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Screening for Fuel Economy: A Case Study
of Supersaturated Designs in Practice

Philip R. Scinto’,

Robert G. Wilkinson®, ABSTRACT A successful use of supersaturated design and analysis is
Dennis K. J. Lin® demonstrated through a case study completed at the Lubrizol Corporation.
"The Lubrizo! Corporation, in the study, a 28-run supersaturated design is used to screen the effects of

Cleveland, Ohio

; S more than 70 possible model terms (linear effects, quadratjc effects, interac-
Penn State University, University

‘ i tions, and measured covariates) on engine motor oil coefficient of friction
Park, Pennsyivania, and Renmin ) . ,
University of China, Beiing, (COF). Of the over 70 model terms of interest, 50 are twWo-way linear inter-
China actions. A Lubrizol-developed model-averaging technique known as
Bayesian variable assessment (BVA) is used to identify the important
high-level factors and model terms from the experiment. ’
This study is unique in the literature due to complications in multipie fac-
tor levels, physical correlations and constraints on the factors, curvature, and
the desire to screen for a large amount of interactions. The test results are
subject to common cause variation and unknown special causes such as
operator error and test instrument error.
Due to time and cost constraints, supersaturated designs are necessary to
screen for phenomena such as gasoline-powered engine fuel economy.
Based on the resulis from a 10-run follow-up experiment, the use of the
supersaturated design analyzed using BVA is concluded to be z success in
this case study.

KEYWORDS Bayesian variable assessment, design and analysis of supersatu-
rated design, Markov chain Monte Carlo

INTRODUCTION

The Lubrizol Corporation is an innovative specialty chemical company
that produces and supplies technologies that improve the quality and
performance of our customers’ products in the global transportation,
industrial, and consumer markets. One particular area of interest to Lubri-
zol researchers is the improvement of gasoline-powered engine fuel
economy through enhancement and improvement of engine cil additives.
Given the large number of possible variables, the potential for interac-
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Two-level  screening  designs  such  as

Plackett-Burman (which is a type of Hadamard
matrix) and fractional-factorial designs have been

widely used to efficiently study potential factors
and variables that may have a significant impact on
a process under study. In these designs, the number
of factors approaches, but is always less than, the
number of experimental design points. In supersatu-
rated designs, the number of factors and model
degrees of freedom can far exceed the number of
design points. In order for this approach to be suc-
cessful, the assumption that most factors and vari-
ables are not important must hold. In industrial
settings, this is not unreasonable (see Box and Meyer
1986).

Supersaturated designs are not a new concept; for
example, see Satterthwaite (1959). More recently,
there has been increased activity into this area, The
focus of most of the recent research is on algorithms
for generating the designs. In Lin (1993), half frac-
tions of Hadamard matrices were used to create
supersaturated designs. A Hadamard matrix is a
square matrix with entries of either 41 or —1. The
rows of a Hadamard matrix are murtually orthogonal
and every two different rows have matching entries
in exactly half of their columns and mismatched
entries in the remaining columns. These properties
hold for the columns as well as the rows. Therefore,
a 12 % 12 Hadamard matrix may be used to study up
to 11 linear main effects (columns) in 12 runs (the
rows). The analysis in this case would be fairly
straightforward and relaiively easy because the
two-way correlations between linear main effects
(the columns) are 0. However, if one were to take
one of the 12 columns and eliminate all rows in
which there is a -1 in the column (selection may
also be based on —1), the resulting matrix is 11 col-
umns and 6 rows. This resuiting matrix is a supersa-
turated design in which 10 linear main effects may be
studied in 6 runs (the rows). The analysis is more dif-
ficult because of the supersaturation of the main
effects, and the two-way correlations between linear
main effects (the columns) is now greater than 0 (in
this particular example, | =0.33 for every two-way
correlation). :

In Wu (1993), supersaturated designs were created

by augmenting Hadamard matrices with interaction .

columns. In Lin (1995), numeric algorithms were
given to construct designs where the pair-wise
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correlations are all less than a specified threshold.
Nguyen (1996) proposed a general method for cre-
ating supersaturated designs using balanced incom-
plete block designs (BIBD). W. Li and Wu (1997)
use a column exchange algorithm to search for the
“best” supersaturated design. In Yamada and Lin
(1997), supersaturated designs containing an orthog-
onal base were proposed. Other approaches include
using cyclic generators (Liu and Dean 2004), utilizing
a minimax criterion (Butler 2005), and so on.

Research into the analysis aspect of supersaturated
designs is somewhat limited, with mixed results.
Westfall et al. (1998) explored forward selection
methods for finding active factors. Abraham et al.
(1999) used simulation studies to show that model
selection can be tricky, Kelly and Voelkel (2000)
investigated the asymptotic power issue. In Beattie
et al. (2002), a two-stage Bayesian model selection
approach was used to select the best model. R. Li
and Lin (2003) proposed a penalized least squares
approach. Allen and Bernshteyn (2003) combined
the analysis and design aspects, proposing designs
to maximize the chances of selecting the active fac-
tors, assuming a stepwise regression approach.
Holcomb et al. (2003), Koukouvinos and Stylianou
(200%), and Geosgiou (2008) explored approaches
based on contrasts. Lu and Wu (2004) suggested a
three-stage  approach that utilizes stepwise
regression. Zhang et al. (2000) utilized partial least
squares for selecting active factors, whereas Phoa
et al. (2009) used an approach based on minimizing
complexity as measured by the i-norm (Dantzig
selector).

For this article, the focus will not be on developing
new design or analysis methods but on the appli-
cation of supersaturated designs in practice. We will
use a formulating example consisting of over 70 dif-
ferent possible model terms (17 linear main effects,
six quadratic effects, 50 two-way interactions, and
three covariates). By using a supersaturated design,
far less data was coliected (28 experimental runs)
than would have been required by either a
fractional-factorial or Plackett-Burman design. This
example will highlight issues that may arise when
designing supersaturated experiments, including
nonindependence of factor settings, mixed levels of
factors, and the need to study interactions. With
regard to analysis, a Bayesian model-averaging
approach called Bayesian variable assessment
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(Mevyer and Wilkinson 1998) will be utilized. This
approach has been successfully applied in data
mining applications, and data from supersaturated
design has much in common with data mining in that
both situations need to dea! with a large number of
variables.

In the next section, we will describe the formulat-
ing problem in some detail. BVA will then be
described. Included in the same section is a simula-
tion study demonstrating the value of BVA in analyz-
ing data from supersaturated designs. Next, the
formulating data from the actual experiment are
analyzed. The final section contains a summary and
discussion.

PROBLEM FORMULATION

Motor vehicle fuel economy is a topic of great
interest to consumers, equipment manufacturess,
and researchers. It is not difficult to understand that
improvements in fuel economy would have a large,
beneficial impact on both the economy and the
environment. Items ranging from vehicle and
engine design, fuel type and quality, tires, road sur-
face, and driving habits all contribute to the rate at
which fuel is consumed while driving an auto-
mobile. It has been hypothesized that the engine
motor oil may also play a significant role in fuel
economy. Therefore, research scientists at Lubrizol
have studied, and continue to study, chemical
recipes and formulations for engine motor oils to
improve fuel economy.

One test among several used to evaluate the per-
formance of engine motor oil in fuel economy is a
high-frequency reciprocating test that measures the
coefficient of friction (COF) of oil. This test is called
the bigh-frequency reciprocating rig (HFRR) ramp
and the response used in the analysis is the average
COF of the oil from 70 to 74 minutes in this
75-minute test. A lower COF is an indication of oils
that reduce friction, which would theoretically trans-
late into better fuel economy in a2 mechanical engine.
Engine motor oil is comprised of base oil, a
by-product of the crude oil distillation process, and
chemical additives such as dispersants, detergents,
oxidation inhibitors, rust inhibitors, viscosity modi-
fiers, and friction modifiers. Lubrizol formulators
are interested in identifying chemical additives and
the combinations of chemical additives that reduce
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friction. Unfortunately, historically, signals have been
small and infrequent when experimenting with
chemical additives in the areas of friction and fuel
economy. o

Given the historic lack of signal in testing for fuel

- economy and friction, a high-level screening design

in which many factors could be tested was selected
as the design approach. It was very important to test
as many potential variables as possible because we
did not expect a high success rate for signais. Collab-
oration between Lubrizol statisticians and formula-
tors led to the development of the chemical
additive factors, linear terms, curvature terms, and
interaction terms to study the COF response.

The chemical additive factors in each formulation
to study the average coefficient of friction are broken
down as follows: There are two dispersant types, D1
and D2, which are exclusive, meaning that they can-
not be used in the same formulation. D1 has four
levels and D2 has three levels. In addition, D1 is
made in both a low-nitrogen version (0.81N) and a
high-nitrogen (1.0N) version, whereas D2 can only
physically be made as the high nitrogen version.
D1 and D2 are also made in their original form and
in an altered form (altered by adding a chemical
element), independent of level and nitrogen version.
Three design columnns (A, B, C) indicate D1, D2, and
N class. D1 is set equal to 7 when columns A and B
are both +1, 5.5 when A is +1 and B is —1, and 4
when A is —1 and B is +1. In these cases, column
C indicates the nitrogen version of D1. When col-
umns A and B are both —1, D1 is set to 0 and D2
is set to either 4 or 7 depending on column C.

There are four friction modifier (FM) types: FMA,
FMB, FMC, and FMD, each with four levels. The total
amount of friction modifier is held constant at a
theorized® commercial level. Five design columns
(D, E, F, G, ) are used to construct FMA, FMB,
FMC, and FMD. Columns D and E are used to select
one of the four friction modifiers and columns F and
G are used to select the other. If the same friction
modifier is selected by D and E and by F and G, then
only that friction modifier is used in the formulation.
Column H is used to select the level of total friction
modifier divided equally among the friction modi-
fiers in the formulation.

There are two levels of detergent substrate and
two levels of detergent ash. Unfortunately, ash and
substrate are physically correlated (detergents that
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are higher in ash are lower in substrate} and it is very
difficult to simultaneously achieve their respective
high levels in the experiment without increasing
the correlation among the detergent types. There
are six detergent types that are contributors to deter-
gent substrate and detergent ash. These detergent
types are studied because it is possible that the
response may depend on the detergent types instead
of, or in addition to, substrate and ash. Given that the
six detergent types, T1, T2, T3, T4, T5, and T6, are
the contributors to substrate and ash, they are corre-
lated with substrate and ash. There is also correlation
among the detergent types because high-substrate
detergents must be used to increase substrate,
high-ash detergents must be used to increase ash,
and some combination of both must be used to
increase both substrate and ash. Five design columns
{J, K, L, M, N) are used to construct substrate, ash,
and the detergent types. Columns J and K are used
to set the low and high levels of substrate and ash.
Column L is for the use of T4 or T5, column M is
for the use of T3 or T6, and Column N is for the level
of T3 if column M indicates that T3 is to be used. T1,
T2, T3, T4, 15, and T6 are adjusted to meet substrate
and ash levels. Note that it was predetermined by
collaboration with formulators that T4 and T5 would
not occur in the same formulation and that T3 and T6
would not occur in the same formulation. Alsc note
that the columns only give a rough idea of factor
settings. Trial and error must be used to achieve
substrate and ash targets and limit the correlation
among the detergent types.

Finally, the altered form of dispersant is indicated
by column O, the two levels of a Z agent are indi-
cated by column P, and there are three covariates
based upon measured physical characteristics of
the formulated oil.

In studying the main effects, including curvature,
covariates, and the interactions, factorial designs,
fractional-factorial designs, and even highly fractio-
nated factorials are of little practical use given the
size of such designs for this particular study. Given
the sheer number of variables and possible model
terms, the constraints on the variables, and con-
straints on the size of the study, a supersaturated
design was constructed. Due to the nonindepen-

dence of variables setting and mixed levels of facters, |

it is not difficult to notice that such a supersaturated
design cannot be constructed by simply taking a half

P. R. Scinto et al.

fraction of a Hadamard matrix. Therefore, a
Plackett-Burman was augmented in order to create
the supersaturated design. .

The design was initially constructed using a 24-run
Plackett-Burman. Three columns were used to con-

struct the dispersant effects, five columns were used

to construct the friction modifier effects, and five col-
umns were used to construct the detergent effects.
The Z effect and the altered form of the dispersant
were determined using one column apiece. Four
additional experimental runs were added, through
trial and error, to improve the correlation structure;
better decouple the factors, variables, and possible
model terms of interest; and allow for experiments
where the formulations contain all of the friction
modifiers and none of the friction modifiers.

The design settings for the linear main effects and
the COF response results from the experiment are
listed in Table 1. The first 24 runs in the table are
from a Plackett-Burman, and the last 4 runs in the
table (shaded in the table) are the added, augmented
runs. After constructing columns for curvature and
interactions, there are over 70 different possible
model terms (17 linear main effects, six guadratic
effects, 50 two-way interactions, and three covari-
ates) to study in 28 experimental runs. It is quite
possible, and even likely, that a design with reduced
correlation among the variables and greater power o
determine effects could have been developed.
However, this design was constructed to be “good
enough” in terms of the correlation structure in the
interest of time.

To some, this form of design may not seem satis-
factory, and it may not even seem to qualify as a
supersaturated design. Note that this design is a
supersaturated design. It is supersaturated because
there are more degrees of freedom for the variables
and model terms studied (none of which are com-
pletely confounded) than design points. However,
it is quite possible that the design is not optimal in
terms of correlation structure among the variables,
Given that time is a limited resource, the optimal cor-
relation structure was not, and could not be, exten-
sively researched.

One reason we were comfortable with the design
was that approximately 80% of the two-way correla-
tions among the main effects were less than 0.253, and
only a very small percentage of the two-way correla-
tions were greater than 0.5 (as displayed in Table 2).
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TABLE 2 tinear Correlations among Design Variables and Measured Covariates

Correlation

coefficient Main effects Main by 2-way - 2-\Way interactions
range frequency (%) frequency (%) frequency (%}
0to 0.25 76 76 75

0.25 to 0.50 ‘ 18 19 17

0.5 to 0.75 2 2 4

0.75 1o 1 4 3 4

Note that Main Effects Include Non-Uinear Main Effects and Measured Covaniates,

Even though we are comfortable with the corre-
lation structure, it is still 2 daunting task to identify
the model terms of importance among the 70 plus
studied in 28 runs. This highlights the importance
of using a model-averaging approach, such as BVA,
in analyzing the data.

MODEL BUILDING: BAYESIAN
VARIABLE ASSESSMENT

Modeling historical unstructured data and analyz-
ing supersaturated designs have much in COFMION.
In particular, the predictor variables are not orthog-
onal. Further, the difference in fit among the best
models may often be very small. The goals are also
similar; that is, assess the importance that each pre-
dictor variable has on a response of interest. In such
settings, selecting a single model ignores information
from nearly equivalent competing models. This can
result in misleading conclusions and inferior predic-
tive models. We propose using an approach that has
been quite effective in modeling historical unstruc-
tured data by averaging information across compet-
ing models; that is, BVA (Meyer and Wilkinson 1998).

In BVA, generic prior distributions are assigned to
unknown parameters. In particular, each factor is
assigned (the same) “activity probability” that reflects
the prior belief that the variable (X} is in the true
model.

Pr(X; is in the wue model) = n

Under an independence assumption, the prior prob-
ability that model My, is the true model is given by

Pr(My) = 72 (1 — g)P2®)

where p is the total number of factors, and a(k) is the

number of active factors in model M. Once we
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observe data (¥), these prior model probabilities
are updated using the full prior distribution (the
details on the full prior distribution can be found in
Meyer and Wilkinson [1995, 1998 and the observed
data. This results in posterior model probabilities:

Pr(Myly) = constant x Pr(y{My)Pr{My)

Typically, when there are many factors, there is no
single model that stands out as having a posterior
probability far higher than any other model. So
selecting the one best model is not obvious. Instead,
we compute the marginal probability that a factor is
active by averaging across all models,

Pr(X; is in the true modelly)
= ¥ I(X; is in model My} x Pr(My|y)

where 1 is the indicator function, and the sum is
taken over possible models. These posterior activity
probabilities are used for variable selection. That is,
variables with activity probabilities greater than a
threshold are included in the model.

BVA computations are performed via Markov
chain Monte Catlo (MCMC) approximation. For
further mathematical details of this approach, see
Mever and Wilkinson (1995, 1998).

To illustrate the benefits of BVA, we consider the
simulation study found in Beattie et al. (2002). This
particular example is based on a design matrix from
Lin (1993) and has been used by many authors for
simulation purposes. The design matrix, provided
in Appendix A, consists of 23 factors and 14 experi-
mental runs (note that there is no factor X16). The
response data are generated from the model

Y =E(Y)+e¢
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where the errors ¢ are distributed as ii.d. standard
normal. Three cases are examined:

o Case 1: E(Y) =10(X1)

o Case 2: E(Y) = —15(X1) + 12(X5) —~ 8(X9) - 6(X15)
- 2017

e Case 3: B(Y) = —15(X1) + 8(X5) — 6(X9) + 3(X5)CX9)

For the simulation, the candidate set of models
consists of all possible first-order models using the
23 different factors. Note that in Case 3, the true
model contains an interaction term. This interaction
is added to the true model to complicate the search
for active factors; that is, because only first-order
models are considered, the interaction term adds
structured noise to the response. We ran BVA on
1,000 replicates for the simulation. The prior prob-
ability that a factor is impostant was set at 0.25, a
standard value used at Lubrizol for many years in
our data mining effort {e.g., see Meyer and Wilkinson
1998). A posterior activity probability above a certain
threshold is an indication that the factor should be in
the model. Two thresholds were considered; that is,
0.35 and 0.50. Though 0.50 is an obvious choice, in
practice, we often use a value less than 0.50 as an
indication that a factor is active. This protects against
the possibility of missing active factors. In addition, a
posterior probability of 0.35 is higher than our prior
probability of 0.25, providing some evidence of an
effect.

The BVA method was compared to a partial least
squares variable selection method (PLSVS) proposed
in Zhang et al. (2006}, a penalized least squares
method (SCAD) proposed by R. Li and Lin (2003),
a three-stage stepwise regression approach
(3STAGE) proposed in Lu and Wu (2004), and the
Dantzig selector approach (DANTZIG) proposed in
Phoa et al. (2009). Whenever the method selects
the correct factors, and only those correct factors,
then it is concluded that the true factor core has been
identified. For example, for Case 3, this would be
whenever X1, X5, and X9 are the only variables
selected as active. Appendix B contains the results
from the simulations. The table shows that the BVA
technique performs well across a wide range of situa-
tions. As stated earlier, we believe that a key feature
of the BVA approach is the concept of averaging
over many models to determine which factors are
important.
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ANALYSIS OF THE FORMULATION
EXPERIMENT

Though the simulation study in the previous sec-
tion demonstrates the viability of the BVA algorithm,

BVA should not be used as black-box software that is

sun once on the data set to yield the final model. In
this actual experiment and analysis, as in any analy-
sis, residuals must be checked to verify assumptions,
and outliers and points of high influence must be
investigated. Many iterations of the BVA analysis
were performed on the COF data and results to
determine the active variables from the experiment.
Assumptions were checked, outliers and points of
influence were investigated, and nonlinearity was
assessed in all iterations of BVA. Though the analysis
was not easy, it was helped by the effect sparsity, in
which only a few of the variables appeared to have
an influence on the test results.

As mentioned above, many iterations of the BVA
analysis were performed on the COF data and results
to determine the active variables from the experi-
ment. In initial iterations, in order to respect hier-
archy, first-order terms were forced into the model
(activity probability set equal to 1) and BVA was
used to determine the activity probabilities of
second-order terms. In subsequent iterations, for
convenience, first- and second-order terms were
given the same prior distribution in the BVA analysis.

Initially, detergents T1 and T3 were estimated to
have posterior activity probabilities greater that
50%, and detergent ash was estimated to have an
activity probability of over 40%. The FMC by deter-
gent substrate posterior activity probability was esti-
mated at over 40% and the FMD by altered
dispersant posterior activity probability was esti-
mated to be over 80%. Of course, this initial iteration
of BVA could not be considered as the final model
without checking residuals, especially because the
variables are correlated. The residuals revealed non-
linearity that was incorporated into the model. Using
potation from Table 1, the final model consisted of
the following terms: Altered, T3, Altered x FMD,
I[(FMC > 2) x FMC? and I(FMD >2) x FMD®. Here
10) denotes the indicator variable. The effects of
FMC and FMD are shown graphically in Figure 1.

Now the question is whether we truly identified
the active variables from this design and analysis or
have we overfit the model. To answer this question,

Supersaturated Designs in Practice



Predicted HFRR Ramp from Final Model (Detergent T3 NOT Present in Formtusation)

HFRR RAMP COF {70 to 74 Minutes}

0 0.5 1 15 2
Amount of FM

FIGURE 1 The COF response as a function of friction modifier.

we set up a 10-run design involving the variables
identified as active, plus T1, T2, T4, and two different
Z agents (Z1 and Z2) at a fixed level. All other vari-
ables from the first design were fixed. Note, how-
ever, that instead of altering the dispersant, the
chemical element used to alter the dispersant was
added to the formulation in a different form and
tested as an indicator variable. This was done to test
the hypothesis that the chemical element in another
form would have the same directional effect ident-
ified in the first study. The follow-up design and
the COF results from the follow-up design are
included in Table 3.

Except for detergent T3, the analysis of the
follow-up design confirmed all previously identified

TABLE 3 Foliow-up Design to the Supersaturated Design

active variables as active, Detergents T1, T2, and
T4 were not identified as active as in the original
design and analysis, and there was no evidence
that a change in the Z agent had an influence on
the results. In addition, the model developed from
the original design and analysis was used to pre-
dict the results from the follow-up design. In
Figure 2, it can be seen that there is a correlation
between the model predictions using the first
design and the actual test results from the
follow-up design. It may be noticed that the pre-
dictions, although correlated with the actual results,
are not particularly close to the actual results. This
may be for several reasons, including, but not lim-
ited to, a difference in the size of the effect of the

FMC FMD Substrate Ash T1 T2 T3 T4 7 Agent Interactive element COF
0] 4 0.250 0.661 1.25 0.0 0.00 0.0 Z1 YES 0.269
t] 4 0.748 1.170 0.00 2.5 0.25 0.0 Z1 NO 0.218
0 4 0.248 0.679 1.00 0.0 0.25 0.0 21 YES 0.252
0 4 0.750 1.152 0.25 25 0.00 0.0 Z2 NO 0.233
0 4 0.804 0.600 0.80 0.0 (.00 1.0 21 YES 0.343
o 4 0.322 0.088 0.00 0.0 0.00 0.5 Z1 NO 0.198
0 0 0.248 0.679 1.00 0.0 0.25 0.0 Z1 NO 0.322
4 0 0.804 0.600 (.80 0.0 0.00 1.0 Z2 NO 0.224
4 4 0.250 0.661 1.25 0.0 0.00 0.0 Z1 NO 0.176
4 0 0.560 0.816 0.00 2.0 .60 0.0 21 YES 0.198
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Actual HFRR COF as a Function of Predicted COF

Actual HFRR COF

0.05 0.1 615 0.2 0.26
Predictett HFRR COF {70 to 74 mitutes} Basad on Modal of prior Dataset

FIGURE 2 Follow-up design o the supersaturated design.

chemical element in another form and/or a change
in the test parts, operators, etc., between the
original and follow-up experiments.

The follow-up design results represent evidence
that we were able to identify active variables from
our first design and analysis with the supersaturated
design and BVA analysis tools. Furthermore, the
knowledge generated from the study was in time
to incorporate into Lubrizol's oil formulation strategy
for the next engine oil industry standard.

DISCUSSION AND CONCLUSIONS

Though our summary of a successful implemen-
tation of an actual supersaturated design and analysis
does not prove that such designs should be used, it
certzinly does demonstrate that such designs may
be used if coupled with an analysis technique such
as model averaging. It is true that supersaturated
designs would reduce the detection power of factors
and variables common to both the supersaturated
design and an unsaturated fractional-factorial of the
same size, but it certainly improves the detection
power of factors and variables squeezed into the
supersaturated design and left out of the unsaturated
fractional-factorial.

If our study were forced into an unsaturated
28-run design, we would have likely not tested either
friction modifier C or D. We would have likely not
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tested six detergents, although we would have prob-
ably tested T3, and we would have not considered
altering the dispersant. Such a design would have
been much easier to analyze and the results much
easier to accept; however, it would have fallen well
short of meeting the need. Fortunately, the supersa-
turated design was timely, met the screening needs
of Lubrizol formulators, and had a positive impact
on Lubrizol's formulation strategy. In addition, this
study has served as a demonstration and learning
tool for supersaturated designs within Lubrizol. Since
this successful trial, dozens of supersaturated designs
have been launched and used in areas where
cost-effective experimentation was thought to be
impossible.

1t should be noted and emphasized that the BVA
analysis method was extremely important to the suc-
cess of our particular supersaturated design and
apalysis. In typical designs such as factorials,
fractional-factorials, and even Plackett-Burman
designs, data analysis is straightforward and even
somewhat uneventful. However, in cases where vari-
ables are not independent and the number of vari-
ables is larger than the number of design points,
the analysis method as demonstrated earlier is criti-
cal. Supersaturated designs have the potential to be
extremely powerful screening tools but only if they
are analyzed with diligence and with successful
analysis methods, such as BVA.

Supersaturated Designs in Practice



When trying to decide on the type of design to use
for an application, it is extremely important to com-
municate and collaborate with your scientific part-
ners, chents, and customers. Budget, theory,
experience, subject matter, scientific need, product
need, marketing need, and long- and short-term
goals are all important items to discuss when con-
structing your design. Xeep in mind that if the case
were to arise where the number of study varizbles
of interest exceeds the number of design points,
instead of beginning design discussions by eliminat-
ing variables, it well may be worth the exercise to
consider a supersaturated design.
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APPENDIX A: SIMULATION STUDY DESIGN MATRIX

Run 1 2 4 5 6 7 8 9 10 11 i2 13 14
X1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1
X2 1 -1 1 1 -1 -1 -1 i -1 i 1 -1 1 —1
x3 i -1 e -1 1 1 -1 1 -1 1 -1 ~1 1 1
e . o] 1 1 1 1 -1 -1 -1 1 1 -1 1 -1
X5 -1 -1 i e 1 1 1 -1 -t ~1 1 1 1 w1
X6 -1 -1 - 1 i 1 -1 1 1 1 -1 1 o] ~1
X7 1 i -1 ~1 ] 1 ] -1 1 1 -1 1 1 -1
X8 1 1 -1 e 1 - 1 1 -1 1 1 -1 -1 ]
X9 1 1 | -1 1 1 -1 -1 -1 w1 1 1 i -1
X10 1 -1 i 1 -1 1 1 1 . -1 -1 1 -1 -1
X1 1 - -1 1 -1 1 -1 -1 i ~1 1 1 -1 1
X12 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 1 1
X13 1 1 1 1 1 -1 1 -1 el -1 -1 1 ~1 -1
X14 ~1 1 i -1 - 1 1 -1 -1 1 1 - -1 1
X1i5 -1 1 1 1 1 1 -1 -1 1 1 | -1 . -1 -1
X117 1 -1 1 -1 1 1 1 - 1 1 -1 -1 ] -1
X18 -1 1 -1 1 -1 1 1 -1 1 ~1 1 ] 1 -1
X19 -1 ] - H -1 i 1 1 -1 H 1 1 -1 -
xX20 i -1 -1 1 1 1 1 -1 -1 -1 . -1 1 1
x21 -1 1 -1 -1 —1 1 1 1 -1 1 -1 1 1 -1
X22 -1 1 1 ~1 1 1 -1 1 —1 -1 -1 1 -1 1
X23 -] -1 1 | 1 -1 -1 1 k| -1 1 1 1 -1
x24 1 -1 -1 -1 1 —1 1 -] 1 1 1 1 - ~1
APPENDIX B: RESULTS FROM THE SIMULATION
Percentage of time irue factor core identified Percent of time active factors identified®

Method Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
SCAD 76 70 N/A 100 99 N/A
PLSVS 61 74 N/A 100 95 N/A
3ISTAGE 53 53 42 100 106G 100
DANTZIG 99 79 N/A 100 9 N/A
BVA (threshold = 0.35) 87 92 88 100 97 100
BVA (threshold = 0.50) 94 87 938 100 88 100

*Sometimes reported in the literature as smallest effect identified.
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