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ABSTRACT Curing duration and target temperature are the most critical

process parameters for high-pressure hose products. The air temperature

collected in the curing chamber is represented in the form of a profile. A

proper statistical process control (SPC) implementation needs to consider

both numeric as well as profile quality characteristics. This article describes

a successful Six Sigma project in the context of statistical engineering for

integrating SPC, a statistical method, to the existing practice of engineering

process control (EPC) according to science. A case study on a real pro-

duction curing process is thoroughly investigated. It is shown that the

new findings could potentially result in significant energy savings. The solu-

tions provided in this study can be generalized into other curing processes

and applications subjected to both EPC and SPC.
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INTRODUCTION AND MOTIVATION

Hoerl and Snee (2010) proposed the term statistical engineering defined

as ‘‘the study of how to best use statistical concepts, methods and tools, and

integrate them with information technology and other relevant sciences to

generate improved results’’ (p. 52). In this article we discuss a Six Sigma

project to implement statistical process control (SPC) on high-pressure hose

products produced in a factory, PH Corporation, that is undergoing a lean

Six Sigma transformation. We demonstrate how the proposed SPC solution

is integrated into the current engineering process control operation and its

quality assurance system in the statistical engineering framework. Through

a case study using real-life data, we discuss its potential impact toward

continuous improvement.

High-pressure hose products are made out of alternate layers of rubber

and metal wires. Toward the end of the production process, various

high-pressure hose reels are loaded and cured. A curing process typically

consists of a sealed, heated chamber, called an autoclave or vulcanizer.

Most autoclaves or vulcanizers are equipped with multiple thermocouples
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inside their chambers and=or parts. The housing that

contains an autoclave or vulcanizer is often called the

vessel. The most important information gathered from

the thermocouples is the air temperature, represented

as a nonlinear profile during the curing cycle. A pro-

grammable logical controller (PLC) is used to control

temperature based on sensor readings or a fixed time

interval according to a curing recipe. Figure 1 shows a

typical air temperature profile divided into three

sections—heat-up stage, curing stage, and cool-down

stage. It is important for the flat section (the curing

stage) of this profile to hold for a fixed period of time.

The thermocouples are calibrated from time to time

so that the measurement error is negligible. The data

collection unit of the PLC is capable of collecting

multiple temperature readings per second.

A closer examination of the data set reveals that the

temperature readings do not change very swiftly. The

data presented in Figure 1 are based on temperature

readings taken every few seconds. The variables X1 to

X6 are defined in a later section. Due to the confiden-

tiality agreement with PH Corporation, we altered the

numerical values of the temperature and time units.

The target air temperature during the curing stage is

500�F and should last for 480 time units.

PROBLEMS AND CHALLENGES

Under the framework of Six Sigma, quality and

process improvement is most effective on a project-

by-project basis. One of the main emphases in statisti-

cal engineering addresses the need to identify projects

with high impact. PH Corporation is in its initial stage

of experiencing a Six Sigma transformation. There are

many pending projects throughout its factory. One of

the process improvement projects that the quality

manager and process engineers of PH Corporation

face is implementation of statistical process control

on the curing process because all high-pressure hose

products go through this critical process before the

final quality check is applied. It is very important to

study the variability of the curing process and then

to maintain its stability. The proposed SPC project

would help ensure that the curing production process

is under both engineering control and statistical con-

trol. When the final quality check identifies potential

quality issues, process and quality engineers can rule

out the curing process as a cause if a proper SPC

procedure is in place. This study demonstrates how

statistical thinking and statistical engineering can be

integrated into an existing engineering control

application.

Process engineers often presume that the curing

process must be under control because it is governed

led by a PLC according to a recipe used for many

years. This argument comes from engineering pro-

cess control (EPC) instead of SPC. The practice of

EPC may keep a malfunctioning process operating

for a while before it eventually spirals out of control

when a root cause starts to emerge. An SPC imple-

mentation combined with an EPC practice can pre-

vent this from happening (see Del Castillo 2002;

Montgomery et al. 1994). The cost of scrapping

an entire load of cured product is prohibitively

high. Therefore, this is one of the high-impact

projects during the initial stage of Six Sigma

transformation.

The key question concerning process monitoring

is ‘‘Is a curing process in control given the air tem-

perature profile generated at the end of a curing

cycle?’’ One of our objectives involves the design

and implementation of a SPC plan on this process

to make sure that the process is in control in all

aspects. A process is assumed to exhibit statistical

control when only common cause variability exists

in process parameters of the system. If a curing cycle

is in control, the quality of products being cured

would be satisfactory given that the raw material

meets its intended specifications. On the other hand,

if a process is out of control, it is very likely that

products inside the vessel will not be cured properly.

The major benefit of an in-control process is product

consistency that translates into better product quality

FIGURE 1 Air temperature profile of a typical curing cycle.
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and thus customer satisfaction. Reduced waste is also

an important benefit.

The current process monitoring practice involves

manual visual inspection of a plot similar to Figure 1

at the end of a curing process. All temperature read-

ings are recorded in a database, but a hard-copy

printout is generated for quality assurance purposes.

The operator attending the vessel would examine this

plot and decide whether the process is in control or

not. If the curing is believed to be successful, a ‘‘pass’’

would be written on the printout. The current curing

recipe calls for the following sequence: (1) open the

heat steam valve rapidly to heat the chamber air tem-

perature to 500�F, (2) maintain this target temperature

for 480 time units, (3) open a valve to vent off the

pressure for a fixed period, (4) spray water for a fixed

period, (5) rest for a fixed period, (6) spray water a

second time for a fixed period, and then (7) open

the chamber door to unload the cured products.

The impact on temperature for sequence of actions

from steps 3 to 7 is summarized in Figure 2. Because

the timing and duration for each stage is also

controlled by a PLC, operators would glance at the

general pattern for quality assurance. The current

practice is very subjective and operator dependent.

There is a great opportunity to introduce quality

monitoring for continuous quality improvement.

DEFINE CRITICAL-TO-QUALITY

CHARACTERISTICS

In this study, we focus on the air temperature

setting considered to be the most critical to a curing

process. The current practice involves one curing

recipe applied to all high-pressured host products

regardless of their individual specifications. Each type

of hose product requires a minimal period of curing

time at a set temperature for the major functional

requirement; that is, the proper cross-linking of the

rubber material. A hose product without a proper

curing will fail either in the pressure test or in the

field more quickly than expected. In addition, a

gradual cooling procedure is designed to maintain

the cosmetic requirement on the outside of a hose

product; that is, a smooth look without any blis-

tering. It is critical that both aspects are met during

the curing production for customer satisfaction. The

air temperature profiles are recorded to reflect

the production quality from batch to batch in terms

of the most critical process parameter—the air

temperature.

After consultation with the quality manager,

process engineers, and information technology (IT)

specialist, we define critical-to-quality characteristics

(CTQ), often defined in the define–measure–

analyze–improve–control (DMAIC) process, as

follows:

. QC1: the time to reach the target air temperature

500�F must be swift although the PLC does not

specify a time

. QC2 and QC3: the air temperature must maintain a

target value of 500�F (QC2) for a fixed target

duration 480 time units (QC3)

. QC4: the air temperature must be reduced

‘‘gradually’’ according to sequences 3 to 7 defined

earlier

After a curing cycle, an air temperature profile similar

to Figure 1 is given. Based on the profile, quality engi-

neers determine whether the CTQs—that is, QC1 to

QC4—are in control. A Phase I data set of a curing

process was collected over a one-month period. Most

quality engineers are equipped to implement SPC for

QC1 defined above. However, examining Figure 3

during the curing stage, quality engineers were

puzzled by multiple types of patterns among 153

profiles related to QC2 and QC3. It is not clear which

existing control charting methods could be directly

applied for process monitoring purposes.

Another challenge is to implement SPC for QC4 in

which numerical standards are ill defined. Quality

FIGURE 2 A typical air temperature profile during the

cool-down stage.
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engineers were overwhelmed by multiple segments

and the large amount of data when they examined

Figure 4 containing multiple temperature profile

segments during the cool-down stage.

OVERVIEW OF A SYSTEM
FRAMEWORK FOR DATA PROCESSING

In the framework of statistical engineering, it is

important to integrate statistical methods and tools

into IT practices. Figure 5 shows a proposed system

framework related to data processing before SPC can

be implemented on the curing process. This frame-

work has four components; that is, middleware, data

warehouse, SPC, and decision making. The process

data are first retrieved from various databases corre-

sponding to the vent valve, vulcanizer, and water

spray valve. Next, the middleware component pro-

vides a data preprocessing function; that is, data

loading, data cleaning, transforming, integrating,

and refreshing on the raw data. The data warehouse

is a repository that stores, arranges, and organizes

information for SPC implementation or any other

analysis purposes. Furthermore, the SPC component

provides a basic process monitoring for decision

FIGURE 4 Patterns of the air temperature profiles during the cool-down stage: (a) the duration of vent open (X3), (b) the duration of

spray 1 (X4), (c) the duration of rest 1 (X5), and (d) the duration of spray 2 (X6).

FIGURE 3 Patterns of the air temperature profiles during the

curing stage.
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making. Currently, the front-end databases are fed by

the PLC. Our tasks involve the development of the

middleware, SPC, and decision-making components

that will be integrated into the existing quality assur-

ance database.

PH Corporation, like many other manufacturers, is

experiencing a modern-day factory phenomenon;

that is, a data tsunami. Lots of data are generated by

various operations, but their use in decision making

is ignored. The PLC that controls the curing process

is capable of generating a large volume of data, most

of which are simply stored, archived, and eventually

deleted. None or very little of it is transformed into

useful information or statistics on which insightful

decision makings can be made. There is really a miss-

ing link between the statistical thinking=methods that

suggested collecting these data and engineering

practice. In this study, we propose to integrate IT

and the proposed SPC procedure.

ESTABLISH MEASURE OF
CRITICAL-TO-QUALITY

CHARACTERISTICS

This measure step is the second step of the DMAIC

process. Based on the CTQs QC1 to QC4, we would

like to establish statistics that can directly measure

the CTQs and be fed into control charts. It is straight-

forward to quantify QC1 as X1, which is the duration

between the start of a curing stage and the start of the

countdown timer of QC3. This statistic is relatively

easy to obtain via an algorithm written in MATLAB

(Manhattan, KS).

It is a challenge to derive statistics based on QC2

and QC3. A closer look at QC2 and QC3 reveals that

they are not exactly random variables in the usual

sense because a PLC is used to make sure that each

cycle achieves the targets for QC2 and QC3; that is,

500�F for 480 time units. When the air temperature

reading gets close to 500�F, the PLC starts the timer

for 480 time units to achieve the required fixed dur-

ation. Based on the data recording tag shown in the

database, the PLC would start the curing timer when

a temperature reading first reaches 492�F. Each air

temperature profile exhibits a different pattern initi-

ally as shown in Figure 3. The temperature would

eventually reach the steady state of 500�F. Therefore,

the true quality characteristic for the curing time

requirement is how much time each profile stays at

or above 500�F.

We define X2 as the cumulative time that tem-

perature readings exceeding the target temperature

(500-d), where d is the standard deviation of the

steady-state temperature readings. Note that d is small

because of the PLC control actions. Based on the

steady-state segment of the temperature profiles

shown in Figure 3, d is estimated to be 0.05�F. This

quality characteristic can be obtained by an algorithm

written in MATLAB to process any profile during the

curing stage. It captures the key characteristics impor-

tant for the curing recipe; that is, QC2 and QC3.

A SOLUTION TO PROFILE ANALYSIS

DURING THE COOL-DOWN STAGE

We propose the use of profile monitoring techni-

ques for tackling the SPC implementation issues for

QC4. Profile monitoring techniques have gained

much attention since Jin and Shi (1999) introduced

their application to the force of a stamping process.

FIGURE 5 Diagram of system framework for data processing.
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Three general approaches often used to implement

SPC on profiles as quality characteristics include

the use of process parameters, the use of projected

space, and the use of critical spatial information.

Most literature on this topic follows the first category

because the process parameters are often indepen-

dent of each other, which is one of the conditions

required to be used for simultaneous charting of

univariate control charts (see Kang and Albin 2000;

Kim et al. 2003; Noorossana, Eyvazian, Amiria, and

Mahmoud 2010; Noorossanna, Eyvazian, and

Vaghefi 2010). The second category is the use of pro-

jected space in which original profiles are trans-

formed from one domain into another domain with

axes orthogonal to each other. The principal compo-

nent analysis (Jones and Rice 1992) is often used for

this purpose. Other work in this category includes

Vapnik (1998), Walker and Wright (2002), Woodall

et al. (2004), and Moguerza et al. (2007). Finally,

the third category is the use of spatial information.

The core idea is to reduce the number of observa-

tions in the original profile but still maintain crucial

profile information. Those methods can be found

in Grossmann and Morlet (1984), Mallat (1989),

Strang and Nguyen (1997), Jin and Shi (1999),

Chicken et al. (2009), and Chang and Yadama (2010).

The main activities during the cool-down stage

have to do with the proper temperature drops in four

segments. Depending on the load—that is, heat mass

in the vessel—these temperature profiles exhibit dif-

ferent characteristics but hold the general patterns as

shown in Figure 4. The geometric shapes from vari-

ous cycles deviate from each other greatly in each

segment. The steepest temperature drops usually

take place during the segments of vent opening

and spraying. This pattern will break if the vent does

not open or the water tank runs out of water during a

spraying cycle. Instead of using one model for these

complicated profiles at this stage, it would be much

easier to break this stage into smaller segments

according to the PLC recipe. The current recipe con-

tains several fixed intervals—venting, water spray

cycle 1, resting, and water spray cycle 2. The last seg-

ment (not labeled) in Figure 2 is not important

because a load may sit in the vessel for a period of

time before it is unloaded. The length of this period

depends on factory schedules.

We propose statistics X3, X4, X5, and X6 as the

average of deviations from the nominal profiles for

each segment for the cool-down steps 3–6, respect-

ively. These statistics are chosen to reflect the general

trend of the cool-down process. Each statistic ident-

ifies the proper behavior within a functional segment

so that it is easy for operators to diagnose problem-

atic profiles. As shown in Figure 2, X3 to X6 are

derived from air temperature readings yij where the

index i is defined according to the cool-down recipe

and j ¼ 3; 4; 5; 6. Specifically, the index i of yij takes

the integer values in [1, 60], [61, 88], [89, 116], and

[117, 140], respectively depending, on j¼ 3, 4, 5, or 6.

Process engineers do not know the shape of the

nominal profile of the air temperature during the

cool-down cycle. We need to estimate it from a

Phase I data set. Similar to the practice reported by

Chang and Yadama (2010), X3 to X6 can be obtained

from the following function:

Xj ¼
Pnj

i¼1 yij � �yyj

�
�
�

�
�
�

nj
j ¼ 3; 4; 5; 6 ½1�

where yij is the ith data point of the jth profile seg-

ment, nj is the number of points within segment j,

and �yyj is the jth segment of the ‘‘average’’ profile

fitted over all profiles in a Phase I data set. Judging

from Figures 2 and 4, linear functions should be suf-

ficient to model �yyj for j¼ 4, 5 and 6 but perhaps not

for j¼ 3. In this study, we choose to use a B-spline

function to fit each profile segment because it is

capable of fitting either linear or nonlinear

profiles. For details of B-spline fitting, please refer

to Mortenson (2006).

ANALYZE CURING PROCESS VIA

CONTROL CHARTING

The third step of the DMAIC process involves the

use of a Phase I study of control charts to understand

causes of variation and identify potential root causes.

One approach for implementing SPC combines X1 to

X6 into one multivariate control chart. This design

allows the monitoring of the curing process in a

single chart instead of spreading the task into six

individual control charts. However, this approach

will delay fault diagnosis when a process is out of

control. It would need the involvement of a quality

engineer to examine the individual data of X1 to X6

to identify which variables are responsible for an
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out-of-control signal. On the other hand, the

approach of using six individual control charts simul-

taneously would increase the overall type I error of

control charting. Moreover, the correlation informa-

tion between quality characteristics would be

ignored so that certain out-of-control causes would

not be detected under this approach.

From examining QC1 to QC4 and various stages of

curing, we propose a solution to separate variables X1

to X6 into two groups. The first group consisting of X1

and X2 is used for monitoring the heat-up and curing

stages because both pieces of information are main-

tained by the heating valve operation. These two vari-

ables are highly related because control actions on the

heat valve dictate them. The second group consisting

of the rest of the variables is mainly used for the

cool-down stage. Two multivariate control charts for

individual observations are proposed for these two

groups, respectively. In this case, each observation cor-

responds to a curing cycle. In other words, we would

treat each cycle as one sample with one set of X1 to X6

values that are monitored via two control charts.

Possible multivariate control charts for individual

observations include Hotelling’s T2 charts (Hotelling

1947) and MEWMA (Multivariate Exponentially

Weighted Moving Average) charts (see Lowry and

Montgomery 1995; Tracy et al. 1992). A control chart

for individual observations is used because each cur-

ing cycle only provides one air temperature profile.

Note that the underlying process is controlled by a

PLC. Within each cycle it is possible that temperature

observations may exhibit autocorrelation. However,

points on a control chart are plotted from cycle to

cycle. Autocorrelation, if it exists, may diminish.

A CASE STUDY—THE CURING

PROCESS REVISITED

In this study, 153 air temperature profiles (or

cycles) of Phase I data are examined to seek oppor-

tunities for improvement. Quality and process engi-

neers deemed that they are in control. Each profile

is divided into two segments. The first segment aims

for the monitoring of heat-up and curing duration,

and the second segment is for the monitoring of

the cool-down stage. In the first segment, there are

two quality characteristics of interest. Both have the

same unit; that is, time duration. The second segment

of a cycle contains four quality characteristics of

interest, which are related to the average deviations

from their nominal nonlinear profiles. Using conven-

tional SPC procedure, we first apply two Hotelling’s

T2 control charts to explore the first segment and

second segment on all profiles, respectively.

Although the quality engineers claimed that the 153

profiles in Phase I data set are all in control, Hotell-

ing’s T2 control charts may show different results.

In order to establish the control charts for Phase II

monitoring, it is necessary to screen out abnormal

observations. All plotted points should fall within

the control limits. Otherwise, we should seek for

explanations and justifications for any out-of-control

point to be included. In order to maintain a com-

bined type I error of 0.005, we establish the control

limit for each T2 control chart accordingly. Results

of Phase I studies for both T2 control charts are dis-

cussed in the following sections.

STUDY DURING THE HEAT-UP AND
CURING STAGE

We first plot all standardized observations on the

Hotelling T2 control chart with individual observa-

tions (see Vargas 2003; Williams et al. 2006). As

shown in Figure 6, there are 11 points outside the

control limit. We further examine the causes that

make these points ‘‘abnormal’’ before any point is

discarded from the Phase I data set. Figure 7 shows

a biplot that plots all points in a two-dimensional

plot between X1, the heat-up duration, and X2, the

curing duration above the target 500�F. We draw

the control limits of the IX chart (i.e., X-bar chart

on individual observations) for X1 as well as the

lower specification limit 360 time units for X2 on

Figure 7. Note that this lower specification is more

important than the control limits in that rubber pro-

ducts require a minimal time at a set temperature

for proper curing. In this case, the target curing time

is set at 480 time units so that most curing cycles

would have at least 360 time units above the cured

temperature of 500�F. The group of out-of-control

points including 23, 77, and 126 indicates that these

three cycles take a long time to reach the target cur-

ing temperature but their curing duration above

500�F are above the mean curing duration. On the

other hand, the group of out-of-control cycles

including 1, 9, and 98 shows that the time to reach

the target temperature is shorter than that of most
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cycles. Specifically, cycles 1 and 98 are below the

mean curing duration but above the minimal 360

time units. Another cycle 54 also belongs to this

group. Although this point falls within the IX chart

control limits and is above 360 time units, it is far

from the mean point of the ellipsoid, causing it to

be plotted outside the control limit of the T2 chart.

We keep the cycles of these two groups when estab-

lishing the control limits of the T2 chart.

The group of out-of-control points that cause con-

cerns consists of cycles 60, 73, 131, and 137.

Although they reach the target temperature like the

majority of the other cycles, they fail to keep the

minimal of 360 time units of curing time above

500�F. This result is forwarded to process engineers

for more detailed study. After discarding the cycles

of this group from the Phase I data set, the new

control limit of the Hotelling T2 control chart changes

from 11.594 to 11.565 (based on Tracy et al. 1992).

STUDY DURING THE
COOL-DOWN STAGE

The Hotelling’s T2 control chart for the cool-down

stage has four variables X3 to X6, which are the aver-

age deviation statistics from the B-spline fitted nom-

inal profile. This is displayed in Figure 8. Cycles 41,

136, and 141 are above the control limit of 15.764.

Figure 9 shows detailed plots of each segment with

these three profiles highlighted. In various segments,

the shapes of these cycles are very different from the

rest of the profiles. In addition, we can also use a

matrix plot to show the correlation structure among

X3 to X6. As shown in Figure 10, the outliers corre-

spond to cycles 41, 136, and 141 in various places.

After removing these points, the control limit of the

Hotelling’s T2 control chart changes from 15.764 to

15.732.

SUMMARY OF THE SPC TOOLS

USED IN THIS STUDY

The paradigm of statistical engineering links stat-

istical methods and tools at the operational level to

statistical thinking at the strategic level. In this study,

various statistical methods integrated with IT tools

have been adopted to fulfill this goal. The main idea

of statistical thinking in this case is to integrate the

statistical process control of the curing process to

the current practice, which is operated under the

engineering control. The implementation of SPC will
FIGURE 7 Biplot and IX control limits for heat-up time and

curing time.

FIGURE 6 Hotelling’s T2 control chart for X1 and X2 in the heat-up and curing stages.
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prevent major process catastrophes from taking

place and provide useful information and statistics

for informative decision making.

We now summarize how all of the statistical

methods and tools are used in this study. The main

process monitoring tools proposed are a pair of

FIGURE 9 Cool-down process profiles by (a) segment X3, (b) segment X4, (c) segment X5, and (d) segment X6 (out-of-control profiles 41,

136, 141).

FIGURE 8 Hotelling’s T2 control chart for cool-down variables X3 to X6.
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Hotelling T2 control charts. The studies described

above show how the control limits for both charts

are established based on the Phase I data set. During

the process monitoring phase, an algorithm written

in MATLAB is used to obtain the quality characteris-

tics X1 to X6 from a sample temperature profile. Then

variables X1 and X2 form an input vector to be used

in the first T2 control chart as shown in Figure 6 and

the rest of the variables are put into the second T2

control chart as shown in Figure 8. If the points

plotted on both T2 control charts fall below their

respective control limits, the process is deemed in

control. Otherwise, a biplot shown in Figure 7 is

used on variables X1 and X2 for fault diagnoses when

the first T2 control chart triggered the out-of-control

signal. Furthermore, a matrix plot of cool-down vari-

ables X3 to X6 should be used when the second T2

control chart triggered the out-of-control signal.

Operators are responsible for monitoring both T2

control charts at the end of each curing cycle, and

quality engineers should use either a biplot or a

matrix plot for fault diagnoses when an out-of-

control signal is triggered by either or both of the

T2 control charts. During a routine curing operation,

operators would use the control charts to judge

whether the process is in control or not. When a

point plots outside the control limits of either one

of the T2 control charts, process engineers are then

notified to diagnose the process.

IMPROVE THE CURING PROCESS

During the fourth step of the DMAIC process, we

identify and generate potential solutions for process

improvement. Currently air temperature profiles are

not used for any process-related analysis or diag-

nosis. The PH Corporation will benefit from decision

making based on objective data analysis as demon-

strated in this case study. Furthermore, during this

Phase I study, we have identified a process adjust-

ment opportunity that may potentially save produc-

tion cost. The distribution of the curing duration

above the target temperature reveals that it is poss-

ible to trim the target duration to a smaller value as

shown in Figure 7. The curing recipe specifies 480

time units of curing to accommodate all types of pro-

ducts so that the actual curing time above 500�F may

be at the minimum of 360 time units. Most X2 values

FIGURE 10 Matrix plot of cool-down variables X3 to X6.
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in Figure 7 are actually above 380 time units. A gap

of 20 time units between 360 and 380 can be

trimmed from the current setting of 480 time units,

and most actual curing times would still meet the

minimal requirement. As energy costs rise, this sav-

ings opportunity may dramatically improve the cost

of production while satisfying functional require-

ments. As a numerical example, for every 200

batches of hose products cured, reducing the curing

time by 20 time units will yield an additional 20�
200=(480� 20)¼ 8.7 batches without using addi-

tional energy.

Historically, only one curing recipe is used regard-

less of the type of hose product loaded. It is under-

standable that the current curing time has to be set

at the maximum level to satisfy the worst-case sce-

narios. However, with the X2 data analyzed we have

demonstrated that this one-size-fits-all practice may

be revised to satisfy functional requirements and

reduce energy consumption.

CONTROL THE CURING PROCESS BY

EMBEDDING THE PROPOSED SPC
SOLUTION INTO THE CURRENT
QUALITY ASSURANCE PRACTICE

The final step of the DMAIC process involves the

integration of the proposed SPC implementation into

the ongoing work flow as shown in Figure 11. A

simplified process flow shows that the semifinished

hose products are loaded into a vulcanizer after all

braiding processes are finished. Two major subcom-

ponents in the curing process consist of the pro-

posed division of the heat-up=curing process and

the cool-down process. Cured products would then

go through quality assurance via acceptance sam-

pling before they are shipped to customers.

The shaded box in the middle of Figure 11

summarizes the proposed SPC implementation. In

order to gain long-term success of the proposed

system, the proposed SPC solutions should be inte-

grated with the existing quality assurance system.

This is another example of integrating statistical

tools into IT to maintain the gains achieved in

the statistical engineering paradigm. As shown in

the dashed line in Figure 11, we recommend the

inclusion of the proposed outputs to be stored in

the existing quality assurance database (QA DB).

The solid line connecting to the QA DB repre-

sents the existing IT system used for quality assur-

ance while the dash line is the proposed one.

Depending on the results of on-line monitoring—

that is, Hotelling T2 charts or biplot—quality engi-

neers may be able to use this information to

decide proper sample sizes for destructive tests

or to pay more attention to batches with large var-

iations, for example.

FIGURE 11 Diagram of current process flow and the proposed embedded SPC flow. (Color figure available online.)
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CONCLUDING REMARKS

Following the DAMIC process commonly used in

a Six Sigma project and the paradigm of statistical

engineering, an SPC implementation solution is

introduced here for a production curing process

where there is a mixture of quality characteristics

presented in the form of a temperature profile. Using

both computer algorithms (nonstatistical techniques)

and profile monitoring techniques (statistical techni-

ques), we propose a solution to combine critical

quality characteristics and profile monitoring into

one SPC framework. A Phase I data set is used to

demonstrate how the proposed framework involving

the use of two Hotelling T2 charts is implemented.

This case study on curing production process is

shown to be successful. The proposed SPC frame-

work is recommended to be integrated into the exist-

ing quality assurance process to ensure long-term

success. Although the results of this study are based

on the vulcanizer of the PH Corporation, it is straight-

forward to generalize them into other curing pro-

cesses. The mechanism and control used in various

autoclaves are very similar. In addition, the proposed

SPC procedure can be more broadly applied to other

EPC=SPC applications. The key of a successful inte-

gration of EPC and SPC relies on the transformation

from EPC variables into proper quality characteristics

for SPC. In this case study, the EPC variables are the

curing recipe—500�F for 480 time units. We were

able to convert it into variable X2.

Based on the Phase I study, one important issue

that we explored was the cost aspect. The opport-

unity for improvement lies in the curing recipe.

The distribution of the curing duration above the tar-

get temperature reveals that it is possible to trim the

target duration to a smaller value (the current setting

is at 480 time units). As energy costs rise, it should be

noted and emphasized that there is a great opport-

unity for cost saving while satisfying the functional

requirements.

Although this study only focuses on SPC

implementation strategy, further investigations that

take the full advantage of the entire set of collected

data may be considered. For example, there are

other profiles—such as pressure and condensation

water temperature—generated from the same pro-

cess that can potentially improve the stability of the

curing process. It is a challenge to incorporate all

of them into the process monitoring framework.

Future Six Sigma projects should be considered.
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