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Statistical inference in massive data sets
Runze Li, Dennis K. J. Lin*† and Bing Li

Analysis of massive data sets is challenging owing to limitations of computer primary memory. In this paper, we propose an
approach to estimate population parameters from a massive data set. The proposed approach significantly reduces the required
amount of primary memory, and the resulting estimate will be as efficient if the entire data set was analyzed simultaneously.
Asymptotic properties of the resulting estimate are studied, and the asymptotic normality of the resulting estimator is established.
The standard error formula for the resulting estimate is proposed and empirically tested; thus, statistical inference for parameters
of interest can be performed. The effectiveness of the proposed approach is illustrated using simulation studies and an Internet
traffic data example. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

In the past decade, we have witnessed a revolution in information technology. Consequently, routine collection of system-
atically generated data is now in commonplace. Databases with hundreds of fields, billions of records, and terabytes of
information are not unusual. For example, Barclaycard (UK) carries out 350 million transactions a year, Wal-Mart makes
over 7 billion transactions a year, and AT&T carries over 70 billion long distance calls annually (see [1] for more details).
It is very challenging to extract useful features from a massive data set because many statistics are difficult to compute by
standard algorithms or statistical packages when the data set is too large to be stored in primary memory.

Unlike observations resulting from designed experiments, massive data sets sometimes become available without
predefined purposes or only with rather vague purposes. Typically, it is desirable to find some interesting features in
the data sets that will provide valuable information to support decision making. Primary tasks in analyzing massive data
sets include data processing, classification, detection of abnormal patterns, summarization, visualization, and association/
correlation analysis.

To obtain a summary and preliminary analysis of a massive data set, some basic statistics are of general interest.
For example, to construct a box plot for a massive data set, we need sample quartiles. This is not a trivial task on a massive
data set. Consider the problem of percentile estimation. Suppose, given independent observations x1; x2; : : : ; xn from an
unknown distribution function F , that we want to find its 100˛th percentile, that is, the number �˛ such that F.�˛/ D ˛.
This is similar to the problem of finding the kth smallest of n observations; an estimate of the 100˛th population per-
centile provides an approximation to the [˛n] largest observation. This seems to be a straightforward problem once all
observations have been sorted. A major difficulty arises, however, when the available computer memory is much smaller
than n. Then sorting x1; x2; : : : ; xn becomes impossible. To overcome the difficulty, Rousseeuw and Bassett [2] proposed
the remedian method, and Hurley and Modarres [3] proposed a low-storage quantile estimation method. Chao and Lin [4]
studied the asymptotic behaviors of the remedian approach and found that the resulting estimator does not possess asymp-
totic normality. To obtain quartile estimation accurately and efficiently, many efforts have been made. Mahmoud [5] gave a
systematic study on this topic. Unfortunately, many existing methods focus only on the estimation of population medians,
quartiles, or percentiles (e.g., [6]). To make statistical inferences for them, one has to know their estimator variation with
finite samples. For many parameters, such as medians and percentiles, their asymptotic standard errors depend on other
unknown parameters [7, p. 91]. This imposes more challenge to draw statistical inferences on these parameters.
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This work was motivated by the analysis of several massive real-life data sets. One particularly interesting subject here
is the streaming data. Streaming data are becoming widely available from a variety of sources (e.g., [6]). In Section 5,
a special type of streaming data—an Internet traffic data set—will be analyzed using our proposed method. Internet
engineering and management depend on an understanding of the characteristics of network traffic. Much work has been
performed in developing various statistical models for Internet data. In this paper, we will focus on developing com-
putational and inferential tools for massive data including Internet traffic data and electronic commerce data. A general
approach is proposed to deal with statistical inferences on data sets with very large sample sizes.

Our approach can significantly reduce the need of large primary memory and makes statistical inferences on massive
data sets feasible. This is very important in analyzing such data sets, because the number of observations that can be stored
in primary memory is often restricted. Furthermore, many computing environments also limit the allowed maximum array
size. This can be rather smaller than necessary and independent of the available memory.

One of the advantages of our approach is its generality. The proposed approach is widely applicable and capable of
making statistical inferences for any parameter �.F / of a population F . By parameter, we mean any unknown quantity
associated with the unknown population F . The parameter �.F / can be the population percentile, the unknown regression
coefficient, or the unknown density function. It will be shown that under some mild conditions, the resulting estimator is
consistent and has a normal limiting distribution. Furthermore, we will show that in many situations, the resulting estimate
is as efficient if all data were simultaneously used to compute the estimate (Remark 3).

On the basis of the asymptotic normality, we further propose a standard error formula for the resulting estimate. The
proposed standard error formula does not involve other unknown quantities of the unknown population. The standard error
formula is empirically tested by Monte Carlo simulation and is accurate. Thus, one can directly make statistical inferences
for the parameter of interest. This is another advantage of our approach compared with the existing methods for computing
sample quartiles.

The paper is organized as follows. Section 2 provides the basic idea of the proposed method and the theoretical justifi-
cations. Section 3 discusses the problem of point estimation from the massive data set. Section 4 discusses the problem of
density estimation. Section 5 visits the popular Internet traffic data from AT&T. Final conclusions are given in Section 6.
For simplicity of presentation, all proofs are given in Appendix A.

2. The proposed estimation procedure

To estimate a parameter �.F / of a population F , such as a percentile or the density of the population, it is frequently
required to store the entire data set in primary memory to obtain an efficient estimate. One way to overcome the afore-
mentioned difficulty in memory is to use subsampling techniques. This approach is useful for preliminary analysis, but the
estimator is less efficient as it only uses information in parts of the data.

For efficiency, an estimator should be derived on the basis of the whole data set rather than on its parts, which is not
feasible for massive data sets. Intuitively, we may sequentially read and store the data in primary memory, block by block,
and analyze the data in each block separately. As long as the size of the block is small, one can easily implement this
estimation procedure within each block under various computing environments. A question that arises here is on how to
make a final conclusion based on the results obtained from each block.

Suppose that there is an independent and identically distributed sample with large sample size n, and we are interested
in finding an estimate of the population median. To find the sample median, one needs at least n storage elements. When
n is large (e.g., 10,000,000), standard algorithms for computing the sample median may exceed the available memory and
thus may fail. However, it is easy to compute a sample median of 10,000 in many statistical packages, such as S-plus
and SAS. We may sequentially read in the data block by block (each having, say, 10,000 samples) and then compute the
sample median of each block, which leads to an independent and identically distributed set of sample medians. It has been
shown under some mild conditions that these sample medians are independent and asymptotically distributed as normal
with mean equal to the population median. Thus, a natural estimate for the population median is then the average of these
1000 sample medians. In summary, to estimate parameter �.F / based on a massive data set, we may employ a two-stage
procedure. First, read in the whole data set sequentially block by block, each having a manageable sample size, and com-
pute an estimate of �.F / within each block. Second, take the average of the resulting estimates obtained from each block
as an estimate for �.F /. Note that the second stage can be updated as soon as a new block is processed by the first stage
and hence does not require additional memory.

2.1. Sampling properties

Suppose that x1; : : : ; xn is an independent and identically distributed sample from population F , where xi can be either a
random variable or a random vector. We are interested in estimating parameter �.F / of the population. To formulate our
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estimation procedure, we rewrite the sample as

x11; x12; : : : ; x1˛n
x21; x22; : : : ; x2˛n
:::

::: : : : ;
:::

xˇn1; xˇn2; : : : ; xˇn˛n ;

where xij D x.i�1/�˛nCj . For i D 1; : : : ; ˛n and j D 1; : : : ; ˇn, ˛n is the block size and ˇn is the total number of blocks.
Note that n D ˛nˇn. The block size ˛n is chosen so that the estimation of � can be easily handled within a block. The
choice of ˛n will be discussed later. It is shown in Sections 3 and 4 that the resulting estimate is robust to the choice of ˛n.
We use the same estimator for each block. Denote by O�in the resulting estimate based on the subsample in the i th block
xi1; : : : ; xi˛n . We estimate �.F / by averaging of O�in; that is,

N� D
1

ˇn

ˇnX
iD1

O�in: (1)

Now we investigate the sampling properties of the estimate N� . Denote �n D E. O�in/ and �2n D var. O�in/. We have the
following proposition.

Proposition 1
Suppose that x1; : : : ; xn are independent and identically distributed, bn D �n � � ! 0, and �2n=ˇn! 0 as n!1. Then
Ej N� � � j2! 0.

Under the conditions of Proposition 1, it follows from Chebyshev’s inequality that N� tends to � in probability. Thus, N�
is a consistent estimator for � .

To establish the asymptotic normality of N� , we need one of the following two conditions.

Condition (a): ˛n is a constant independent of n and �2n <1.
Condition (b): ˛n!1 and ˇn!1 as n!1, and

Ej O�in ��nj
2Cı

ˇ
ı=2
n �2Cın

! 0 (2)

as n!1 for some ı > 0.

Theorem 1
Suppose that x1; : : : ; xn are independent and identically distributed. If either Condition (a) or (b) holds, then

p
ˇn

 
N� ��n

�n

!
!N.0; 1/ (3)

in distribution as n!1.

Remark 1
When ˛n is a fixed finite number, �n and �2n do not depend on n and can be denoted by � and �2, and then

p
ˇn

 
N� � �

�

!
!N.0; 1/

holds if and only if O�in is unbiased estimators of � . If O�in is a biased estimator and the bias �� � is a constant, then the
resulting estimator is not consistent.

Remark 2
In many situations in which ˛n!1,

O�in ��n

�n
!N.0; 1/

in distribution. This makes Condition (b) a natural assumption.
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2.2. Choice of ˛n

Note that p
ˇn

 
N� � �

�n

!
D
p
ˇn

 
N� ��n

�n

!
C
p
ˇn

�
�n � �

�n

�
:

Thus, �n � � D o.�n=
p
ˇn/, which implies that

p
ˇn

�
�n��
�n

�
D oP .1/. By the Slutsky theorem, it follows from

Theorem 1 that p
ˇn

 
N� � �

�n

!
!N.0; 1/: (4)

When ˛n!1 and the underlying estimator is of the form given in Proposition 1, �n DO.1=
p
˛n/. This implies that if

�n � � D o.1=
p
n/ (5)

holds, then (4) holds. If O�in is unbiased, then �n � � D 0, and hence, (4) holds. For a biased estimator of � in parametric
settings, usually we have �n � � D O.1=˛n/. Thus, it is necessary that ˛n=

p
n ! 1. Frequently, the �n and the bias

�n � � decrease as ˛n decreases. Therefore, we suggest to take ˛n DO.
p
n log log.n//.

Remark 3
Denote by O�n the estimator based on all samples x1; : : : ; xn. Suppose that

p
n. O�n � �/ ! N

�
0; �20

�
in distribution as

n ! 1. Thus,
p
˛n. O�in � �/ ! N

�
0; �20

�
in distribution as n ! 1. This implies that

p
˛n.�n � �/ ! 0 and that

˛n�
2
n ! �0. Note that

p
n. N� � �/D

q
˛n�2n

p
ˇn

 
N� ��n

�n

!
C
p
n.�n � �/:

Under (5), it follows from Theorem 1 and the Slutsky theorem that
p
n. N� ��/!N.0; �20 /. This implies that the resulting

estimator N� is as efficient as O� . In other words, the resulting estimate is as efficient if all data were simultaneously used to
compute the estimate.

3. Statistical inference

In this section, we first investigate statistical inferences for a single parameter � when the sample size is large. We will
discuss density estimation in next section.

3.1. Confidence interval and testing hypothesis

To draw statistical inferences on � , we need to know its estimator variation with finite samples. In fact, O�1n; : : : ; O�ˇnn
provide us much information about the estimator N� . The information can be used for constructing a confidence interval for
� and test statistics for some hypotheses concerning � .

The standard deviation of N� is �n=
p
ˇn, and �n can be directly estimated from the O�1n; : : : ; O�ˇnn; that is,

O�n D

8<: 1

ˇn � 1

ˇnX
iD1

. O�in � N�/
2

9=;
1=2

:

Thus, an estimator of the standard error of N� is

cSE. N�/D
O�np
ˇn
: (6)

The standard error estimator (6) can be used to construct a confidence interval for � . It can be further used to construct
a t -test for H0 W � D �0 versus H1 W � ¤ �0. For some parameters, such as percentiles, their standard error depends on
the unknown population. However, the estimated standard error formula (6) allows us to avoid estimating the unknown
population. This will be tested in our simulation example.
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3.2. Estimation of population percentiles

The estimation of population percentiles requires sorting the entire sample and therefore will take a large amount of
memory when the sample size is large. Some approaches of low-storage quantile estimation have been proposed in the
literature (e.g., [2–4, 9]). Compared with their approaches, the proposed approach does not reduce the amount of storage
very drastically. On the other hand, the proposed approach can be used to estimate a general population parameter, includ-
ing medians and percentiles, and can be easily implemented on a personal computer. In this section, we illustrate our
approach by a simulation example. All simulations in this paper were conducted using MATLAB (Mathworks Inc. Natick,
MA 01760, USA) codes.

Example 1
In this example, we generated 1000 data sets, each consisting of n D 8 million independent and identically distributed
random samples from a chi-square distribution with 1 degree of freedom. We illustrate our approach via estimating various
percentiles of the population. In our simulation, we let ˛n D 8000, which is approximately equal to

p
n log log.n/. The

simulation results are summarized in Table I. Denote the resulting estimate N�k in (1) and its standard error cSEk. N�/ in (6)
based on the kth simulation data set for k D 1; : : : ; 1000. The second column of Table I reports the sample average of
N�k (i.e., NN� D 1

1000

P1000
kD1
N�k) over 1000 simulations. The third column reports the sample standard deviation of N�k (i.e.,q

1
999

P1000
kD1 .

N�k �
NN�/2) over 1000 simulations. Similarly, we report the sample average and the sample standard deviation

of cSEk. N�/ in the fourth column. Specifically, cSE D 1
1000

P1000
kD1

cSEk. N�/ and std.cSE/ D
h
1
999

P1000
kD1 .

cSEk. N�/�cSE/2
i1=2

in the fourth column. Comparing the last two columns, it can be found that the estimated standard error formula works
surprisingly well. To obtain the standard error of the estimated percentiles, the proposed standard error formula allows us
to avoid estimating the density of population. This is different from traditional approaches, which require estimation of
some parameters, depending on the unknown density of population.

It is of interest to investigate how sensitive the results are on the choice of ˛n. To this end, we took ˛n D 2000 and
32,000. Note that n log log.n/ is about 8000. To examine the effect of choice of ˛n, we set ˛n D 8000=4 D 2000 and
8000 � 4 D 32; 000. The results are described in Table II. Comparing the results based on the three different choices of
˛n, we can see from Tables I and II that the choice of ˛n is insensitive to the results, although the results using ˛n D 8000
and 32,000 seem to work slightly better than those using ˛n D 2000.

Table I. Estimated percentiles (˛n D 8000).

p True value Estimate SEtrue.10
�4/ bSE .std.bSE// .10�4/

0.01 1:5709� 10�4 1:5902� 10�4 0.0114 0.0112 (0.0003)
0.05 3:9321� 10�3 3:9414� 10�3 0.1243 0.1219 (0.0028)
0.15 3:5766� 10�2 3:5794� 10�2 0.5962 0.6093 (0.0137)
0.25 0.1015 0.1016 1.3157 1.2855 (0.0296)
0.35 0.2059 0.2060 2.1628 2.1269 (0.0480)
0.45 0.3573 0.3574 3.2412 3.1513 (0.0714)
0.50 0.4549 0.4551 3.8397 3.7506 (0.0841)
0.55 0.5707 0.5708 4.5618 4.4294 (0.1002)
0.65 0.8735 0.8736 6.1789 6.1121 (0.1341)
0.75 1.3233 1.3236 8.8288 8.5601 (0.1939)
0.85 2.0723 2.0728 13.3976 12.8548 (0.2914)
0.95 3.8415 3.8436 26.5211 25.8665 (0.6072)
0.99 6.6349 6.6460 63.3566 62.7383 (1.4758)

Table II. Comparison between different choices of ˛n.

˛n D 2000 ˛n D 32000

Quartiles Oqi bSE SEtrue Oqi bSE SEtrue

q1 D 0:1015 0.1017 1:287� 10�4 1:301� 10�4 0.1015 1:283� 10�4 1:291� 10�4

q2 D 0:4549 0.4554 3:751� 10�4 3:830� 10�4 0.4550 3:750� 10�4 3:837� 10�4

q3 D 1:3233 1.3246 8:577� 10�4 8:878� 10�4 1.3234 8:560� 10�4 8:827� 10�4

Copyright © 2012 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2013, 29 399–409
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4. Nonparametric kernel density estimation

As argued in Remark 3, the proposed estimate can be as efficient as the estimator computed by simultaneously using all
samples provided that �n� � D o.1=

p
n/, which is valid for unbiased estimator and can be valid for root n consistent but

biased estimator by setting an appropriate ˛n. Estimators in nonparametric kernel estimator and nonparametric regression
are typically not of root n consistent. In this section, we discuss how to apply the proposed procedures in the context of
estimation of density.

With the use of the subsample xi1; : : : ; xi˛n in the i th block, a kernel density estimator is as follows:

Ofh.x/D
1

˛n

˛nX
jD1

Kh.xij � x/; (7)

where Kh.´/ D
1
h
K.´=h/, K.´/ is a kernel density function, and h is a selected bandwidth that controls the smoothness

of the estimated density curve. The choice of kernel function is not crucial, but the choice of bandwidth h is critical. It is
well known that

E Ofh.x/D f .x/C
1

2
h2�2.K/f

00.x/C o.h2/

and

var
n
Ofh.x/

o
D .˛nh/

�1R.K/f .x/C o
˚
.nh/�1

�
;

where �2.K/D
R
´2K.´/ dx and R.K/D

R
K2.´/ d´ (e.g., [10, p. 20–21]). Thus, the mean square error is

MSE.˛n/D
R.K/f .x/

˛nhˇn
C
h4

4
�22.K/ff

00.x/g2C o
˚
h4C .˛nˇnh/

�1
�

D
R.K/f .x/

nh
C
h4

4
�22.K/ff

00.x/g2C o
˚
h4C .nh/�1

�
;

which is the same as that when we simultaneously use all the n samples to estimate the density. Integrating this expression
leads to the mean integrated square error

MISED AMISE
n
Ofh.�/

o
C o

˚
h4C .nh/�1

�
;

where the asymptotic mean integrated square error is

AMISED
R.K/

nh
C
h4

4
�22.K/

Z
ff 00.x/g2 dx:

Thus, the optimal bandwidth minimizing the asymptotic mean integrated square error is

hopt D
R.K/

�2.K/2
R
f 00.x/ dx

n�1=5; (8)

which does not depend on ˛n. It is well known that the optimal bandwidth of a kernel estimator for each block is of the
order O.˛�1=5n / as the sample size of each block is ˛n and that the bias of the resulting kernel estimator is of the order
˛
�2=5
n . That is, �n � � D O.˛

�2=5
n /. Then,

p
n.�n � �/ D O.˛

1=10
n ˇ

1=2
n /, which may not tend to zero as n!1. The

optimal bandwidth in (8) implies that the estimated density curve in the first step should be undersmoothing to reduce bias,
compared with the bandwidth hDO.˛�1=5n /. Undersmoothing means that the bandwidth hopt tends to zero faster than the

usual h D O.˛�1=5n /. Because the first multiplier in the hopt only depends on the kernel function and on the curvature of
the density function, many methods of bandwidth selection in the literature can be easily modified for our purpose. Denote
by h� the optimal bandwidth by using the data xi;1; : : : ; xi;˛n under some criterion. We may take

hopt D
�˛n
n

�1=5
h�

as our bandwidth. With this bandwidth, the resulting density estimation will be as good if we used the entire
sample simultaneously.
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Example 2
In this example, one million independent and identically distributed random samples were generated from the mixture
normal distribution

0:5N.�2; 1/C 0:5N.2; 1/:

We want to estimate its density based on the random sample. In this example, ˛n D 1000, Gaussian kernel was used,
and the bandwidth was selected using the rule of thumb (ROT) given in [11]. That is, the bandwidth used to estimate the
density is hrot D 0:9� 1:06� � � n

�1=5; where � is the population standard deviation. Factor 1.06 is due to the Gaussian
kernel, and multiplying by factor 0.9 is carried out to adjust for oversmoothing as noted in [11]. In our simulation, � is
substituted by its robust estimate, the mean of absolute deviation of the subsample xi1; : : : ; xi˛n within each block. We
also investigated how sensitive the resulting estimate is to the choice of ˛n. In this example, we took ˛n D 500, 1000, and
5000. The resulting estimated density curves are plotted in Figure 1. All of them are very close to the true density curve
visually. To assess the performance for different ˛n’s, we define the root average squared error (RASE) as

RASED

8<: 1

ngrid

ngridX
jD1

. Of .xj /� f .xj //
2

9=;
1=2

;

where xj are the grid points at which the density were computed, and ngrid D 400 here and throughout this paper. The
RASEs are 11 � 10�4, 9:12 � 10�4, and 5:94 � 10�4 for ˛n D 500, 1000, and 5000, respectively. It is seen that the
performance becomes better as ˛n increases as it should. On the other hand, note that the RASEs are in the same order
of magnitude but that the ˛n’s are very different. This suggests that the performance of the estimator is insensitive to the
choice of ˛n.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

(a)
−6 −4 −2 0 2 4 6

0

0.05

0.1

0.15

0.2

(b)

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

(c)

Figure 1. Plot of the estimated density curve of mixture normal. The solid curves are the estimated density curves, and the dotted
curves are the true density curves. The estimated density curves using (a) ˛n D 500, (b) ˛n D 1000, and (c) ˛n D 5000.
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Example 3
In this example, we compare the performance of the proposed approach and the kernel estimation based on various entire
data sets. We will investigate how bandwidth selection affects the performance of the proposed estimation procedure. Data
are generated from the normal mixture distribution

0:425N.0:35; 0:0144/C 0:425N.0:575; 0:0144/C 0:15N.0:8; 0:0009/:

Chaudhuri and Marron [12] used this mixture normal distribution to illustrate their feature detection approach.
Figure 2 depicts the estimated density curves. The simulation results are summarized in Table III. In Table III, New/ROT

refers to the newly proposed approach using the hrot bandwidth, New/SJPI refers to the newly proposed approach using the
Sheather–Jones plug-in (SJPI) [13] bandwidth selector, and Kernel refers to the kernel estimation using whole data sets. In
this example, all simulations were conducted on a PC Pentium III 800 mHz. From Table III, the SJPI bandwidth selector

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

(b)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

(c)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

(d)

Figure 2. Plot of the estimated density curve of mixture normal in Example 2 when the sample size is equal to 10,000. The solid curves
are the estimated density curves, and the dotted curves are the true density curves. ((a) and (b)) The bandwidth was selected using
the rule of thumb; ((c) and (d)) The bandwidth was selected using the Sheather–Jones plug-in approach. ((a) and (c)) The proposed

estimation procedure; ((b) and (d)) the kernel estimate using whole data sets at the same time.

Table III. Simulation results in Example 3.

Method n .˛n/ RASE Time (s)

New/ROT 104 .100/ 0.1173 3.08
Kernel/ROT 104 0.1282 15.6
New/SJPI 104 .100/ 0.0838 11.10
Kernel/SJPI 104 0.0714 0.86
New/SJPI 105 .1000/ 0.0207 17.5
Kernel/SJPI 105 0.0247 3.9

RASE, root average squared error; ROT, rule of thumb; SJPI,
Sheather–Jones plug-in.
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may reduce the RASEs much, compared with the results of the ROT, but it needs more time for computing an SJPI band-
width in the newly proposed estimation procedure. Note that the new procedure with the SJPI bandwidth selector requires
to select a bandwidth by using the plug-in bandwidth selector proposed by Sheather and Jones [13] for each block. Thus,
it requires to calculate the bandwidth ˇn times. This is the reason why New/SJPI needs much more computing time than
Kernel/SJPI, which requires to estimate the bandwidth once for the whole data set. From Table III, it can be seen that the
newly proposed estimate is as efficient as the kernel estimate using the whole data set. This implies that our approach does
not lose efficiency and is easily implemented in various computing environments.

5. Internet traffic data

Internet traffic data are exciting because they measure an intricate, fast-growing network connecting the world and trans-
forming culture, politics, and business. A deep understanding of Internet traffic can contribute substantially to network
performance monitoring, equipment planning, quality of service, security, and the engineering of Internet communications
technology. Each Internet communication consists of a transfer of information from one computer to another; examples
are the downloading of a Web page and the sending of an email message. When a file is transferred, it is not sent across
the Internet as a continuous block of bits. Rather, the file is broken up into pieces, and each piece is sent individually.
A detailed description of Internet traffic data can be found in [6]. As mentioned in [8], the success of analyzing Internet
traffic data depends heavily on an ability to analyze the traffic Very Large Database (VLDB) in great details. One needs to
explore the raw data in its full complexity; relying only on summaries is inadequate. They further commented that ‘As for
most database, visualization tools are vital for analyzing a VLDB’.

The original data file includes three fields: (i) time of the packet (in seconds), (ii) direction of the packet, and (iii) size
of the packet. The variable under study is throughput, defined by (size of packet in bytes)=(time between two packets).

This data set consists of 8.1 million nonzero throughputs (packet size per second). We took ˛n D 8000 (approximately
equal to

p
n log log.n/). First, we estimated the various percentiles of the population. The results are listed in Table IV. We

also estimated the density of the population, which is shown in Figure 3. From Table IV, it can be seen that the standard
error for the sample median is larger than that for the first and third quartiles as the value of density at the median is
smaller than that of the first and third quartiles (see Figure 3 for details). Figure 3 shows that there are three typical values
of throughput, one is close to 0 and the other two have a large size of throughput. If we multiply the first, second, and third
quartiles in Table IV by eight, the bits per second throughput becomes 1.8, 5, and 8.3 mbps, respectively. Such a finding,
among others, is currently discussed by researchers in Bell Labs for its potential implications.

6. Discussion and conclusion

In this paper, we have proposed an estimation procedure for a parameter �.F / based on a massive data set. The proposed
procedure significantly reduces the required amount of computing memory without loss of efficiency in many situations.
It is readily applicable to both point estimation and density estimation. Asymptotic properties of the resulting estimators
have been studied, and the asymptotic normality has been established. A standard error formula for the resulting estimate

Table IV. Estimated quartiles of Internet
traffic data.

p O�p.10
6/ bSE.103/

0.01 0.0015 0.1308
0.05 0.0219 1.3730
0.15 0.1120 4.2115
0.25 0.2372 7.2303
0.35 0.3836 9.5022
0.45 0.5415 10.3241
0.50 0.6300 10.2400
0.55 0.7226 9.8707
0.65 0.9033 8.1293
0.75 1.0476 5.1797
0.85 1.1329 2.3094
0.95 1.1787 0.8707
0.99 1.1858 0.1689
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Figure 3. Plot of the estimated density curve of Internet traffic data.

has been proposed and empirically tested; thus, statistical inference for �.F / can be performed. Simulation studies and an
Internet data example have been used to illustrate the usefulness of the proposed approaches.

Future work will include statistical inference on massive data sets when records may be correlated. That is, when the
observations x1; : : : ; xn are m-dependent series (see, e.g., [14] for definition), the �in becomes 2-dependent series as
�in only depends on xi1; : : : ; xi˛n and ˛n ! 1, which implies that ˛n > m eventually. In this situation, var. N�/ D
.ˇn�

2
n C .ˇn � 1/�n/=ˇ

2
n, where �n equals to the correlation coefficient between O�in and O�.iC1/n. Furthermore, the

asymptotic normality of the resulting estimate N� may be also established under some regularity conditions.
The idea of dividing a massive data set into several small pieces and combining the estimators derived from these pieces

is also used in data privacy (e.g., [15]).

APPENDIX A.

Proof of Proposition 1:
Because O�in is independent and identically distributed,

E. N� � �/2 D ˇ�1n �2n C
.ˇn � 1/

2ˇn
b2n! 0

by the assumption. This completes the proof of Proposition 1. �

Proof of Theorem 1:
If Condition (a) holds, then the �n and �n do not depend on n. Note that O�in is independent and identically distributed
with finite variance �2 and that it does not depend on n. With the use of the central limit theorem, asymptotic normality
holds.

When ˛n ! 1 as n ! 1, to establish the asymptotic normality for N� , it is sufficient to show that Liapounov’s
condition holds, because O�1;n; : : : ; O�ˇn;n are independent and identically distributed. Note that

Pˇn
iD1 Ej O�in ��nj2Cı�Pˇn

iD1 �
2
n

�.2Cı/=2 D 1

ˇ
ı=2
n

E

ˇ̌̌̌
ˇ O�1;n ��n�n

ˇ̌̌̌
ˇ
2Cı

;

which tends to 0 as n!1 as ˇn!1 and (2) holds. Thus, Liapounov’s condition holds. Therefore,

p
ˇn

 
N� ��n

�n

!
!N.0; 1/:

in distribution as n!1. �
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