − 1).
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Let y be the response variable for the experiment, and let xj , j ∈ J0, be the effects in R0. The

run size of the experiment is n(≤ N). A linear model is assumed,

yi = θ0 +
m∑

j=1

θjxij + εi, i = 1, . . . , n, (1)

where xij is a design point of xj , selected from column uj , and the errors εi’s are i.i.d. ran-

dom variables with mean 0 and variance σ2. Let the matrix U1 = (1, u1, . . . , um) and U2 =
(um+1, . . . , u(N−1)), then U = (U1, U2). Denote by s�

i the ith row of matrix U1, then the design

space is S = {s1, . . . , sN}. An “optimal” fractional factorial design of n runs (points) will be selec-

ted from S without replacement such that it gives the “best” estimate for θ1 = (θ0, θ1, . . . , θm)
�

in (1).

2.3. Model Misspecification
If there are other significant effects that are mistakenly excluded in R0, then the true response can

be written as

E(y) = θ0 +
m∑

j=1

θjxj + f (x1, . . . , xm), (2)

where function f is called a departure function. To capture all possible departures frommodel (1),

we define a class F of departure functions f as in Wilmut and Zhou (2011), where the function

f satisfies two conditions:

(C1) The function f is orthogonal to regressors (effects) x0, x1, . . . , xm on the design space S,
that is,

N∑

i=1

f (ui1, . . . , uim)uij =
N∑

i=1

f (si)uij = 0, j = 0, 1, . . . , m, (3)

where x0 represents the term for θ0, ui0 = 1, and uij is the ith element of column uj ,

i = 1, . . . , N.

(C2) The function f is bounded on the design space S, that is, for a given α ≥ 0,

1

N

N∑

i=1

f 2(ui1, . . . , uim) = 1

N

N∑

i=1

f 2(si) ≤ α2. (4)

To find the functions in the class F, define xj to be the effect corresponding to column uj in

U, j = m + 1, . . . , N − 1. For j ≥ m + 1, xj is an interaction, so it is a function of the main

effects. Thus it is a function of effects x1, . . . , xm. For i = 1, . . . , N, let z1(si) = (ui1, . . . , uim)
�,

z2(si) = (ui,m+1, . . . , ui,N−1)
�, and define two diagonal matrices:

V1 = diag
{
N, l21, . . . , l

2
m

}
, V2 = diag

{
l2m+1, . . . , l

2
N−1

}
. (5)

The following lemma presents all the functions in F.
Lemma 1. Any function f in F, satisfying conditions (C1) and (C2), has the following form:

f (si) = z�
2 (si)θ2, i = 1, . . . , N, (6)

where θ2 ∈ R(N−m−1) and 1
N

θ�
2 V2θ2 ≤ α2.
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Lemma 1 shows that the departure function f in (2) is a linear combination of all the effects

not in R0. The magnitude of f is controlled by a bound in (C2), which puts a condition on the

linear combination. The function f is involved in the bias of the LSE of θ1 in (1), which will be

discussed in the next subsection.

For two-level fractional factorial designs, it is clear that l2i = N for all i = 1, . . . , N − 1, so

V2 = NI, where I is the identity matrix. In this case, 1
N

θ�
2 V2θ2 ≤ α2 becomes ||θ2|| ≤ α, and

the result in Lemma 1 reduces to that of Wilmut & Zhou (2011, Lemma 1).

2.4. D-Optimal Minimax Criterion
Model (1) can be written in matrix form as

y = Z1θ1 + ε, (7)

where y = (y1, . . . , yn)
�, Z1 is the n × (m + 1) model matrix for the requirement set R0 and

each row of Z1 is a selected row of U1 or a point in S, and ε is the error vector having mean 0 and

variance matrix σ2In. However the possible true model is (2). From Lemma 1, the true model can

be written as

y = Z1θ1 + Z2θ2 + ε, (8)

where Z2 is the n × (N − m − 1) model matrix for the effects not in R0, and each row of Z2 is

a selected row of U2.

From model (7), the LSE of θ1 is given by

θ̂1 = (Z�
1 Z1)

−1Z�
1 y.

The variance and bias of the LSE are, respectively,

Cov(θ̂1) = σ2(Z�
1 Z1)

−1,

Bias(θ̂1) = E(θ̂1) − θ1 = (Z�
1 Z1)

−1Z�
1 Z2θ2

and the mean squared error is

MSE(θ̂1, Z1, θ2) = Cov(θ̂1) + Bias(θ̂1)Bias
�(θ̂1)

= σ2(Z�
1 Z1)

−1 + (Z�
1 Z1)

−1Z�
1 Z2θ2θ

�
2 Z�

2 Z1(Z�
1 Z1)

−1. (9)

For a fixed run size n, the D-optimal minimax criterion for constructing fractional factorial

designs for model (7) is to find a design Z∗
1 minimizing the following loss function

LD(Z1) = max
θ2

det
(
MSE(θ̂1, Z1, θ2)

)
, (10)

where θ2 satisfies 1
N

θ�
2 V2θ2 ≤ α2. The design Z∗

1 is called a D-optimal minimax design for

model (7). The minimax problem is difficult in general, but here we are able to find an explicit

expression for LD(Z1). The result for LD(Z1) allows us to investigate various properties of

D-optimal minimax designs.
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Theorem 1. The loss function in (10) equals to

LD(Z1) = σ2(m+1)
1 + Nα2

σ2 (1 − λmin(V
−1/2
1 Z�

1 Z1V−1/2
1 ))

det(Z�
1 Z1)

, (11)

where λmin( ) denotes the smallest eigenvalue of a matrix, and matrix V1 is given in (5).

A D-optimal minimax design minimizes LD(Z1). An explicit form for LD(Z1) is obtained in

Theorem 1, thus the minimax problem associated with the D-optimal minimax criterion becomes

a minimization problem. D-optimal minimax designs are still hard to derive analytically but can

be found numerically. However, many theoretical properties have been obtained, as presented in

the next section.

For two-level fractional factorial designs, since l2i = N for all i = 1, . . . , N − 1,wehaveV1 =
NI. In this case, 1 − λmin(V

−1/2
1 Z�

1 Z1V−1/2
1 ) = 1 − 1

N
λmin(Z�

1 Z1), and the result in Theorem 1

becomes the result in Wilmut & Zhou (2011, Theorem 1).

3. PROPERTIES OF D-OPTIMAL MINIMAX DESIGNS

For a given requirement set R0, a D-optimal minimax design of n runs can be selected from the

N rows of matrix U1. If the columns of U1 or U are rescaled with different vector norms, is

the D-optimal minimax design scale invariant? Scale invariance is a property that often fails for

A- and E-optimality, even in the absence of robustness consideration. But it holds for D-optimality

without robustness. Also factor levels can be coded differently, and in particular the levels can be

permuted. Is the D-optimal minimax design permutation invariant? Two results are derived in this

section to provide positive answers to these questions. In addition, a result about the loss function

and the relationship between D-optimal designs and D-optimal minimax designs are investigated.

3.1. Scale Invariance
Suppose the columnsofU aremultiplied, respectively, by positive constantsb1, . . . , bN−1, namely

ũj = ujbj , j = 1, . . . , N − 1. Define two diagonal matrices B1 = diag{1, b1, . . . , bm} and B2 =
diag{bm+1, . . . , bN−1}, and let B = B1 ⊕ B2 and Ũ = UB. The vector norms of the columns in

Ũ become l̃j = ‖ũj‖ = ljbj , j = 1, . . . , N − 1. Let Ṽ1 = diag{N, l̃
2
1, . . . , l̃

2
m}. It is obvious that

Ṽ1 = B1V1B1. (12)

Using the rescaled effects, we fit the following linear model,

y = Z̃1θ1 + ε, (13)

where Z̃1 = Z1B1 and Z1 is the same as in model (7).

Theorem 2. Suppose Z∗
1 is a D-optimal minimax design for (7). Then a D-optimal minimax

design for (13) is Z̃∗
1 = Z∗

1B1, which implies that the same n rows are selected in the two
D-optimal minimax designs for (7) and (13).

Theorem 2 shows that a D-optimal minimax design is scale invariant. This implies that a

D-optimalminimaxdesign for amodel canbe called aD-optimalminimaxdesign for a requirement

set R0.
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3.2. Permutation Invariance
A factor level permutation may be applied to more than one factor, and each factor can be

permuted differently. Assume that columns ūj’s are the result of a permutation. Define a class

of permutations � = {π : ūj = ±uj for all j = 1, . . . , N − 1}. In fact, if ūj = ±uj for all the

main effects, then it is true for all the interactions. Write ūj = qjuj with qj = ±1, and define

a diagonal matrix Q1 = diag{1, q1, . . . , qm}. Let Z̄1 = Z1Q1, and a fitted model under a level

permutation in � is

y = Z̄1θ1 + ε. (14)

Theorem 3 below shows that D-optimal minimax designs are invariant under permutations in �.

Theorem 3. The loss functions for models (7) and (14) are identical, that is,LD(Z1) = LD(Z̄1).

Theorem 3 can also be interpreted as that D-optimal minimax designs may not be unique for a

requirement set R0. Suppose Z∗
1 is a D-optimal minimax design. If there exists a diagonal matrix

Q1 with elements ±1 such that Z∗
1Q1 is a possible design on design space S, then Z∗

1Q1 is also

a D-optimal minimax design. For example, for a two-level factor, it can be done by switching

the two levels; for a three-level factor, it can be done by keeping the middle level the same and

switching the other two levels.

3.3. More Theoretical Properties

Theorem 4. The loss function LD(Z∗
1) is a decreasing function of run size n, where Z∗

1 is a
D-optimal minimax design for (7). For n = N, we have LD(Z∗

1) = σ2(m+1)/(N
∏m

i=1 l2i ).

Theorem 4 establishes some lower bounds for the loss function LD(Z∗
1), which will be illus-

trated in Examples 2 and 3 in the next section. A better lower bound (not proved yet) is proposed

and discussed in Section 5.

Now let us examine the relationship between D-optimal designs and D-optimal minimax

designs. Define v = Nα2/σ2, φ1(Z1) = λmin(V
−1/2
1 Z�

1 Z1V−1/2
1 ) and φ2(Z1) = det(Z�

1 Z1), then

LD(Z1) = σ2(m+1)[1 + v(1 − φ1(Z1))]/φ2(Z1).AD-optimal design maximizes φ2(Z1). If v = 0,

minimizing LD(Z1) is equivalent to maximizing φ2(Z1), then a D-optimal minimax design is a

D-optimal design. For 0 < v < ∞, D-optimal minimax designsmay not be the same as D-optimal

designs. However, if a design maximizes both φ1(Z1) and φ2(Z1), then it is a D-optimal minimax

design and does not depend on v. For v → ∞, minimizing LD(Z1) is equivalent to maximizing

φ1(Z1). From Theorem 2, D-optimal minimax designs are scale invariant, so we can scale the

columns of U and make their norms to be the same, say li = N0.5. Then maximizing φ1(Z1) is

equivalent to maximizing λmin(Z�
1 Z1), which is the E-optimal design criterion. Often D-optimal

minimax designs maximize both φ1(Z1) and φ2(Z1), so they are both D-optimal and E-optimal

designs.

Table 1: D-optimal minimax design in Example 1.

Factor/run 1 2 3 4 5 6 7 8 9

F1 0 1 2 0 1 2 0 1 2

F2 0 0 0 1 1 1 2 2 2

F3 0 2 1 1 0 2 2 1 0

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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4. EXAMPLES

In this section, we present three examples of D-optimal minimax designs including one for mixed-

level and two for three-level fractional factorial designs. In Example 1, we show that D-optimal

minimax designs do not depend on the value of v, and many D-optimal minimax designs can be

generated using the result in Theorem 3. In Example 2, we confirm the result in Theorem 4 and

also examine the relationship between D-optimal designs and D-optimal minimax designs. All

the D-optimal minimax designs in Examples 1 and 2 are D-optimal designs, so they are highly

efficient. The results in Examples 1 and 2 are obtained using a complete search method. Example

3 provides the detail to apply a simulated annealing algorithm to find D-optimal minimax designs.

Example 1. Suppose we want to construct a D-optimal minimax design with n = 9

runs and three three-level factors F1, F2 and F3. Consider a requirement set R0 =
{x1L, x1Q, x2L, x2Q, x3L, x3Q}, where xiL and xiQ are the linear and quadratic components

of the main effect of factor Fi, i = 1, 2, 3. The three levels (0, 1, 2) of Fi are coded as

(−1, 0, +1) in xiL and (+1, −2, +1) in xiQ. A full factorial design has N = 33 = 27 runs. Since

27!/(9! 18!) = 4,686,825, a complete search is possible to find a D-optimal minimax design. In

the loss function LD(Z1), we set v = 1 to search for D-optimal minimax designs first. By mini-

mizing LD(Z1), D-optimal minimax designs were obtained. Table 1 presents one of them. All the

D-optimal minimax designs give φ1(Z1) = 1/3 and φ2(Z1) = 11, 337, 408, and both φ1(Z1) and

φ2(Z1) are maximized. Thus D-optimal minimax designs do not depend on the value of v in this
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Figure 1: Loss function (LD(Z1))
1/(m+1) for the first 5 classes in Example 1.
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example, and they are also D-optimal designs for R0. Notice that the design in Table 1 is a regular

fractional factorial design with the defining relation: F3 = F2
1F2. Applying the result in Theorem

3, we can get a few D-optimal minimax designs from Table 1 by permuting levels 0 and 2 within

each factor, since the quadratic component remains unchanged and the linear component changes

a sign. We can permute the levels for any number of factors.

Using the loss function LD(Z1), those 4,686,825 designs can be grouped into several equiva-

lence classes, but the number of classes is usually quite large. There are more than 40 classes

in this example, and a plot of the smallest values of the loss function with v = 1 for the first 5

classes versus the designs is given in Figure 1. There are 12 D-optimal minimax designs (the first

class), 972 in the second class, 324 in the third class, 3,240 in the fourth class, and 2,592 in the

fifth class. �

Example 2. Consider an experiment with three factors: Factors F1 and F2 with three le-

vels, while F3 with two levels. Suppose we want to estimate all the main effects, interac-

tion between F1 and F3, and interaction between F2 and F3. The requirement set is then

R0 = {x1L, x1Q, x2L, x2Q, x3, x1Lx3, x1Qx3, x2Lx3, x2Qx3}, where xiL and xiQ are the linear and

quadratic components of the main effect of factor Fi, i = 1, 2, and x3 is the main effect of F3. The
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Figure 2: Functions in Example 2: (a) max φ1(Z1) versus n, (b) (max φ2(Z1))
1/(m+1) versus n, (c)

(minLD(Z1))
1/(m+1) versus n, with v = 1 and σ2 = 1. The circles represent the actual function values,
while the dotted lines are upper bounds in (a) and (b) and a lower bound in (c).
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Table 2: Two designs for n = 10 in Example 2.

Run 1 2 3 4 5 6 7 8 9 10

Design d1

F1 0 1 2 0 0 1 2 2 0 1

F2 0 0 0 1 2 0 0 1 2 2

F3 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1

Function φ1 = 0.08390 φ2 = 1,719,926,784 L1/(m+1)
D = 0.12726

Design d2

F1 0 1 2 0 2 0 1 2 1 2

F2 0 0 0 1 2 0 0 0 1 2

F3 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1

Function φ1 = 0.12732 φ2 = 1,719,926,784 L1/(m+1)
D = 0.12697

three levels (0, 1, 2) of Fi (i = 1 and 2) are coded as (−1, 0, +1) in xiL and (+1, −2, +1) in xiQ,

and the two levels of F3 are coded as −1 and +1. A full factorial design has N = 2 × 32 = 18

runs. We construct D-optimal minimax designs for various run sizes, n = 10, 11, . . . , 18, using a

complete search. Figure 2 presents three plots: (a) max φ1(Z1) versus n, (b) (max φ2(Z1))
1/(m+1)

versus n, and (c) (minLD(Z1))
1/(m+1) (with v = 1 and σ2 = 1) versus n. It shows that max φ1(Z1)

and max φ2(Z1) are increasing functions of n, and LD(Z1) is a monotonic decreasing function

of n. This is consistent with Theorem 4. From the numerical results, we also notice that some

D-optimal designs are not D-optimal minimax designs and some designs maximizing φ1(Z1) are

not D-optimal minimax designs either. The D-optimal minimax designs maximize both φ1(Z1)

and φ2(Z1), so they do not depend on v. Table 2 presents two designs d1 and d2 for n = 10,

where d1 is a D-optimal design but not a D-optimal minimax design, while d2 maximizes both

φ1(Z1) and φ2(Z1) and thus is a D-optimal minimax design. Table 3 gives two designs d3 and d4

Table 3: Two designs for n = 15 in Example 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Design d3

F1 0 1 2 0 1 2 0 1 2 0 1 0 2 1 2

F2 0 0 0 1 1 1 2 2 2 0 0 1 1 2 2

F3 −1 −1 −1 −1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1

Function φ1 = 0.33333 φ2 = 835,884,417,024 L1/(m+1)
D = 0.06760

Design d4

F1 0 1 2 0 1 2 0 1 0 1 2 1 2 0 1

F2 0 0 0 1 1 1 2 2 0 0 0 1 1 2 2

F3 −1 −1 −1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1 +1

Function φ1 = 0.33333 φ2 = 928,760,463,360 L1/(m+1)
D = 0.06689
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Table 4: D-optimal minimax design for n = 27 in Example 3.

Run F1 F2 F3 F4 Run F1 F2 F3 F4

1 1 0 0 0 15 1 2 1 1

2 2 0 0 0 16 2 0 2 1

3 2 2 0 0 17 2 1 2 1

4 0 0 1 0 18 2 2 2 1

5 0 1 1 0 19 1 1 0 2

6 2 1 1 0 20 2 1 0 2

7 1 1 2 0 21 1 2 0 2

8 0 2 2 0 22 2 0 1 2

9 1 2 2 0 23 0 2 1 2

10 0 0 0 1 24 2 2 1 2

11 0 1 0 1 25 0 0 2 2

12 0 2 0 1 26 1 0 2 2

13 1 0 1 1 27 0 1 2 2

14 1 1 1 1

for n = 15, where d3 maximizes φ1(Z1), but it is not a D-optimal minimax design or D-optimal

design. Design d4 maximizes both φ1(Z1) and φ2(Z1) and is a D-optimal minimax design. �

If N is large, N!/(n!(N − n)!) can be very large and it is not feasible to do a complete search

to find D-optimal minimax designs. In this case, a simulated annealing algorithm can be used

to search for D-optimal minimax designs. This algorithm has been implemented to find opti-

mal/robust designs in the literature, and it is shown to be very effective. See, for example, Fang

& Wiens (2000) and Wilmut & Zhou (2011). Since the denominator of LD(Z1), φ2(Z1), can be

zero for some designs and it will cause problems in the computation, we minimize the function

−1/LD(Z1) = −φ2(Z1)/(1 + v(1 − φ1(Z1))) instead of LD(Z1). A typical example is illustrated

below.

Example 3. Suppose there are four factors, F1, F2, F3, and F4, and each has three levels. A

requirement set includes all the main effects and interaction effects between F1 and F2, that is,

R0 = {x1L, x1Q, x2L, x2Q, x3L, x3Q, x4L, x4Q, x1Lx2L, x1Lx2Q, x1Qx2L, x1Qx2Q} with m = 12

effects. These effects are coded the same as in Example 1. A full factorial design has N = 81

runs. We use the annealing algorithm in Wilmut & Zhou (2011) to construct D-optimal minimax

designs for n = 27 and 30. In the algorithm, several parameters are set as follows: the initial

temperature T0 = 20, the number of designs searched at each temperature NT = 2,000, and the

number of temperature changes M0 = 100. Often it is hard to determine if a numerical result

gives a global optimization solution. The following procedure is further implemented.

(1) Run the algorithm several times with different initial designs and pick the best numerical

result with the minimum loss function LD(Z1).

(2) Plot the loss function versus the number of iterations to see if the function converges.
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Table 5: D-optimal minimax design for n = 30 in Example 3.

Run F1 F2 F3 F4 Run F1 F2 F3 F4

1 0 0 0 0 16 0 2 1 1

2 2 0 0 0 17 1 2 1 1

3 0 2 0 0 18 2 0 2 1

4 1 2 0 0 19 2 1 2 1

5 1 0 1 0 20 1 2 2 1

6 1 1 1 0 21 2 0 0 2

7 2 1 1 0 22 2 1 0 2

8 0 1 2 0 23 0 2 0 2

9 0 2 2 0 24 1 2 0 2

10 2 2 2 0 25 2 0 1 2

11 1 0 0 1 26 0 1 1 2

12 0 1 0 1 27 2 2 1 2

13 1 1 0 1 28 0 0 2 2

14 2 2 0 1 29 1 0 2 2

15 0 0 1 1 30 1 1 2 2

In this example, we run the algorithms 10 times. For n = 27, the resulting D-optimal minimax

design obtained from the algorithm is presented in Table 4. This design gives Z�
1 Z1 = 1

3
U�
1 U1 =

diag{27, 18, 54, 18, 54, 18, 54, 18, 54, 12, 36, 36, 108} and V−1/2
1 Z�

1 Z1V−1/2
1 = 1

3
I. For n = 30,

the resulting D-optimal minimax design obtained from the algorithm is given in Table 5, and

the design gives φ1(Z1) = 1/3, (φ2(Z1))
(1/13) = 35.2841, and (LD(Z1))

(1/13) = 0.0295. The loss

function converges, as shown in Figure 3 for the plots of φ1(Z1), (φ2(Z1))
(1/13) and (LD(Z1))

(1/13)

versus the accepted designs in the annealing algorithm (for the case n = 30). �

5. CONCLUSION

D-optimal minimax criterion is studied for constructing fractional factorial designs. This criterion

is scale invariant and also level permutation invariantwithin some classes of permutations.General

theoretical results are derived for factors with various levels. The pioneering study of Wilmut &

Zhou (2011) can be viewed as a special case of our results.

D-optimal minimax designs are nearly as efficient as D-optimal designs, and they are also

robust against the misspecification of the effects in the requirement set. D-optimal designs may

not be D-optimal minimax designs, but D-optimal minimax designs are often both D-optimal

designs and E-optimal designs. In addition, D-optimal minimax criterion can be applied to any

run size, while most criteria for fractional factorial designs are limited to run size.

For two-level fractional factorial designs, we have U�
1 U1 = N I and V1 = N I. If a design

gives Z�
1 Z1 = n

N
U�
1 U1, then Z�

1 Z1 = n I and V−1/2
1 Z�

1 Z1V−1/2
1 = n

N
I. Therefore φ1(Z1) =

n/N and φ2(Z1) = n(m+1) are both maximized, and the design is a D-optimal minimax design.

This result is shown in Wilmut & Zhou (2011) to get upper bounds for φ1(Z1) and φ2(Z1) and a

lower bound for LD(Z1). For some values of n and some requirement sets, these upper and lower
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Figure 3: Functions in Example 3 (for n = 30): (a) φ1(Z1) versus the accepted designs in the annealing al-
gorithm, (b) (φ2(Z1))

1/(m+1) versus the accepted designs, (c) (minLD(Z1))
1/(m+1) versus the accepted designs,

with v = 1 and σ2 = 1. The horizontal dotted lines are corresponding upper and lower bounds according to
Z�

1 Z1 = n

N
U�

1 U1.

bounds can be reached. This implies that if a regular fractional factorial design exists for a given

run size n and the design allows us to estimate all the effects in the requirement set, then the

design is a D-optimal design and a D-optimal minimax design.

However, it is hard to prove the above result for three-level or mixed-level designs and it

remains an open problem. Specifically, for three-level or mixed-level fractional factorial designs,

it is conjectured that

φ1(Z1) ≤ φ1(Zo
1), φ2(Z1) ≤ φ2(Zo

1), LD(Z1) ≥ LD(Zo
1), (15)

if Zo
1 satisfies that Zo

1
�Zo

1 = n
N

U�
1 U1. Notice that for some values of n, there may not exist such

a design Zo
1. In Figures 2 and 3, the dotted lines are the corresponding functions computed from

φ1(Zo
1), φ2(Zo

1) and LD(Zo
1). It is clear that these lines provide good upper and lower bounds

for the loss functions in Examples 2 and 3. In Example 1, the lower bound is very close to

minLD(Z1) as indicated in Figure 4. It is also interesting to notice that when n = 9, 18, and 27,

(minLD(Z1))
1/(m+1) is the same as the lower bound. This indicates that there exists a design Zo

1
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Figure 4: The loss function (minLD(Z1))
1/(m+1) and its lower bound versus run size n in Example 1.

satisfying Zo
1
�Zo

1 = n
N

U�
1 U1 for n = 9, 18 and 27. Similar to Figure 1 in Bingham & Chipman

(2007), the plot of minLD(Z1) versus n can be very useful to select the run size n. In the case

where it is not feasible to compute the minLD(Z1), the lower bound of LD(Z1) versus n can be

plotted.

APPENDIX

Proof of Lemma 1. Define vector fN = (f (s1), . . . , f (sN ))
�, then condition (C1) can be written

as U�
1 fN = 0. Since the columns of U are orthogonal, we have U�

1 U2 = 0. Notice that the ranks
of U1 and U2 are m + 1 and N − m − 1 respectively. From linear algebra, it is obvious that

fN = U2θ2 with θ2 ∈ R(N−m−1). Now from condition (C2), 1
N

f�
N fN ≤ α2, we have

1

N
f�
N fN = 1

N
θ�
2 U�

2 U2θ2 = 1

N
θ�
2 V2θ2 ≤ α2.

�

Proof of Theorem 1. From (9), we have

MSE(θ̂1, Z1, θ2) = σ2(Z�
1 Z1)

−1 + (Z�
1 Z1)

−1Z�
1 Z2θ2θ

�
2 Z�

2 Z1(Z�
1 Z1)

−1,
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and

LD(Z1) = max
1
N

θ�
2 V2θ2≤α2

det(MSE(θ̂1, Z1, θ2))

= max
1
N

θ�
2 V2θ2≤α2

σ2(m+1) det((Z�
1 Z1)

−1)(1 + 1

σ2
θ�
2 Z�

2 Z1(Z�
1 Z1)

−1Z�
1 Z2θ2)

= σ2(m+1) det((Z�
1 Z1)

−1)(1 + Nα2

σ2
λmax(A)),

where A = V−1/2
2 Z�

2 Z1(Z�
1 Z1)

−1Z�
1 Z2V−1/2

2 , and λmax(A) is the largest eigenvalue of A.

Define

W1 = U1V−1/2
1 , W2 = U2V−1/2

2 .

Since the columns of U = (U1, U2) are orthogonal, that is, U�U = V1 ⊕ V2, we have

(W1, W2)
�(W1, W2) = IN,

(W1, W2)(W1, W2)
� = IN,

where IN is the N × N identity matrix.

A design ξn selected without replacement from design space S can be represented through a

frequency vectorn defined as (n1, . . . , nN ),whereni = 0 or 1. If point si is in ξn, thenni = 1other-

wise 0. It is obvious that
∑N

i=1 ni = n. Define anN × N diagonal matrix M = diag{n1, . . . , nN},
then it is easy to verify that

Z�
1 Z1 = U�

1 MU1 = V1/2
1 W�

1 MW1V1/2
1 ,

Z�
1 Z2 = U�

1 MU2 = V1/2
1 W�

1 MW2V1/2
2 .

Now

λmax(A) = λmax(V
−1/2
2 Z�

2 Z1(Z�
1 Z1)

−1Z�
1 Z2V−1/2

2 )

= λmax(W�
2 MW1(W�

1 MW1)
−1W�

1 MW2)

= λmax((W�
1 MW1)

−1W�
1 MW2W�

2 MW1)

= λmax((W�
1 MW1)

−1W�
1 M(I − W1W�

1 )MW1),

= λmax(I − W�
1 MW1), using M2 = M,

= λmax(I − V−1/2
1 Z�

1 Z1V−1/2
1 )

= 1 − λmin(V
−1/2
1 Z�

1 Z1V−1/2
1 ).

Putting this result of λmax(A) in LD(Z1), we get the result in (11). �

Proof of Theorem 2. From Theorem 1, a D-optimal minimax design for (13) minimizes loss

function LD(Z̃1), which equals to

LD(Z̃1) = σ2(m+1)
1 + Nα2

σ2 (1 − λmin(Ṽ
−1/2
1 Z̃�

1 Z̃1Ṽ−1/2
1 ))

det(Z̃�
1 Z̃1)

.
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From (12) and (13), we get

LD(Z̃1) = σ2(m+1)
1 + Nα2

σ2 (1 − λmin(V
−1/2
1 B−1

1 B1Z�
1 Z1B1B−1

1 V−1/2
1 ))

det(B1Z�
1 Z1B1)

= σ2(m+1)
1 + Nα2

σ2 (1 − λmin(V
−1/2
1 Z�

1 Z1V−1/2
1 ))

det(Z�
1 Z1)

∏m
i=1 b2i

= LD(Z1)∏m
i=1 b2i

.

SinceZ∗
1 is aD-optimalminimax design for (7), it minimizesLD(Z1). Thus Z̃∗

1 = Z∗
1B1 minimizes

LD(Z̃1) and is a D-optimal minimax design for (13). �

Proof of Theorem 3. Since ūj = qjuj with qj = ±1, ‖ūj‖ = ‖uj‖ = li. Notice that Q1 is a

diagonal matrix, and Q2
1 = I. From Theorem 1, we have

LD(Z̄1) = σ2(m+1)
1 + Nα2

σ2 (1 − λmin(V
−1/2
1 Z̄�

1 Z̄1V−1/2
1 ))

det(Z̄�
1 Z̄1)

= σ2(m+1)
1 + Nα2

σ2 (1 − λmin(V
−1/2
1 Q1Z�

1 Z1Q1V−1/2
1 ))

det(Q1Z�
1 Z1Q1)

= σ2(m+1)
1 + Nα2

σ2 (1 − λmin(Q1V−1/2
1 Z�

1 Z1V−1/2
1 Q1))

det(Q1Z�
1 Z1Q1)

= σ2(m+1)
1 + Nα2

σ2 (1 − λmin(V
−1/2
1 Z�

1 Z1V−1/2
1 ))

det(Z�
1 Z1)

= LD(Z1).

�

Proof of Theorem 4. To indicate that Z∗
1 depends on run size n, we use notation Z∗

1,n for

the D-optimal minimax design and Z1,n for any design of size n. When the run size is n + 1, we

consider a design Z1,(n+1) consisting of n runs from the D-optimal minimax design Z∗
1,n and one

run at another design point in S, say sn+1. Then

Z�
1,(n+1)Z1,(n+1) = Z∗

1,n
�Z∗

1,n + sn+1s�
n+1.

It is obvious that Z�
1,(n+1)Z1,(n+1) − Z∗

1,n
�Z∗

1,n is a positive semidefinite matrix.

Thus det(Z�
1,(n+1)Z1,(n+1)) ≥ det(Z∗

1,n
�Z∗

1,n). Also V−1/2
1 Z�

1,(n+1)Z1,(n+1)V
−1/2
1 −

V−1/2
1 Z∗

1,n
�Z∗

1,nV−1/2
1 is a positive semidefinite matrix, so we have

λmin(V
−1/2
1 Z�

1,(n+1)Z1,(n+1)V
−1/2
1 ) ≥ λmin(V

−1/2
1 Z∗

1,n
�Z∗

1,nV−1/2
1 ). Therefore LD(Z∗

1,n) ≥
LD(Z1,(n+1)) ≥ LD(Z∗

1,(n+1)), which implies that LD(Z∗
1) is a decreasing function of run size n.

When n = N, we have Z∗
1 = U1. Since U�

1 U1 = V1, λmin(V
−1/2
1 U�

1 U1V−1/2
1 ) = 1 and

det(U�
1 U1) = det(V1) = N

∏m
i=1 l2i . Hence LD(Z∗

1) = σ2(m+1)/(N
∏m

i=1 l2i ). �
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