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Jones and Nachtsheim (2011) propose a new class of designs for definitive screening. These designs
have very nice properties for practical use. Their construction approach requires a computerized search.

This short note provides a theoretical basis for design construction, making use of conference matrices.
The design construction is straightforward, and the resulting design is always a global optimum definitive
screening design. The proposed method only works when the number of factors is even, however.
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Introduction

ONSIDER fitting the following linear model for m
factors,
Y = X181 +e€.

Suppose the true model is in fact
Y = X181 + X282 +e,

where X is the model matrix corresponding to terms
of the model other than those in X;. Then the ex-
pected value of the least-squares estimator 8, =
(X4 X1)7IX4Y of g1 for the model excluding the X,
term can be shown to be

E(81) = f1 + ABa,
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where A is the alias matrix defined as A =
(X{X1)"*X!X5. For robustness purposes in various
factor-screening contexts, it is desirable to minimize
such a matrix in some sense.

Jones and Nachtsheim (2011) propose a series
of designs, called definitive screening designs, with
2m4-1 runs to investigate m factors. These 2m+1 de-
grees of freedom comprise the minimal number possi-
ble for estimates of the intercept, all m main effects,
and all m quadratic effects. Furthermore, the esti-
mated main effects are orthogonal to all two-factor
interaction effects, namely, the alias matrix A = 0
when X consists of main effects and X, consists of
two-factor interactions. Their construction approach
requires a computerized search. In this paper, we pro-
pose a simple procedure for constructing designs hav-
ing the same structure by using conference matrices.

Proposed Designs

For m even, an m x m matrix C is a conference
matrix if it satisfies C'C = (m— 1)Inxm, with Cy; =
0,(i = 1,2,...,m) and Cyj € {~1,1},(i # j,4,5 =
1,2,...,m) (see, for example, Goethals and Seidel
(1967)). These matrices were first introduced for
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dealing with conference telephony (Belevitch (1950))
but not directly for design of experiments.

The design matrix D for the definitive screening
designs of Jones and Nachtsheim (2011) can be con-
structed as

C
-C |,
0

D:

where C is an m x m conference matrix and 0 is
a 1 X m zero matrix. This design has the same size
and all the desirable properties as those proposed by
Jones and Nachtsheim (2011). In other words, the
proposed design will automatically inherit all their
nice properties (the proof of which is provided in Ap-
pendix A). Specifically,

1. It is a saturated design for estimating the in-

1 T2 X3 T4

0 1 1 1

1 0 -1 -1

1 1 0 1

1 1 -1 0

1 1 -1 -1

1 1 1 -1

1 -1 -1 1

1 1 1 1

1 -1 1 1

1 -1 -1 1

1 -1 1 -1

1 -1 1 -1

C

D=|-C| = 0 -1 -1 -1
0 -1 0 1 1
-1 -1 0 -1

-1 -1 1 0

-1 -1 1 1

-1 -1 -1 1

-1 1 1 -1

-1 -1 -1 -1

-1 1 -1 -1

-1 1 1 -1

-1 1 -1 1

-1 1 -1 1

It is straightforward to verify that its D-efficiency
is 92.3%, higher than the 89.8% for the design given
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tercept, all m main effects, and all m quadratic
effects.

2. All main effects are orthogonal to all quadratic
effects.

3. All main effects are orthogonal to all two-factor
interactions, that is, the alias matrix, A, is a
zero matrix.

Moreover, the proposed designs are always orthog-
onal (in term of main and quadratic effects), a desir-
able property that is not always shared by designs
given in Jones and Nachtsheim (2011). Of course,
such an orthogonality constraint can be added to
their algorithm, if so desired.

Some conference matrices of small sizes are given
in Appendix B (for m = 2,4,...,18). Take the case
m = 12 as an example. If C denotes the conference
matrix of order m = 12, the resulting design will be
shown in Equation (1).

g Ty Tg Tg X1 T11 ZTi2
1 1 1 1 1 1 1
-1 1 -1 1 1 1 1
-1 1 -1 -1 1 -1 -1
1 -1 -1 -1 -1 1 1
1 -1 1 1 1 -1 -1
0 1 1 -1 -1 1 -1
-1 0 1 1 -1 1 -1
-1 -1 0 1 -1 -1 1
1 -1 -1 0 1 1 -1
1 1 1 -1 0 -1 1
-1 -1 1 -1 1 0 1
1 1 -1 1 -1 -1 0
-1 -1 -1 -1 -1 -1 -1 (1)
1 -1 1 -1 -1 -1 -1
1 -1 1 1 -1 1 1
-1 1 1 1 1 -1 -1
-1 1 -1 -1 -1 1 1
0 -1 -1 1 1 -1 1
1 0 -1 -1 1 -1 1
1 1 0 -1 1 1 -1
-1 1 1 0 -1 -1 1
-1 -1 -1 1 0 1 -1
1 1 -1 1 -1 0 -1
-1 -1 1 -1 1 1 0
0 0 0 0 0 0 0

in Jones and Nachtsheim (2011). For a fair compar-
ison, we adapt the D-efficiency criterion defined in
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TABLE 1. Relative D-Efficiencies for the Main Effect Model

Number D-efficiency of D-efficiency of Relative
of Jones and Nachtsheim’s the proposed Ratio
factors design (%) design (%) (%)*
4 79.4 79.4 100.0
6 85.5 85.5 100.0
8 88.8 88.8 100.0
10 90.9 90.9 100.0
12 89.8 92.3 102.8
14 90.1 93.3 103.6
16 91.5 94.1 102.8
18 89.4 94.7 105.9
20 89.5 95.2 106.4
22 89.8 NA** NA**
24 90.0 96.0 106.7
26 90.2 96.3 106.8
28 90.4 96.5 106.7
30 90.7 96.8 106.7

*Relative Ratio = D.(dp,dp)/De(dsen, dp), where D.(dp,dp) is the D-efficiency of the proposed design
and D.(djen,dp) is the D-efficiency of Jones and Nachtsheiin’s design.
**NA = “not available”. Conference matrix of order 22 does not exist.

Jones and Nachtsheim (2011),

[X(d)'X(d)| )”P
|X(dp)X(dp)|/

where X(d) is the design matrix of design d, dp is the
D-optimal design, and p is the number of intercept
and main effects terms in the model. Furthermore,
we define the relative ratio as

De(dp,dp)
De(dsen,dp)’
where dp is the proposed design and d gy is Jones
and Nachtsheim’s design.

D.(d,dp) = (

relative ratio =

The relative D-efficiency between Jones and
Nachtsheim’s design and the proposed design for

1 L1, Tm

1m><l mem

M= 1m><l _mem

1ix: O1xm

where

c Q P
—-C1}1,/Q},and | P
0 0 0

represent main effects, pure-quadratic effects, and
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QmX'm
mem

the main-effect model is shown in Table 1. The
proposed designs for m = 6 through 30 (except
22) are all orthogonal for main effects. For m =
12,14,16,18, 20, 24, 26, 28, 30, the proposed designs
are all superior to those in Jones and Nachtsheim
(2011) in terms of D-efficiency. If a quadratic model
is considered (with main and quadratic effects), the
relative ratio can be verified as 100% for 4 < m < 10
and between 101.4% to 103.4% for 12 < m < 30
(except 22).

Discussion and Conclusion

For the definitive screening design, the model ma-
trix can be represented as

2

T T1T2, 0, Tm—1Tm
Proxm(m—1)/2
P'm)(m(m——l)/? )

O1xm 01xm(m-1)/2

two-factor interaction effects, respectively; 1,,x1 is
an m x 1 matrix with all entries equal to one, 01xm
is a 1 x m zero matrix, and C,, ., is an m X m con-
ference matrix. The inner product matrix can then
be represented as follows:
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1 L1y Tm
1 2m +1 O1xm
a1
: Omx1 2(m - 1)Imxm
Tm
2
’ 1
MM = .
: 2(m — 1)1mx1 Omxm
2%,
T1T9
Om(mAl)/2Xl On‘L(m——l)/Qx'm,
Tm—1Tm

where I is the identity matrix and J is the matrix
with all 1’s. It is clear that

1. All main effects are orthogonal to each other.
2. All main effects and quadratic effects are or-
thogonal.

3. All main effects and two-factor interaction ef-
fects are orthogonal.

4. The inner products among quadratic effects can
be represented as 2(m — 2)J + 21, i.e., the di-
agonal element is 2m — 2 and the off-diagonal
element is 2m — 4.

5. The inner products between the pure-quadratic
effects and the two-factor interaction effects can
be represented as 2Q’P, whose entries belong
to the set {—2,0,2}. Consequently, the correla-
tion between the two columns is

e N 2m +1

Tag,st(m) ==+ m-Tm—2)
as shown in Jones and Nachtsheim (2011).
Thus, Columns 4 and 5 in their Table 3 should
be identical for even m. Namely, |r¢, ;,(m)| =
()

6. The inner products among two-factor interac-
tion effects are rather complicated. The inner-
product matrix 2P'P has its diagonal entries
2(m—2), and off-diagonal entries belong to the
set {0, %2, 44, -, £2(m —4)}.

The construction of conference matrices is well
studied in the literature. For m = 0 (mod 4), a multi-
ple of four, a conference matrix can be obtained via a
Hadamard matrix by C = H—1, where H is a skew-
Hadamard matrix and I is the identity matrix (see,
for example, Koulouvinos and Stylianou (2008)). For
m = 2 (mod 4), an even number but not a multiple
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2(m - 2)mem + 2Lmxm

/
2p m(m—1)/2xm Qumxm

2 2
L1, Tm T1T2, "

2(m —1)1ixm

HLm—~1Tm

O1xm(m-1)/2

Omxm Omxm(m—l)/2

2Ql'm><umxm(m—l)/2

2Pl'rn('m.—l)/Q Xumxm(m—l)/Z

of four, conference matrices can be found for m = 2,
6, 10, 14, 18, 26, 30, 38, 42, 46, 50, 54, 62. Especially
when (m — 1) is a sum of two squares, some related
theorems can be found in Van Lint and Seidel (1966).

The method proposed in this paper only works
when m is even. When the number of factors m
is odd, we suggest deleting the last column of an
(m~+1)x{m+1) conference matrix. However, this will
be two more runs than necessary and is no longer a
definitive design by definition. For an odd number of
factors and 2m+-1 runs, we cannot find better designs
than the ones proposed by Jones and Nachtsheim
(2011). For saturated cases, we suggest using their
designs. It might occur to some practitioners after
dropping the column to further remove the two rows
having no zero values to form a potential definitive
design for odd m. This would be a bad idea, as the
resulting design will be singular for the main-effect
model. One referee pointed out that it is not advis-
able to use a conference matrix itself for a screening
design. This is sensible advice.

A conference matrix is a special case of a weigh-
ing matrix (Raghavarao (1959)). We may replace
the conference matrix in the proposed design by a
weighing matrix and get a series of orthogonal main-
effect designs that have the same properties as shown
above. This deserves further study.

Appendix A
Theoretical Properties of
the Proposed Design

1. It is a saturated design for-estimating the inter-
cept, all' m main effects, and all m quadratic ef-
fects. Assume the model contains the intercept,
m main effects, and m pure quadratic effects,
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so the model matrix is

1m>(1 Cme mevn
X = 1m x1 = Cm X vi LX T
l1 x1 01 X 0 1xm
where
0

denote the matrix for m pure quadratic effects,
Q is m X m matrix with zero diagonal entries,
and other entries are all 1’s. Let ||X]| denote
the determinant of a square matrix X, then we

have
1m><1 Cme Qme
”X”: Laxi —Cmxm Qmxm
11)(1 lem lem
Cc Q
(_1\2m+1+1
= (-1) x1x| & Q”

=[Gl > |l2Qll
= (m —1)™?% x 2™ x (=1)" x (m —1)
= (“1)m X 9™ (m— 1)

When m is even, this determinant cannot be
zero. Namely, the model matrix is invertible.
Therefore, it is possible to estimate the inter-
cept, all m main effects, and all m quadratic
effects.

2. All main effects are orthogonal to all quadratic
effects. The design matrix for main effects is

mem
X, =

_mem i
lem

while the matrix for quadratic effects can be
expressed as

Qmxm
KXoz = | Qmxm
01><m
Thus, we have
Q
XiXgo = (C" ~=C' Opmx1) ¥ Q
lem
= (C/Q - C'Q + Omxl X lem)
= Omxm-

That is, all main effects are orthogonal to all
quadratic effects.

Vol. 44, No. 1, January 2012

3.

Cy

Cy

Cs

Csg

All main effects are orthogonal to all two-factor
interactions, that is, the alias matriz, A, is a
zero matriz. The design matrix for main effects
is

C‘mX’m
_CmX'm y

lem

X1:

while the matrix for two-factor interactions has
the following structure:

Prxm(m—1)/2
mem(m-—-l)/?
O1xm(m—1)/2

Xy =

Thus, the alias matrix is

A= (XIX) ™ x XX,

= (X{X) ' x(C -C' 0)x

o T

= (X,X1)"! x (C'P — C'P +0)
= 0mxm(m—-1)/2<

A is identically zero; therefore, all main effects
are orthogonal to all two-factor interactions.

Appendix B
Conference Matrices for
m=2,4,...,18

o 1 1 1 1 1
1 0 1 1 -1 -1
[ 5 S (R R T |
“fr 1 -1 0 1 41
1 -1 -1 1 0 1
1 -1 1 -1 1 0
o 1 1 1 1 1 1 1
-1 0 -1 -1 -1 1 1 1
-1 1 0 1 -1 -1 -1 1
-1 1 -1 0 1 1 -1 -1
-1 1 1 -1 0 -1 1 -1
-1 -1 1 -1 1 0 -1 1
-1 -1 1 1 -1 1 0 -1
-1 -1 -1 1 1 -1 1 0
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6o 1 1 1 1 1 1 1
1 0 1 1 -1 1 -1 -1
1 1 0 1 1 -1 1 -1
1 1 1 0o 1 1 -1 1
1 -1 1 1 0 1 1 =1
1 1 -1 1 1 0 1 1
1 -1 1 -1 1 1 o0 1
1 -1 -1 1 -1 1 1 0
coo |1 -1 -1 -1 1 -1 1 1
=711 01 -1 -1 -1 1 -1 1
1 1 1 -1 -1 -1 1 -1
1 -1 1 1 -1 -1 -1 1
1 -1 -1 1 1 -1 -1 -1
1 -1 -1 -1 1 1 -1 -1
1 1 -1 -1 -1 1 1 -1
1 -1 1 -1 -1 -1 1 1
1 1 -1 1 -1 -1 -1 1
1 1 1 -1 1 -1 -1 -1
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