
Author's personal copy

Statistics and Probability Letters 81 (2011) 1027–1033

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Small Box–Behnken design
Tian-Fang Zhang a, Jian-Feng Yang a,∗, Dennis K.J. Lin b

a Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
b Department of Statistics, The Pennsylvania State University, University Park, USA

a r t i c l e i n f o

Article history:
Received 16 September 2010
Received in revised form 17 February 2011
Accepted 20 February 2011
Available online 2 March 2011

Keywords:
Balance incomplete block design
Factorial design
Group moment matrix
Response surface design

a b s t r a c t

Box-Behnken design has been popularly used for the second-order response surfacemodel.
It is formed by combining two-level factorial designs with incomplete block designs in a
special manner—the treatments in each block are replaced by an identical design. In this
paper, we construct small Box–Behnken design. These designs can fit the second-order
response surface model with reasonably high efficiencies but with only a much smaller
run size. The newly constructed designs make use of balanced incomplete block design
(BIBD) or partial BIBD, and replace treatments partly by 23−1

III designs and partly by full
factorial designs. It is shown that the orthogonality properties in the original Box and
Behnken designs will be kept in the new designs. Furthermore, we classify the parameters
into groups and introduce Group Moment Matrix (GMM) to estimate all the parameters in
each group. This allows us to significantly reduce the amount of computational costs in the
construction of the designs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Consider k factors, x1, . . . , xk, under investigation to determine their effects on a response variable y. Often we
approximate the functional relationships over a limited experimental region by a polynomial representation (see, for
example, Draper and Lin, 1990).We start with the first-ordermodel yt = β0+β1x1t +· · ·+βkxkt +εt , where t = 1, . . . , n, n
is the number of runs, and εt is the error term at the t-th run with zero mean and variance σ 2. If it suffers with lack of fit, a
few more runs may be added to allow the full second-order model to be fitted,

yt = β0 +

k−
i=1

βixit +

k−
i=1

βiixit2 +

k−
i=1

k−
j>i

βijxitxjt + εt . (1)

There is a total of (k + 2)(k + 1)/2 parameters to be estimated, including a constant term, k first-order terms, k quadratic
terms, and k(k − 1)/2 interaction terms. For second-order response surface design, the central composite design (Box and
Wilson, 1951; Box and Hunter, 1957) and the Box–Behnken design (Box and Behnken, 1958) are probably twomost popular
ones among practitioners. These designs have some desirable properties, such as, orthogonality and high efficiency. The
run size of these designs increases rapidly as the number of factors k increases, however. For central composite design,
efforts have been made to reduce the run size (see, for example, Draper, 1985; Draper and Lin, 1990, 1996; Jensen, 1994).
For Box–Behnken design, little is known on reducing the run size. The objective here is to find small Box–Behnken designs
which could maintain as many good properties as the original Box and Behnken designs, but with far fewer runs.

An alternative replacement method for the construction of small Box–Behnken designs is proposed in Section 2. These
newly obtained small Box–Behnken designs are then compared with the other Box–Behnken designs in Section 3. An
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algorithm is proposed in Section 4 to simplify the computation efforts (this is particularly important for large k). The
conclusions and discussions are given in Section 5.

2. Alternative replacement

The Box–Behnken design, proposed by Box and Behnken (1958), combines two-level factorial designs with incomplete
block designs in a special manner. For instance, an incomplete block design with six treatments and six blocks is given by

∗ ∗ 0 ∗ 0 0
0 ∗ ∗ 0 ∗ 0
0 0 ∗ ∗ 0 ∗

∗ 0 0 ∗ ∗ 0
0 ∗ 0 0 ∗ ∗

∗ 0 ∗ 0 0 ∗

 . (2)

Take the six columns as the six input factors x1, x2, x3, x4, x5, x6 in a response surface study. Replace the three asterisks in
each block by a 23 full design and insert a column of zeros wherever the asterisk does not appear. Repeating the procedure
for each block and adding a few central points lead to the following Box–Behnken design with k = 6 factors as displayed in
Eq. (3). The resulting designwill have 48 runs plus the center points. These designs are popularly used (see, for example, Box
and Draper, 1987; Myers et al., 2009; Khuri and Cornell, 1996)

±1 ±1 0 ±1 0 0
0 ±1 ±1 0 ±1 0
0 0 ±1 ±1 0 ±1

±1 0 0 ±1 ±1 0
0 ±1 0 0 ±1 ±1

±1 0 ±1 0 0 ±1
0 0 0 0 0 0

 . (3)

Note: (±1, ±1, ±1) denotes all 23 combinations of the plus and minus levels.
Box and Behnken (1958) replaced the treatments in each block by the same design (typically 22 or 23). Keeping the BIBD

(or PBIBD) structure unchanged, the run size of the resulting design could be smaller if alternative designs are used. As an
illustrative example, consider the above design for k = 6. We first divide the six blocks (as shown in Eq. (2)) into two parts.
Suppose thatwe put the first two blocks as part I and the rest as part II. The three treatments of each block in Part I is replaced
by a 23 design, while the treatments of each block in part II is replaced by a 23−1

III design. The results can be shown as follows.


±1 ±1 0 ±1 0 0
0 ±1 ±1 0 ±1 0

0 0 ±1 ±1 0 ±1
±1 0 0 ±1 ±1 0
0 ±1 0 0 ±1 ±1

±1 0 ±1 0 0 ±1


23

23−1
III .

In Part I, (±1, ±1, ±1) denotes all 23 combinations of the plus and minus levels; while in Part II, (±1, ±1, ±1) is the short

form of

 1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

, a 23−1
III design. The newly constructed design will have 32 runs plus center points, as compared to

48 runs in the original Box–Behnken design.

3. Construction and comparison

Next, we discuss in detail on the construction method of the small Box–Behnken designs in general. The construction
method involves the following three steps:
Step 1 : (Construction of block designs.) The incomplete block designs used must satisfy the following properties: (i) each

block contains no more than three treatments, (ii) any pair of treatments has to coincide in some block, but with as
few times as possible. The block designs satisfying (i) and (ii) are listed in the Appendix.

Step 2 : (Treatments replacement.) Use proper factorial design to replace the treatments of each block. If the block size is
two, then a 22 design is adopted. If the block size is three, either a 23 design or a 23−1

III design is adopted (this will be
explained in detail later–see Steps 2a–2c).
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Table 1
Total points (excluding central points) and D-efficiency comparison.

Number of Number of parameters Total points n D-efficiency
factors k p =

(k+2)(k+1)
2 − 1 BBD NBD SBBD BBD NBD SBBD

3 9 12 – 12 96.29 – 96.29
4 14 24 – 16 98.70 – 82.34
5 20 40 40 24 97.16 91.55 70.29
6 27 48 48 32 92.72 95.51 77.21
7 35 56 56 40 98.07 98.07 82.85
8 44 192 128 56 95.94 96.84 82.14
9 54 120 96 60 93.09 96.95 79.91

10 64 160 160 76 91.54 96.30 70.77
11 77 176 176 96 97.62 95.91 82.34

Step 3 : (Adding central points.) Some central points, if desirable, can be added to estimate the grand mean.

For each BIBD (or PBIBD) chosen in Step 1, let b0 be the number of blocks with three treatments and b1 be the number
of blocks in which treatments are replaced by a 23 design. Then the treatments in the rest b0 − b1 blocks will be replaced
by a 23−1

III design. Obviously, the total number of runs is 4(b0 − b1) + 8b1. Note that the total number of parameters in the
second-order model is (k + 2)(k + 1)/2 − 1 (excluding the constant term). The inequality

4(b0 − b1) + 8b1 ≥
(k + 2)(k + 1)

2
− 1 (4)

holds if the small Box–Behnken design is capable of estimating all parameters in this model (excluding the constant term).
Denote b∗

= ⌈((k+ 2)(k+ 1)/2− 1)/4− b0⌉ the smallest integer b1 satisfying the inequality (4). We discuss details of the
replacement method mentioned in Step 2:

Step 2a : For the fixed b∗ blocks, calculate the D-efficiency (labeled D-eff) of the moment matrixM = Z ′Z/n, where Z is the
model matrix excluding the column of all ones. For a fair comparison, we define the D-eff as (‖Ẑ ′Ẑ‖)1/p/n × 100%,
where Ẑ is the Z matrix corrected by the method of Nguyen and Borkowski (2008). Other types of D-efficiency (for
example, Kiefer, 1960) can be used as well. If the matrix is nonsingular, go to Step 2b. Otherwise select a new non-
isomorphic b∗ blocks to repeat the above process (two different b∗ blocks are called isomorphic if their moment
matrixes resemble each other). If there is no nonsingular moment matrix, after an exhausted search among all the
non-isomorphic b∗ blocks, go to Step 2c.

Step 2b : If the moment matrix is nonsingular, we search all non-isomorphic b∗ blocks to update the block scheme which
maximizes the D-eff. The algorithm stops until all the non-isomorphic b∗ blocks are compared.

Step 2c : If b∗ < b0, update b∗ by b∗
+ 1. Select the first b∗ blocks and go to Step 2a. If b∗

= b0, then select all blocks and
the algorithm stops.

As a result, there will be b∗ blocks chosen to be replaced by a 23 design and the rest will be replaced by a 23−1
III design.

When b∗
= b0, the resulting is indeed the original Box and Behnken design. The newly constructed designs ensure all the

parameters in model (1) can be estimated with reasonably high efficiencies, while the number of runs are reduced.
Through the constructionmethod, small Box–Behnken designs are obtained inAppendix. Themomentmatrices for newly

constructed designs have the following three properties. It can be shown that all the orthogonal properties in the original
Box–Behnken designs are kept. The proofs are straightforward and thus are omitted here. Following the notations used in
Box and Draper (1987), define [i] =

1
n

∑n
t=1 xit , [ij] =

1
n

∑n
t=1 xitxjt , [iij] =

1
n

∑n
t=1 x

2
itxjt , and so on. It can be verified that

1. [i] = 0; and [ij] = 0, for i ≠ j.
2. [ijk] = 4, for the position that ‘‘*’’ appears in i, j, k simultaneously in Part II, otherwise [ijk] = 0, for i ≠ j ≠ k; [iij] = 0,

for i ≠ j; [iii] = 0.
3. [ijkl] = 0, for i ≠ j ≠ k ≠ l; [iijk] = 0, for i ≠ j ≠ k; [iiij] = 0, for i ≠ j.

The newly constructed small Box–Behnken designs (SBBD) are next compared with original Box–Behnken designs (BBD)
and 3-level designs given in Nguyen and Borkowski (2008, labelled NBD) in terms of the total number of runs and their
corresponding D-efficiencies. The comparisons are displayed in Table 1.

The following observations are clear from Table 1:

1. (Run size). The run sizes for the proposed SBBD are clearly smaller than the original BBD andNBD, especially for the larger
k. For example, when k = 8, the run size for SBBD is about 25% (56 vs. 192) of the original BBD and 50% (56 vs. 128) of
NBD. And it is very close to the minimal number of points (the total number of parameters to be estimated).

2. (Efficiency). The proposed SBBDs, even with very few runs, still have high D-efficiencies, although these are lower than
BBD and NBD. All their D-efficiencies are over 70%, for example.
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4. A new algorithm for construction of higher dimensional designs

To fit the second-order response model, the inverse of the moment matrix needs to be calculated. When k is small, it
can be easily calculated. As k increases, the calculation becomes troublesome. For instance, when k = 9 the moment matrix
is a 54 × 54 matrix. The calculation of its inverse may not be straightforward. The small Box–Behnken design has a good
property—we could reduce the computational effort by classifying the parameters into groups. For example, for k = 9, by
properly grouping the parameters we only need to compute the inverses of a 4×4matrix and another 9×9matrix. This can
bemuchmore easily done as opposed to the inverse of a 54×54matrix. Based on the parameter grouping, a new algorithm
is proposed in this section to significantly reduce the computational effort.

According to the structure of the design matrix X , we can classify the parameters into groups, each of which can be
computed independently. Again, take k = 9 as an example. From the Appendix A, let

X =



±1 0 0 ±1 0 0 ±1 0 0
0 ±1 0 0 ±1 0 0 ±1 0
0 0 ±1 0 0 ±1 0 0 ±1

±1 ±1 ±1 0 0 0 0 0 0
0 0 0 ±1 ±1 ±1 0 0 0
0 0 0 0 0 0 ±1 ±1 ±1

±1 0 0 0 ±1 0 0 0 ±1
0 0 ±1 ±1 0 0 0 ±1 0
0 ±1 0 0 0 ±1 ±1 0 0

±1 0 0 0 0 ±1 0 ±1 0
0 ±1 0 ±1 0 0 0 0 ±1
0 0 ±1 0 ±1 0 ±1 0 0


=



X11
X12
X13

X21
X22
X23
X24
X25
X26
X27
X28
X29


,

where X11, X12, X13, X21, X22, X23, X24, X25, X26, X27, X28 and X29 correspond to all blocks of X . Note that each of X11, X12 and
X13 is replaced by a 23 full design, which makes all main effects and their interactions orthogonal in each block. Meanwhile,
each of X21, X22, X23, X24, X25, X26, X27, X28 and X29 is replaced by a 23−1

III design, which makes the main effects and the
corresponding interactions aliased in each block of this part. For example in the block X21, the 1st, 2nd and 3rd column
are ‘‘±1’’, which results in the alias of β1 and β23. Here, βi stands for the main effect of factor Xi while βij stands for the
interaction effect between factors Xi and Xj. Therefore, we put β1 and β23 in one group, denoted by Group 1. It is obvious
that β1 is aliased again with β59 in X24 and with β68 in X27. So β59 and β68 are also put into Group 1. Since any parameter
in Group 1 is not aliased with any other parameter in the rest blocks of Part II, all parameters (β1, β23, β59, β68) constitute
Group 1 with the Group Moment Matrix (GMM) being

G1 =

 [11] [123] [159] [168]
[123] [2233] [2359] [2368]
[159] [2359] [5599] [5689]
[168] [2368] [5689] [6688]

 =
1
15

5 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

 .

Similarly, the following eight groups can be obtained: (β2, β13, β49, β67); (β3, β12, β48, β57); (β4, β56, β29, β38);
(β5, β46, β19, β37); (β6, β45, β27, β18); (β7, β89, β26, β35); (β8, β79, β34, β16); (β9, β78, β15, β24). Each of them has the same
GMM G1 as Group 1.

The complete group used to estimate the quadratic terms is (β11, β22, β33, β44, β55, β66, β77, β88, β99) with the GMM
denoted by

G2 =



[1111] [1122] [1133] [1144] [1155] [1166] [1177] [1188] [1199]
[1122] [2222] [2233] [2244] [2255] [2266] [2277] [2288] [2299]
[1133] [2233] [3333] [3344] [3355] [3366] [3377] [3388] [3399]
[1144] [2244] [3344] [4444] [4455] [4466] [4477] [4488] [4499]
[1155] [2255] [3355] [4455] [5555] [5566] [5577] [5588] [5599]
[1166] [2266] [3366] [4466] [5566] [6666] [6677] [6688] [6699]
[1177] [2277] [3377] [4477] [5577] [6677] [7777] [7788] [7799]
[1188] [2288] [3388] [4488] [5588] [6688] [7788] [8888] [8899]
[1199] [2299] [3399] [4499] [5599] [6699] [7799] [9988] [9999]


.

Finally, each of the rest parameters constitute a single group, such as β14 itself.
Note that the moment matrixM for such a design can be decomposed as

M = diag

G1, . . . ,G1  
9

,G2, c1, . . . , c9

 ,

where diag denotes a block diagonal matrix and ci’s are constants corresponding to single groups. So we only need to
calculate the inverses of G1 (a 4 × 4 matrix) and G2 (a 9 × 9 matrix) to fit the model.
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5. Conclusions and discussions

Box–Behnken design is a popular response surface design. In this paper, we construct Box–Behnken designs with a small
number of runs. Such designs make use of BIBD (or PBIBD), and replace treatments, partly by a 23−1

III design and partly by
a 23 design. It is shown that the orthogonality properties in the original Box and Behnken designs will be kept in the new
designs. These designs can fit the second-order response surfacemodelwith reasonably high efficiencies butwith onlymuch
smaller run sizes. To reduce the computational efforts for large k, we classify the parameters into groups. All parameters in
each group are expressed by a Group Moment Matrix (GMM). A new algorithm based on such a GMM is also proposed to
make the design construction possible for large k.
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Appendix A. Small Box and Behnken designs for 3 ≤ k ≤ 11

k Block design (without central points) Replacement
design

3


±1 ±1 0
±1 0 ±1
0 ±1 ±1


22

4

 ±1 ±1 0 0
±1 0 ±1 0
±1 0 0 ±1
0 ±1 ±1 ±1

 22

23−1
III

5


±1 ±1 0 ±1 0
±1 0 ±1 0 ±1
0 ±1 0 ±1 ±1

±1 ±1 ±1 0 0
0 0 ±1 ±1 ±1


23

23−1
III

6


±1 ±1 0 ±1 0 0
0 ±1 ±1 0 ±1 0
0 0 ±1 ±1 0 ±1

±1 0 0 ±1 ±1 0
0 ±1 0 0 ±1 ±1

±1 0 ±1 0 0 ±1


23

23−1
III

7



±1 ±1 ±1 0 0 0 0
±1 0 0 0 0 ±1 ±1
±1 0 0 ±1 ±1 0 0
0 ±1 0 ±1 0 ±1 0
0 ±1 0 0 ±1 0 ±1
0 0 ±1 ±1 0 0 ±1
0 0 ±1 0 ±1 ±1 0


23

23−1
III

8



±1 0 0 ±1 ±1 0 0 0
±1 0 0 0 0 ±1 ±1 0
0 ±1 0 ±1 0 ±1 0 0

±1 ±1 ±1 0 0 0 0 0
±1 0 0 0 0 ±1 0 ±1
0 ±1 0 0 ±1 0 0 ±1
0 ±1 0 0 ±1 0 ±1 0
0 0 ±1 0 ±1 ±1 0 0
0 0 ±1 ±1 0 0 ±1 0
0 0 0 ±1 0 0 ±1 ±1
0 0 ±1 0 0 0 0 ±1



23

23−1
III

22

(continued on next page)
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k Block design (without central points) Replacement
design

9



±1 0 0 ±1 0 0 ±1 0 0
0 ±1 0 0 ±1 0 0 ±1 0
0 0 ±1 0 0 ±1 0 0 ±1

±1 ±1 ±1 0 0 0 0 0 0
0 0 0 ±1 ±1 ±1 0 0 0
0 0 0 0 0 0 ±1 ±1 ±1

±1 0 0 0 ±1 0 0 0 ±1
0 0 ±1 ±1 0 0 0 ±1 0
0 ±1 0 0 0 ±1 ±1 0 0

±1 0 0 0 0 ±1 0 ±1 0
0 ±1 0 ±1 0 0 0 0 ±1
0 0 ±1 0 ±1 0 ±1 0 0



23

23−1
III

10



±1 0 0 ±1 ±1 0 0 0 0 0
±1 ±1 ±1 0 0 0 0 0 0 0
±1 0 0 0 0 ±1 ±1 0 0 0
±1 0 0 0 0 0 0 ±1 ±1 0
±1 ±1 0 0 0 0 0 0 0 ±1
0 ±1 0 ±1 0 ±1 0 0 0 0
0 ±1 0 0 ±1 0 ±1 0 0 0
0 ±1 0 0 0 0 0 ±1 ±1 0
0 0 ±1 ±1 0 0 ±1 0 0 0
0 0 ±1 0 ±1 0 0 ±1 0 0
0 0 ±1 0 0 ±1 0 0 ±1 0
0 0 ±1 ±1 0 0 0 0 0 ±1
0 0 0 ±1 0 0 0 ±1 ±1 0
0 0 0 0 ±1 ±1 0 0 0 ±1
0 0 0 0 ±1 0 ±1 0 ±1 0
0 0 0 0 0 ±1 0 ±1 0 ±1
0 0 0 0 0 0 ±1 ±1 0 ±1
0 0 0 0 0 0 0 0 ±1 ±1



23

23−1
III

22

11



±1 ±1 ±1 0 0 0 0 0 0 0 0
0 0 0 ±1 0 0 0 ±1 0 0 ±1
0 0 0 0 ±1 ±1 0 0 ±1 0 0
0 0 0 0 0 0 ±1 0 ±1 ±1 0

±1 0 0 0 0 0 0 0 0 ±1 ±1
±1 0 0 ±1 ±1 0 0 0 0 0 0
±1 0 0 0 0 ±1 ±1 0 0 0 0
±1 0 0 0 0 0 0 ±1 ±1 0 0
0 ±1 0 ±1 0 ±1 0 0 0 0 0
0 ±1 0 0 ±1 0 ±1 0 0 0 0
0 ±1 0 0 0 0 0 ±1 0 ±1 0
0 ±1 0 0 0 0 0 0 ±1 0 ±1
0 0 ±1 ±1 0 0 ±1 0 0 0 0
0 0 ±1 0 ±1 0 0 ±1 0 0 0
0 0 ±1 0 0 ±1 0 0 0 0 ±1
0 0 ±1 0 0 0 0 0 ±1 ±1 0
0 0 0 ±1 0 0 0 0 ±1 ±1 0
0 0 0 0 ±1 0 0 0 0 ±1 ±1
0 0 0 0 0 ±1 0 ±1 0 ±1 0
0 0 0 0 0 0 ±1 ±1 0 0 ±1



23

23−1
III

Appendix B. Supplementary data

Supplementary material related to this article can be found online at doi:10.1016/j.spl.2011.02.024.
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