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Parameter Calibration and Inadequacy
Modeling in a Computer Experiment
Wenny Chandraa and Dennis K. J. Linb∗†

Deterministic simulation is a popular tool used to numerically solve complex mathematical models in engineering
applications. These models often involve parameters in the form of numerical values that can be calibrated when
real-life observations are available. This paper presents a systematic approach in parameter calibration using Response
Surface Methodology (RSM). Additional modeling by considering correlation in error structure is suggested to compen-
sate the inadequacy of the computer model and improve prediction at untried points. Computational Fluid Dynamics
(CFD) model for manure storage ventilation is used for illustration. A simulation study shows that in comparison to
likelihood-based parameter calibration, the proposed parameter calibration method performs better in accuracy and
consistency of the calibrated parameter value. The result from sensitivity analysis leads to a guideline in setting up
factorial distance in relation to initial parameter values. The proposed calibration method extends RSM beyond its
conventional use of process yield improvement and can also be applied widely to calibrate other types of models
when real-life observations are available. Moreover, the proposed inadequacy modeling is useful to improve the
accuracy of simulation output, especially when a computer model is too expensive to run at its finest level of detail.
Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

C
omputer simulation has been used widely to mimic the real-world process or system over time. A simulation model can
be utilized to study a system before it is built or to predict the impact of changes on the performance of an existing one.
Deterministic simulation, in particular, is a popular tool to numerically solve complex mathematical models for engineering

applications. It has been used extensively in various disciplines including finite element analysis to determine the best product
design, e.g. aerospike nozzle design1 and Computational Fluid Dynamics (CFD) to model indoor or outdoor airflow, e.g. manure
storage ventilation2.

In Zhao et al.2, simulation based on CFD is used to determine the time needed until toxic gas in manure storages reaches
a level below the permissible standard. The simulation is performed using the standard k−� model with two default numerical
values in PHOENICS (Parabolic, Hyperbolic Or Elliptic Numerical Integration Code Series) software. Despite efforts to validate the
simulation model, the discrepancy between measured and simulated values remains apparent.

Motivated by the problems above, the objective of this paper is twofold: (i) to acquire a systematic parameter calibration
procedure to achieve the minimum difference between observed and simulated values and (ii) to model the remaining bias of
simulation results after calibration is performed in order to improve future prediction.

Conventionally, parameter calibration is often an ad hoc process of changing parameter values until the best match between
simulated and observed values are obtained3, 4. Moreover, when more than one parameter is involved, the search for the optimal
parameter value is sometimes done by tuning one parameter at a time5. Cox et al.6 provided a more analytical approach to estimate
the unknown parameters through non-linear least squares and likelihood-based models. Kennedy and O’Hagan7 introduced a
Bayesian calibration technique based on the Gaussian process model with correlated errors—derive the mathematical form of
fitted parameters and then correct the discrepancy between model predictions and observed data. Higdon et al.8 overcame the
complexities of Kennedy and O’Hagan’s technique in multivariate settings by applying principal component analysis to reduce
the dimensionality of the problem. Note that Cox et al.6 calibrated tuning constants while Kennedy and O’Hagan7 and Higdon
et al.8 calibrated parameters that have physical meaning. Han et al.9 differentiated between tuning parameter (constant) and
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calibration parameter (with physical meaning) and determined both by using the discrepancy measure and hierarchical Bayesian
model.

These methods require sophisticated mathematical models and high computational effort for parameter estimation in addition
to the deterministic simulation model. For example, the Bayesian calibration approach requires prior knowledge and Gaussian
distributional assumption is often chosen to ease mathematical derivation although it may not be appropriate in reality. A more
practical yet effective calibration method is needed.

In this paper, a calibration technique based on Response Surface Methodology (RSM) is proposed. The procedure involves
sequential runs of simulation, enables fine-tuning of multiple parameters, and determines the best parameter value based on
available observations. Recognizing that the computer simulator may not be run at the highest level of detail due to time
constraint and difficulty in convergence, an inadequacy model with correlated errors is proposed to compensate this problem
and improve the prediction ability of the simulator.

This paper is organized as follows: Section 2 proposes a step-by-step calibration and inadequacy modeling methodology,
followed by an illustration using a manure storage ventilation case in Section 3. Section 4 evaluates the performance of proposed
calibration method by using theoretical functions found in the literature in comparison to maximum likelihood based calibration6.
Sensitivity analysis is also performed to investigate whether some settings in the proposed method have significant impacts on
the results obtained. A discussion and the future work are given in Section 5.

2. Proposed methodology

The focus here is on cases where deterministic simulation is used to solve a complicated mathematical model which represents a
real system. There are often some parameters in the mathematical model where initial or default values are used in the simulation.
However, fine-tuning is necessary to obtain the best value at which computer outputs closely match the observations. We denote
this numerical value as parameter (T) and call the fine-tuning of its value as parameter calibration. Given the values of T, the
observation (Yobs) is a function of design variable (X).

To calibrate the parameter used in the simulator and to improve the future prediction of this simulator, we propose a two-part
methodology:

Part 1: Parameter Calibration aims to find the best parameter values that minimize the difference between observations and
computer outputs.

Part 2: Inadequacy Modeling aims to improve the accuracy of simulator by modeling the difference between calibrated
simulation output and field observations.

2.1. Part 1: Parameter calibration

RSM first originated in chemical experimentation as a sequential procedure to achieve a more desirable response10. The collection
of statistical tools in RSM have since been developed further11 and used widely in industrial processes12. While RSM was first
intended to be used in hands-on experiments, recent development has seen the popularity of response surface approximation
as the metamodel representing complex computer experiments13--15.

Our methodology uses RSM to find the best parameter value in a deterministic simulation. The desired response is the minimum
difference between simulated and observed values, represented by root mean-squared errors (RMSE). Given available observations
Yobs and the computer simulator, the following procedure is proposed:

1. Set up the values of design matrix, X, that correspond to Yobs, initial parameter values T0, and minimum percentage of
RMSE improvement (RMSEstop) for iteration rule.

2. Using X and T0 setup in step 1, obtain output Ycomp by running the computer simulator.
3. Testing T as the experimental factor (with X fixed), form a small factorial experiment region surrounding T0 as the center

point. Figure 1 shows the region in coded values for two-parameter case, initial parameter values, T0, are at level 0. At T−1,1

the first parameter is at low level and second parameter at high level. The number of runs needed in this step is 2kplus 1

Figure 1. Factorial region with center point with T as factor (X is fixed as given)
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center point where k is the number of parameters. If the number of simulations needed is a concern, a fractional factorial
design can be used instead.

4. Run the simulator at design points to obtain Yobs (a typical n×1 vector output) and calculate RMSE at each point by the
following formula:

RMSE=
√∑n

i=1(Yobs,i −Ycomp,i)2

n
. (1)

5. Response surface model building.

5.1. With RMSE as the response, build a first-order response surface model with the main effects and interaction, two-
parameter model is illustrated as follows:

RMSE=�0 +�1T1 +�2T2 +�12T1T2 +�.

5.2. Test whether interaction term or curvature is significant—basically, the interaction and quadratic curvature. For two-factor
example, this is

Ratio of sum of squares of interaction: SST1T2 = [t12 +(1)−t1 −t2]2

4

where (1), t1, t2, and t12 are RMSE at points T−1−1, T1−1, T−11, T11, respectively and

Sum of squares of curvature: SSpure quadratic = nFnC(ȳF − ȳC)2

nF +nC
,

where nF and nC are the number of factorial and center points, respectively

ȳF: the average of RMSE from four factorial points and
ȳC: RMSE of the center point (for one center point, this is simply yc).

5.2.1. If either one or both are significant, run a central composite design by collecting additional axial points, shown
in Figure 2 for a two-parameter case. To maintain orthogonality, the optimal choice of distance from the center
point is

√
k, where k is the number of parameters12.

For this design, a second-order model can be written in general as

RMSE=�0 +
k∑

i=1
�iTi +

k∑
i=1

�iiT2
i +

∑ k∑
i<j=2

�ijTiTj +�,

and the fitted model as RMSE =b0 +T′b+T′B̂T, where b0 is the estimate of the intercept

T = [T1, T2,. . . , Tk]

b′ = [b1, b2,. . . bk]

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 . . . b1k

b22 . . . b2k

. . .
...

sym. bkk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Setting �ŷ/�T=b+2B̂T=0, we obtain the stationary point, and in this case the optimal parameter value is:
T∗ =−(1 / 2)B̂−1b. This concludes the algorithm.

5.2.2. If neither is significant, then fit a first-order model with just the main effects: RMSE =�0 +�1T1 +�2T2 +�.

6. Determine the Path of Steepest Descent as −b, where b= [
�

�1, �̂2] is the coefficient of the first-order model fitted in step
5.2.2.

7. Starting with j =1, new points along the Path of Steepest Descent are determined by the following formula:

The jth new point is Tnew,j =sj × (−b),

where the jth step size is sj = j / ‖b‖.
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Figure 2. Central composite design for a two-parameter case

8. Run the simulator and compute RMSE at jth new point.

8.1. If the percentage of RMSE improvement is more than RMSEstop, increase j by 1 and return to step 7 to compute the
next new point.

8.2. If the percentage of RMSE improvement is not more than RMSEstop, return to step 3 to form another factorial design
with center point.

2.2. Part 2: Inadequacy modeling

Using the calibrated parameter (T∗) obtained in part 1, the difference between calibrated simulation output and observa-
tions may still be apparent. This difference is caused by systematic inadequacy of the simulator and could be modeled
using kriging model—a linear model with correlated errors—given the consideration that the response may have a spatial
relationship.

9. Assuming additive relationship, inadequacy of the computer model (I) is defined as the difference between observation
(Yobs) and computer output obtained using calibrated parameter (Y∗

comp) : I=Yobs −Y∗
comp(X, T∗).

10. Model I in the form of a linear function of X: I(X)=∑
j=0p�jXj

+�, with �: error with mean 0 and variance �2.

11. Prediction at untried points is then given by the calibrated computer output plus the prediction of the inadequacy,
Î(X)=∑p

j=0 b̂jXj, i.e.:

Ŷ=Y∗
comp(X, T∗)+ Î(X).

The proposed two-part method provides a separate solution to parameter calibration and refinement of the simulation model.
Each part can be used independently or both can be used together in the order specified, i.e. parameter calibration followed
by inadequacy modeling. In part 1 parameter calibration, the sequential approach enables the user to understand and visualize
the iterative process of searching the best parameter. This approach works well when the RMSE function is relatively smooth
and does not have multiple local optima. Part 2 provides a quick modeling of the remaining bias between calibrated simulation
results and observed values. The basis of the proposed correlated linear model is that there may be some relationship among
design variables, such as when the output is spatially correlated.

3. Case study: parameter calibration for manure storage ventilation

Confined manure storage entry is a major safety issue. There has been deaths of farm workers entering the storage, caused by
toxic and asphyxiating gases produced by the fermentation process. According to Occupational Safety and Health Administration
(OSHA) Standards, forced ventilation in a confined space is imperative prior to entry, and effective ventilation strategies can
potentially reduce the risks associated with confined manure storage entry. H2S is one of the primary toxic gases, OSHA has set
Permissible Exposure Limit (PEL) of 10 ppm for this gas.

Using the previously determined effective ventilation strategies for prismatic confined-space manure storages, Zhao et al.2

validated a simulation-based CFD model. CFD modeling protocol is useful to predict air movement in ventilated spaces, including
spatial variations in temperature and pollutant concentrations. The time taken to reach PEL (TPEL) is simulated using PHOENICS
software. The standard k−� model consists of six sets of differential equations and includes two important parameters, C�1 and C�2.
Note that these two parameters influence the computer output but they are independent of the observation.
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Figure 3. Sampling location of H2S measurements

Figure 4. H2S decay curve during forced ventilation

PHOENICS (Parabolic, Hyperbolic Or Elliptic Numerical Integration Code Series) is a general-purpose CFD software package for
quantitative prediction of fluid flow, heat transfer, changes of chemical and physical compositions via computer-based simulation.
This software has been used in a wide array of applications, ranging from wind energy simulation, environmental concern of city
square car park exhaust, lecture hall ventilation, to airflow analysis in pharmaceutical clean room. CFD users rely on validated
models before applying them to their particular cases.

For this case study we use a simulator built for a solid floor storage type and high velocity fan that creates high air exchange
rate16. Computer output and field measurements are real-time H2S concentration which are then used to compute TPEL at those
locations. The plan view of Figure 3 shows five grid points (G1 through G5) of sampling location seen from above the manure
storage. The cross section A-A shows the upper (U) and lower (L) locations at each grid point. From these 10 sampling locations,
H2S concentration is measured at 10-s intervals.

Figure 4 shows a typical curve of H2S decay where the transition time is the period right after manure agitation ceases until
H2S concentration is stable and begins the exponential decay. TPEL is calculated as the time when H2S concentration reaches
the PEL of 10 ppm, shown in Figure 4 at the 136th second.

Note that these 10 TPEL values (Yobs) have identical parameter setups (T1 =C�1 and T2 =C�2), but with different locations (the
XZ-coordinates). Such a location difference will be treated as random errors in the response surface model building. We next
follow the steps stated in the previous section to fine-tune the parameters and improve the future prediction:

3.1. Part 1: Parameter Calibration

1. Set of variable input X associated with the given observations are XZ-coordinates of 10 location measurements. We illustrate
the procedure by choosing initial values of parameters as T1 =1.3 and T2 =1.6.

2. Run simulator (Phoenics) and obtain output Ycomp , which is a 10×1 vector of TPEL values.
3. Run factorial design with center point.

One unit of coded value is chosen to be 5% of the original parameter value. This value is chosen since it is considered small
enough for linearity assumption to hold (first-order model is used) but also large enough to cause meaningful changes in
the output. Figure 5 shows the complete values used for the factorial design plus the center point.

4. Simulation in Steps 2 and 3 produces 10 simulation outputs at each factorial point and the center point. Using Equation (1)
and the same set of 10 Yobs values, RMSE is computed for each point. The result is shown in Figure 6. The value of 6.38
for T−1,1 point, for example, is obtained by computing the difference between Yobs and Ycomp obtained from simulation
in step 3 run at low level of T1 and high level of T2.
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Figure 5. First four factorial points around the original parameter

Figure 6. RMSE of first four factorial points around the original parameter point

5. Response surface model building

5.1. First-order response surface model for RMSE (y) with interaction term is as follows:

RMSE(y)=6.76−0.28T1 −0.49T2 +0.27T1T2 +�.

5.2. The residual error has only 1 degree of freedom, therefore the p-value from the F test of significance of terms
may not be reliable. Instead, the percentage contribution of the sum of squares total (1.78) is used to decide the
significance. Since the contribution of the interaction and curvature term is only 16% and 11%, respectively, it is
concluded that the first-order main effect model is sufficient and the final model obtained is

RMSE=6.76−0.28T1 −0.49T2 +�.

6. Using the coefficients obtained in the main effect model, the Path of Steepest Descent is determined as −b= [0.280.49].
7. Determine new points along the Path of Steepest Descent. The first new point (j =1) is

Tnew,j = j

‖b‖ × (−b)

Tnew,1 = 1√
0.282 +0.492

× [0.28 0.49]= [0.49 0.87].

As this point is still within the factorial points region (see Figure 7), it will not improve the RMSE value, therefore the
second new point is determined in the same manner:

Tnew,2 = 2√
0.282 +0.492

× [0.28 0.49]= [0.99 1.74]

in coded value, which is translated into a real value of Tnew,2 = [1.33 1.67].
8. RMSE at Tnew,2 is 6.32. Since this is an improvement compared to RMSE=6.37 at T0, return to step 7 to calculate and

simulate another new point. Figure 7 shows new points simulated along the steepest descent path. RMSE is increasing at
Tnew,6, so Tnew,5 = [1.43; 1.88] is set as new T0 and the procedure is repeated from step 3.
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Figure 7. First round steepest descent path

Figure 8. Second round central composite design with star points

In this second round of response surface model building, the sequential sum of squares of interaction term contributes 60%
towards the sum of squares total in the ANOVA table, thus 4 star points at

√
2 distance from the center point are added in order

to fit a second-order model (see Figure 8).
The second-order model is fitted as follows:

RMSE=6.01−0.44T1 +0.42T2 −0.55T1T2 +0.41T2
1 +0.39T2

2 ,

(s.e.) (0.45) (0.16) (0.16) (0.23) (0.26) (0.26)

resulting in the optimal parameter value of T∗ = [0.2113;−0.2381] in the second round region, which translates into T∗ = [1.48; 1.93].
The Final RMSE at this parameter value is predicted to be 5.89, which is a 7% improvement compared to the initial RMSE of 6.37.
The confirmation run at this optimal point gives an RMSE of 5.84.

3.2. Part 2: Inadequacy modeling

9. Inadequacy is computed as the difference between observed values and calibrated computer outputs: I=Yobs −Y∗
comp .

10. Fit I as a linear function of X. The following calculation is done by using geoR and sp packages in R. For exploratory
purposes, first a variogram of the data is calculated and plotted in Figure 9. This sample variogram can be compared with a
theoretical variogram to determine the type of function suitable to describe the covariance. However, no known pattern is
apparent from Figure 9, therefore the exponential form of covariance is chosen for parameter estimation. Using maximum
likelihood estimation, the following model is then obtained:

I(X)=15.20−0.60X1 −11.92X2 +�,
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Figure 9. Variogram of H2S measurement of case study

where X1: X-coordinate of measurement location; X2: Z-coordinate of measurement location; and �: error with mean 0 and
variance �2 =4.18.

11. Prediction at untried point X0 is given by Ŷ=Y∗
comp(X0, T∗)+ Î(X0).

In step 10, a linear function with correlated errors is chosen because the output variable is measured in several locations in the
X −Z plane. This is the reason to believe that the output maybe correlated spatially, hence the use of kriging model. Inference
on the model coefficients is done by maximum likelihood.

Basically, kriging is a spline smoothing, it derives a smooth curve that connects original data points, it is not possible to
obtain prediction at these points. Therefore, to evaluate the predictive ability, the estimation is done by leaving the original
data point out (cross validation). For each data point i, linear function I(i) (subscript (i) means all data points used except the
ith data) is fitted and used to give prediction at i. Thus, prediction at all original data points is obtained and then compared
with the observed values to compute RMSE. RMSE after inadequacy modeling is 2.94 compared to calibrated simulation without
inadequacy modeling which yields RMSE of 5.89. Applying the two-step proposed method to another set of 10 observations
collected on a different occasion, inadequacy modeling improves RMSE from 6.09 to 4.14.

4. Empirical performance evaluation

To investigate whether the proposed method works well in a wide range of scenarios, simulations are performed with four simple
functions acting as simulators. We use the same functions as in Cox et al.6 to enable a comparison between the proposed method
and the existing work on parameter calibration. Cox et al.6 introduce a likelihood-based method to estimate the unknown tuning
parameters in a computer model. Because Cox et al.6 use iid normal error to generate computer output and observation, the
same elements are also added to the proposed method in order to compare both methods fairly.

Table I shows the functions used in the simulation study: Function 1 represents a simple function with a small number of
variable and parameters while Function 3, on the other hand, with 6 variables and 4 parameters; Function 2 represents a more
complicated relation among the variables and parameters; Function 4 includes a parameter inside the sin function.

In addition to the true parameter values (Ttrue) used in Cox et al.6, we use initial parameter values (T0) randomly generated
from uniform distribution U(a, b) with a=0.8∗(true value) and b=1.2∗(true value). We choose a 5% distance between factorial
points to this initial parameter. The procedure ends when the percentage of RMSE improvement compared to the previous run
is less than 5%.

Table II shows the criteria used to evaluate the simulation results. The true values of each function are shown in brackets in
the header row. The mean of the calibrated parameter is simply the average of the calibrated parameter values (T∗) divided by
100 000, which is the number of simulation replicates for each function. We can see that the calibrated parameters are very close
to the true values. The consistency of the result is also good, as shown by the small standard errors, calculated as the standard
deviation of T∗ divided by the square root of 100 000. The worst case of RMSE improvement is 30% for function 2.

The accuracy of the calibrated parameters is also judged by measures of distance to the true values. The average absolute
distance measures the absolute values of the distance averaged over 100 000 simulations. Looking at the average percentage
distance to true value, the proposed method is accurate within 11% of the true value. Another measure of the accuracy is the
norm distance to the true value which is the norm of average of |T∗−Ttrue|.
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Table I. Functions used as deterministic simulator for performance evaluation (taken from Cox et al.6)

Number of

Function Variables Parameters

1. f (X, T)=T1 ×exp(−T2X) 1 2

2. f (X, T)= X1
T1

[
√

T2 +(X2 +X2
3 )T3X4 / X2

1 −T2]+X1 +3X4 4 3

3.

f (X, T)=T1 exp(|X1 +X2|)+T2(X4 +1.2X5 +1) / 2.5

+T3(T2 +2X3 +X4)+T4 exp(X1 +X3 −X5 −X6)

+3cos[6(X2 +X3 +X4)]

6 4

4. f (X, T)=T1 ×exp[T2(X1 +X2)] / 3+T3X4 sin(T4X3)+T2T4X3 3 4

Table II. Proposed method performance evaluation

Criteria Function 1 (1;1)∗ Function 2 (2;4;1)∗ Function 3 (2;1;4;4)∗ Function 4 (2;1;-1;1)∗

Mean of
calibrated
parameters

0.995; 0.998 2.0056; 3.9832; 1.0078 2.003; 1.0001; 3.9938; 3.999 2.005; 0.9999; −1.0009; 0.9993

Standard error
of mean

0.00007; 0.00014 0.0008; 0.0016; 0.0004 0.0001;0 .0004; 0.0014; 0.0015 0.00075; 0.00007; 0.00038; 0.00038

Average RMSE
improvement

62.14% 30.26% 72.94% 77.37%

Average
absolute
distance to
true value

0.0175; 0.0329 0.1987; 0.4169; 0.1084 0.0245; 0.1017; 0.3806; 0.4045 0.2024; 0.00175; 0.1024; 0.1018

Average %
distance to
true value

1.75; 3.29 9.93; 10.42; 10.84 1.23; 10.17; 9.52; 10.11 10.12; 1.75; 10.24; 10.18

Norm distance
to true value

0.0373 0.4743 0.5652 0.2492

% no
improvement

4.58 11.39 11.96 10.65

Average
number of
runs

15.13 20.81 33.16 33.40

∗True parameter values.

Despite the good performance, in some cases the full factorial points do not produce better RMSE than the original point
(initial parameter values), this results in no change of parameter values. In the worst case (function 3), this happens 12% of the
time. This is likely because either the region of the factorial points is too narrow, or the initial parameters are too close to the
true parameter values.

Table III shows a comparison between the proposed RSM and Cox’s PMLE method Cox et al.6 proposed several methods: most
based on maximum likelihood estimation and one based on non-linear least squares estimation. The final recommendation is the
so-called partially separated MLE (PMLE for short). PMLE samples form the whole region of possible X values, and then estimate
the parameters based on an assumed model.

Using three criteria—mean of calibrated parameters, norm distance (which measure the accuracy), and standard error (which
measures the consistency),the RSM method outperforms the PMLE method. The RSM method consistently gives more accurate
results than PMLE. For instance, the norm distance for function 2 for RSM (0.47) is only slightly less than PMLE (0.56), but for
function 1 RMS (0.037) is three times smaller than PMLE (0.101). In terms of the consistency, RSM also outperforms PMLE, especially
for function 2 where RSM’s standard error ranges in the hundredth while PMLE’s ranges from 1.8 to 4.5.

It is of interest to study how robust the performance of the proposed procedure is to the current simulation setup:

1. Initial parameter values are generated from a uniform distribution which ranges 20% below and above the true value.
2. Factorial distance is 5% from the original parameter values.
3. The procedure is stopped when the percentage of RMSE improvement is below 5% compared to the previous run.
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Table III. Comparison between the proposed (RSM) and Cox’s (PMLE) calibration method

Function 1 (1;1)∗ Function 2 (2;4;1)∗

Criteria RSM PMLE RSM PMLE

Mean of
calibrated
parameters

0.995; 0.998 1.082; 1.059 2.0056; 3.9832;
1.0078

2.434; 3.927; 1.351

Standard error
of mean

0.00007;
0.00014

0.116; 0.167 0.0008; 0.0016;
0.0004

4.562; 3.28; 1.801

Norm distance
to true value

0.037 0.101 0.474 0.563

Criteria Function 3 (2;1;4;4)∗ Function 4 (2;1;−1;1)∗

RSM PMLE RSM PMLE
Mean of
calibrated
parameters

2.003; 1.0001;
3.9938; 3.999

1.712; 1.242; 3.08;
4.071

2.005; 0.9999;
−1.0009; 0.9993

2.313; 0.926; −0.748;
0.829

Standard error
of mean

0.0001; 0.0004;
0.0014; 0.0015

0.602; 0.77; 1.086;
1.159

0.00075; 0.00007;
0.00038; 0.00038

0.748; 0.643; 1.629;
1.79

Norm distance
to true value

0.565 0.996 0.249 0.444

∗True parameter values.

Table IV. Simulation settings for sensitivity analysis

Low Base High

Initial parameter ±5% ±20% ±50%
Factorial distance ±1% ±5% ±10%
RMSEstop ±1% ±5% ±10%

(a) (b) (c)

Figure 10. Sensitivity analysis of initial parameter and factorial distance: (a) low factorial distance; (b) base factorial distance; and (c) high factorial distance
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Table IV shows the original values (as the base) of these three factors, plus low and high values which provide sufficient large
variation to the performance. Preliminary analysis based on the setting in Table IV shows that there is no effect by changing
RMSEstop. Therefore, we proceed with all nine possible combinations of low-base-high setting to analyze the possible interaction
between initial parameter and factorial distance.

Figure 10 shows the effect of different initial parameter values for different values of factorial distance. The three columns from
left to right correspond to low, base, and high factorial distance. The three rows represent three performance criteria evaluated,
from top: RMSE improvement, norm distance to true value, and percentage of no improvement.

The first row in Figure 10 indicates that when initial parameters are far from true values, the RMSE improvement achieved
will be larger. However, when the factorial distance is small, the improvement in RMSE gets smaller when initial parameters get
further away. This suggests that if we believe that the initial value is far from the true values, it is advisable to have a larger
factorial distance in order to facilitate a wider and quicker search towards the true value.

The middle row of Figure 10 shows the effect of initial parameters’ variation on the norm distance of the calibrated parameters.
The three graphs from left to right (correspond to low, base, and high factorial distance) show a similar pattern that if the
procedure starts from parameter values close to the true value, then the final calibrated values will be more accurate. However,
when the factorial distance is larger, the norm distance is slightly smaller. This implies that it is better to have a larger factorial
distance if we are unsure of the initial parameter values.

The last row in Figure 10 reveals that when initial parameter is too close to the true value, the calibration often fails to further
improve RMSE. This condition becomes worse when the factorial distance is too high. That is, if we believe that we have good
initial values for the parameters, we can set a small factorial distance to concentrate the search to a smaller area.

5. Discussion and conclusion

Parameter calibration in a computer experiment has been investigated by Kennedy and O’Hagan7 and Cox et al.6. The former
utilize Bayesian approach and the latter use likelihood-based modeling to obtain parameter estimates. Both require strong model
assumptions and sophisticated computational effort. This paper proposes using the RSM approach to calibrate the parameters.
Instead of optimizing the response function as in the traditional RSM, the objective of calibration is to minimize the difference
between observations and computer outputs, therefore RMSE is used as the function to be minimized. The proposed method
extends RSM beyond its conventional use of process yield improvement.

As the proposed approach is a search method, it is particularly suitable when an initial estimate of parameter value is available
but needs to be fine-tuned to minimize the bias of simulation output against the available observations. This situation is common
in the case where a general simulation model is available but in order for it to be useful for a specific application, more precise
parameter values are needed. Not limited to calibrating a computer model, this method can be applied widely to calibrate other
types of models when real-life observations are available.

The proposed method also deals with inadequacy modeling as a means to compensate some level of details sacrificed
to achieve faster computer runtime. Correlation among variables is considered by having correlated errors in the model. This
approach works well whenever variables are correlated, as in the case study where response is measured spatially. In general, the
proposed inadequacy modeling can be used as a complement to improve the accuracy of simulation output, especially when a
computer model is too expensive to be run at its finest level of detail.

There are certain assumptions that need to be satisfied in order for the proposed method to work. Observation is a function
of design variables but not of parameters. Calibrating the parameters will bring the computer output closer to observation but
does not influence the future observation. We also assume that parameters (T) are independent from design variables (X), i.e.
calibrated parameters (T∗) are the best value for the model regardless of the values of X .

Furthermore, the response function in RSM is represented by a first-order linear model, this necessitates a smooth function that
can be locally reduced to polynomial form of first degree assuming that higher order terms are negligible12, 17. If the first-order
approximation holds, steepest ascent/descent direction will be given by the regression coefficients12, which will lead to a new
set of parameters with improved RMSE.

In our PHOENICS study, there are only two parameters involved. In general, however, there could be much more parameters
in which some of them may not be relevant. In this case, the classical RSM to remove insignificant factors (the screening process
in first stage) can be applied (see, for example, Lin18).

As a conclusion, we have shown that the RSM methodology is effective in calibrating parameters in a computer experiment.
A recommendation is also made to determine the factorial distance depending on how accurate we believe the initial parameter
values are.
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