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Orthogonal Latin hypercubes (OLHs) are generally inflexible with respect to run
sizes and the numbers of factors, and do not guarantee desirable space-filling prop-
erties. This article presents a fast algorithm to construct near-OLHs. The constructed
near-OLHs achieve near-orthogonality among columns and good space-filling proper-
ties. These designs improve those of Cioppa and Lucas (2007) and those constructed
by the OA-based approach of Lin et al. (2009) with respect to both orthogonality and
space-filling properties.
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1. Introduction

Latin hypercubes (LHs) were introduced by McKay, Beckman, and Conover (1979) for
computer experiments. Recently, this area of research has received a great deal of attention
in the recent literature, for example, by Georgiou (2009), Lin et al. (2009), Pang et al.
(2009), Sun et al. (2009; 2010), and Yang and Liu (2012). An n × k LH can be represented
by a design matrix Xn×k with n rows (runs) and k columns (factors), each of which includes
n uniformly spaced levels. An LH is called an orthogonal LH (OLH) if each pair of columns
of this LH has zero correlation. Examples of OLHs can be found in Ye (1998), Steinberg
and Lin (2006), and Cioppa and Lucas (2007). OLHs are generally inflexible with respect
to the numbers of runs and factors and poor with respect to the space-filling property: that
is, these designs do not spread points evenly throughout experimental region. The OLHs
of Steinberg and Lin (2006), for example, are available for nearly n – 1 columns in n runs
only when n = 22m

. So the method gives designs when n = 16, 256, or 65,536, but not for
any intermediate sample sizes.

This paper discusses a fast algorithm for constructing near-OLHs in various sizes
with good space-filling properties. The near-OLHs constructed by this algorithm will be
compared with those constructed by the algorithm of Cioppa and Lucas (2007) (hereafter
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Near-Orthogonal Latin Hypercubes 493

abbreviated as CL) and those constructed by the OA-based approach of Lin et al. (2009)
(hereafter abbreviated as LMT) with respect to both properties. Before discussing this
algorithm, we review two methods of constructing OLHs and near-OLHs.

2. Two Construction Methods for OLHs and Near-OLHs

2.1. Construction of (2r+1 + 1) × 2r OLHs

Ye (1998) introduced a class of OLHs for n = 2r+1 + 1 rows and k = 2r columns (r = 1,
2, . . .) using permutation matrices. CL extended Ye’s method and were able to introduce
1 + r + (r

2) − 2r additional orthogonal columns to Ye’s OLHs. Methods independently
developed by Nguyen (2008) and Sun et al. (2009) can construct OLHs with n = 2r+1 + 1

rows and k = 2r columns. In both methods, we define the matrix T1 =
[

1 2
2 −1

]
. Tr is then

generated from Tr–1 and the corresponding OLH can then be formed as [T ′
r 0′ Tr]′ where

01×2r is a row vector of 0′s. Details are as follows:

1. Partition Tr–1 as [A
B] where A = (aij) and B = (bij) are two matrices of the same size.

2. Form matrix A∗ = (a∗
ij) where a∗

ij = sign(aij)(|aij| + 2r−1), i = 1, . . . , 2r−2; j = 1,
. . . , 2r−1 and sign(aij) = aij/|aij|.

3. Form matrix B∗ = (b∗
ij) where b∗

ij = sign(bij)(|bij| + 2r−1), i = 1, . . . , 2r−2; j = 1,
. . . , 2r−1.

4. Form Tr as:

⎛
⎜⎝

A A∗
B −B∗
A∗ −A
B∗ B

⎞
⎟⎠ (1)

Following is the transpose 17 × 8 OLH constructed this way. It can be seen that the
seven columns of the 17 × 7 OLH of CL are associated to columns 1–5 and 7–8 of this
OLH.

1 2 3 4 5 6 7 8 0 −1 −2 −3 −4 −5 −6 −7 −8
2 −1 4 −3 6 −5 8 −7 0 −2 1 −4 3 −6 5 −8 7
3 −4 −1 2 7 −8 −5 6 0 −3 4 1 −2 −7 8 5 −6
4 3 −2 −1 8 7 −6 −5 0 −4 −3 2 1 −8 −7 6 5
5 6 −7 −8 −1 −2 3 4 0 −5 −6 7 8 1 2 −3 −4
6 −5 −8 7 −2 1 4 −3 0 −6 5 8 −7 2 −1 −4 3
7 −8 5 −6 −3 4 −1 2 0 −7 8 −5 6 3 −4 1 −2
8 7 6 5 −4 −3 −2 −1 0 −8 −7 −6 −5 4 3 2 1

The webpage http://designcomputing.net/olh displays the constructed OLHs for r ≤ 9.
Table 1 compares the number of orthogonal columns k of OLHs in Ye (1998), CL, and
the newly obtained ones. It can be seen in this table that unlike the number of runs n in
our OLHs, the run sizes n in Ye (1998) and CL increase dramatically as the number of
orthogonal columns k increases. For example, to build an OLH for 32 columns, the just
shown method requires only 65 runs, whereas the CL design requires 513 runs and Ye’s
(1998) design requires 131,073 (= 217 + 1) runs.
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494 N.-K. Nguyen and D. K. J. Lin

Table 1
Comparing the number of orthogonal columns of OLHs in Ye (1998),

CL (2007), and new OLHs

r n Ye (1998) CL (2007) New OLHs

3 17 6† 7 8
4 33 8† 11 16
5 65 10 16 32
6 129 12 22 64
7 257 14 29 128
8 513 16 37 256
9 1025 18 46 512

†These values have been updated to 8 and 9, respectively, in http://www.ams.
sunysb.edu/∼kye/olh.html

Two near-OLHs can be constructed from Tr (cf. Yang and Liu, 2012). Let t∗ij =
sign(t∗ij)(|tij| + 1 where tij and t∗ij are the elements in the ith row and jth column of Tr and T∗

r ,
respectively. The first near-OLH is formed as [T∗′

r 0′ − T∗′
r ] where 01×2r is a row vector of

0’s. Now let t∗ij = sign(t∗ij)(2|tij| + 1) where tij and t∗ij are the elements in the ith row and jth
column of Tr and T∗

r , respectively. The second near-OLH is formed as [T∗′
r 1′ − 1′ − T∗′

r ],
where 11×2r is a row vector of 1′s.

2.2. OA-Based OLHs (and Near-OLHs)

Let A be an orthogonal array OA(n2, q, n, 2) with n2 rows, q columns, n symbols,
strength two, index unity, and symbols denoted by 0, . . . , n − 1. Let B be an OLH or
near-OLH with n rows and p columns. Assuming pq is even, the following operations
proposed by LMT can be used to construct an OLH or near-OLH with n2 rows and pq
columns.

1. Form Aj from A by replacing symbols 0, 1, . . . of A by the first, second, . . . elements of
column j of B(j = 1, . . . , p).

2. Partition [A1, . . . , Ap] as [A∗
1, . . . , A∗

1
2 pq

], where each A∗
k has two columns(

k = 1, . . . , 1
2 pq

)
.

3. Let V =
[

1 −n
n 1

]
. Form M = [M1, . . . , M 1

2 pq
), where Mk = A∗V .

LMT proved, among other things, (i) M (of order n2 × pq) is an OLH if B is an OLH;
(ii) the maximum absolute correlation rmax among columns of M is the same as that of B;
and (iii) the determinant of the correlation matrix among columns of M raised to the power
1/(pq) equals the one of B raised to to the power 1/p.

The following 16 × 10 OLH was constructed using the preceding operations with A as

an OA (16, 5, 4, 2) and B =
[

1 3 −1 −3
3 −1 −3 1

]′
:
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Near-Orthogonal Latin Hypercubes 495

5 −3 5 −3 13 −1 15 −9 15 −9
13 −1 15 −9 15 −9 −5 3 −5 3
−3 −5 −5 3 11 7 −15 9 −15 9

−11 −7 −15 9 9 15 5 −3 5 −3
7 −11 −1 −13 −7 11 −1 −13 1 13

15 −9 −11 −7 −5 3 11 7 −11 −7
−1 −13 1 13 −1 −13 1 13 −1 −13
−9 −15 11 7 −3 −5 −11 −7 11 7

3 5 −13 1 −9 −15 −9 −15 −3 −5
11 7 −7 11 −11 −7 3 5 9 15
−5 3 13 −1 −15 9 9 15 3 5

−13 1 7 −11 −13 1 −3 −5 −9 −15
1 13 9 15 3 5 7 −11 −13 1
9 15 3 5 1 13 −13 1 7 −11

−7 11 −9 −15 5 −3 −7 11 13 −1
−15 9 −3 −5 7 −11 13 −1 −7 11

As an OA(n2, n + 1, n, 2) exists when n is prime or prime power, if we take B as OLHs
of size 5 × 2, 7 × 3, 8 × 4, 9 × 5, 11 × 7, and 13 × 6 and A as an associated OA, we
will be able to derive OLHs of sizes 25 × 12, 49 × 24, 64 × 36, 81 × 50, 121 × 84, and
169 × 84.

Similarly, if we take B as near-OLHs of sizes 7 × 5, 8 × 6, 9 × 7, 11 × 9, and 13 ×
12 and A as an associated OA, we will be able to derive near-OLHs of sizes 4 × 40, 64 ×
54, 81 × 70, 121 × 108, and 169 × 168.

3. A General Near-OLH Algorithm

The previous section shows a method of constructing OLHs (and near-OLHs). Although
the OLHs are orthogonal, they do not carry spacing-filling properties (cf. CL). This section
describes a general algorithm for the construction of LHs that are near-orthogonal and have
better space-filling properties. This algorithm is an example of the exchange algorithm.
Example of this type of algorithm can be found in Nguyen (1996) and Nguyen and Lin
(2011).

Without loss of generality, let the ith and uth row of Xn×k be two vectors of the form
(i i′) and (u u′), where i and u are the first elements of row i and u, and i′ and u′ are
two 1 × (k − 1) row vectors. It can be shown that the effect on X′X obtained by swapping
the two elements i of row i and u of row u is to add to it the matrix −(i i′)′(i i′) −
(u u′)′(u u′) + (u i′)′(u i′) + (i u′)′(i u′) or

(
0

−(u − i)(u − i)

∣∣∣∣−(u − i)(u′ − i′)
0k−1

)
(2)

where 0k–1 is the (k − 1) × (k − 1) matrix of 0′s.
The algorithm for constructing near-OLH designs using the preceding matrix results

has two basic steps:

1. Construct a starting design by setting all elements of row i as i − 1 − (n − 1)/2 for odd
n, and 2(i − 1) − (n − 1) for even n. Randomly order the elements in each column of
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496 N.-K. Nguyen and D. K. J. Lin

the design and form its corresponding X′X matrix. Then calculate f , the sum of squares
of the elements above the diagonal elements of X′X.

2. For columns j of X (j = 1, . . .k), repeat searching a pair of elements in this column such
that the swap of these two elements results in the biggest reduction in f . If the search
is successful, update f , X, and X′X using (1). If f cannot be reduced further, go to the
next column. This step is repeated until f = 0 or f cannot be reduced by any further
swaps.

Remarks

(i) To calculate the change in f and update f in step 2, only the nonzero elements of the
vectors −(u − i)(u′ − i′) will affect the changes (either increase or decrease) of the
corresponding elements of X′X.

(ii) Steps 1 and 2 of the preceding algorithm constitute one complete try. Several tries are
recommended to construct a design. Obviously, if the criterion is orthogonality, the
try that results in the smallest rmax will be chosen; if the criterion is for space-filling,
the try that results in the desirable Mm distance and/or ML2 measure will be chosen.
The following example shows the key steps in constructing a 5 × 3 near-OLH. Step
1 consists of (a) and (b) and step 1 consists of (c) and (d). In (b) f becomes 57. Then the
second elements in the second and third rows of (b) are interchanged and (b) becomes
(c) and f becomes 21. Finally, the third elements in the third and fourth rows of (c) are
interchanged and (c) becomes (d) and f becomes 2.

−2 −2 −2
−1 −1 −1

0 0 0
1 1 1
2 2 2

−2 −1 0
−1 2 −2

0 1 1
1 −2 2
2 0 −1

−2 −1 0
−1 1 −2

0 2 1
1 −2 2
2 0 −1

−2 −1 0
−1 1 −2

0 2 2
1 −2 1
2 0 −1

(a) (b) (c) (d)

Figure 1 displays the two-dimensional (2-D) graphs of the variables of an 17 × 8 OLH
displayed in the previous section and of a near-OLH of the same size constructed by the
algorithm in this section using the Mm distance criterion (second graph). The variables in
these two graphs have been scaled to range from −1 to +1. This figure confirms the fact
that OLHs and near-OLHs of Yang and Liu (2010) may not perform well with respect to
the space-filling property.

Table 2 compares near-OLHs of CL and the newly obtained designs in terms of criteria
for orthogonality and space-filling. The first orthogonality measure is rmax = max(|rij|),
where rij is the correlation between columns i and j of the LH. The second orthogonality
measure used in CL is the condition number cond(X′X) = ψ1/ψk, where ψ1 and ψk are
the largest and smallest eigenvalues of X′X. As a benchmark, cond (X′X) = 1 is most
ideal.

For the space-filling properties, we consider (i) the Euclidean maximin (Mm) dis-
tance and (ii) the modified L2 (ML2) discrepancy. The Euclidean maximin (Mm) distance
is defined as the shortest distance among all the (n

2) pairwise Euclidean distances of the
n design points, calculated after the design is scaled to the domain [–1,1]k. A large
minimum distance is desirable. Mm distance has been used by Johnson et al. (1990), Morris
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Figure 1. Two 2-D graphs of the variables of an OLH and of a near-OLH (color figure available
online).
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498 N.-K. Nguyen and D. K. J. Lin

Table 2
Comparisons of CL’s near-OLHs and new ones in terms of orthogonality

and space-filling properties

n k Near-OLH rmax
† cond (X′X) Mm distance‡ ML2

†

33 9 CL 0.0230 1.100 1.512 0.229
New 0.007 1.025 1.5143 0.239

33 11 CL 0.0234 1.123 1.758 0.73
New 0.0023 1.034 1.774 0.726

65 16 CL 0.0219 1.103 2.035 4.46
New 0.0018 1.011 2.062 4.353

129 22 CL 0.0015 1.036 2.265 37.8
New 0.0006 1.004 2.318 34.75

†The smaller, the better.
‡The larger, the better.

and Mitchell (1995), and CL. The other space-filling measure is the modified L2 (ML2)
discrepancy, defined as

ML2 =
(

4

3

)k

− 21−k

n

n∑
d=1

k∏
i=1

(3 − x2
di + 1

n2

n∑
d=1

n∑
j=1

k∏
i=1

{2 − max(xdi, xji)} (3)

calculated after the design is scaled to the domain [0, 1]k. ML2 has been used by Hickernell
(1998), Fang et al. (2000), and CL.

It can be seen in Table 2 that with the exception of the 33 × 9 near-OLH, all our
near-OLHs are superior to those of CL with respect to the orthogonality property and the
space-filling measures. Our 33 × 9 near-OLH, however, can only slightly improve the cor-
responding CL near-OLH with respect to the Mm distance but not with the ML2 measure.
Overall, all near-OLHs of ours have far smaller rmax

′s than the corresponding than the
corresponding CL near-OLHs.

Each design listed in Table 2 is the result of 10,000 tries. The computer time varies for
each near-OLH constructed. It is about 0.01 seconds per try for the 33 × 9 near-OLH and
2 seconds per try for the 129 × 22 near-OLH on a 2.6-GHz × 2 laptop.

Table 3 compares the near-OLHs constructed by the LMT approach and new ones
in terms of orthogonality and space-filling properties. In this table, the two orthogonality
measures used are the rmax and |R|1/m, where R is the correlation matrix among columns
of the LH. Note that the OLHs will have |R|1/m = 1 as R becomes an identity matrix.
The two space-filling properties Mm distance and ML2 have been explained in the previous
paragraphs. As can be seen in this table, the new designs are better than the ones constructed
by the LMT approach with respect to all listed measures.

With the exception of the 169 × 168 near-OLH, which is the result of just 10 tries,
each design listed in Table 2 is the result of 100 tries. While it takes about 2 seconds per try
to construct the 49 × 40 near-OLH in Table 3, it takes almost an hour per try to construct
the 169 × 168 one in this table.
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Near-Orthogonal Latin Hypercubes 499

Table 3
Comparisons of near-OLHs constructed by the LMT approach and new ones in terms of

orthogonality and space-filling properties

n k Near-OLH rmax
† |R|1/m Mm distance‡ ln(ML2)†

49 40 LMT 0.0357 0.9987 3.975 12.25
New 0.0163 0.9998 4.410 12.01

64 54 LMT 0.0238 0.9994 4.747 17.54
New 0.0063 0.9999 5.129 17.49

81 70 LMT 0.0333 0.9990 5.600 23.85
New 0.0086 0.9999 6.266 23.72

121 108 LMT 0.0364 0.9985 5.920 34.46
New 0.0029 �1 7.98 34.46

169 168 LMT 0.0385 0.9974 10.30 34.46
New 0.0021 �1 10.66 34.46

†The smaller, the better.
‡The larger, the better.

4. Concluding Remarks

Orthogonality is known to be important for the linear model, where the unknown parame-
ters can be estimated efficiently and independently (uncorrelated). On the other hand, the
space-filling properties are important for model robustness. All existing designs seem to
be optimal in one way, but could be poor from another. The near-OLHs constructed by the
algorithm in the previous section keep the balance—they are good in both orthogonality
(i.e., with very small rmax) and space-filling properties, though they may not be optimal in a
single dimension. This algorithm could also produce small OLHs (OLHs for seven or less
factors). As mentioned in section 2, certain large OLHs or near-OLHs can be constructed
from smaller ones and the latter can be easily constructed by our algorithm.

A special feature of our algorithm is that it can augment existing LH with additional
columns that are orthogonal or near-orthogonal to the existing columns. For example, it
is found that the column (1, −3, 2, −1, −5, 3, −4, 8, −2, 7, −8, −6, 6, −7, 4, 0, 5)′ is
orthogonal to all columns of the CL 17 × 7 OLH.

All designs in Tables 2 and 3 of this article are available from the first author.
LHD (http://designcomputing.net/gendex/lhd), the program used to generate all near-OLH
designs in this articles is a module of the first author’s Gendex DOE toolkit.
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