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Abstract12

The recommended approach to experiments using the response surface methodology is sequential,
i.e., experiments should be conducted iteratively. At the first stage, a first-order design, usually an14

orthogonal two-level design (with a few center points) is used to find out whether the current region is
appropriate and to allow the estimation of main effects (and possibly some interactions). The design16

at the first stage is then augmented with more runs in the second stage. The combined design allows
the estimation of the remaining interaction and quadratic effects. Some well-known classes of designs18

which allow such a sequential experimentation are the central composite designs, the small composite
designs and the augmented-pair designs. This paper reviews these designs and introduces a new al-20

gorithm which is able to augment any first order design with additional design points to form a good
design for a second-order model.22
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28

1. Introduction

Response surface methodology (RSM) considers the situation in which a response y de-30

pends on k factors, x1,x2, · · · ,xk. The true response function is unknown, and we shall
approximate it over a limited experimental region by a polynomial representation. This is32

34
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done by fitting a local response surface from a typically small set of observations. One of the
main purposes of RSM is to determine which level combinations of the k input factors will
optimize the response, y. Under certain smooth conditions, this response function may be
approximated well by lower-order polynomial models over a limited experimental region,
X . Usually the first-order polynomial model is employed at the initial stage, i.e.

y = β0 +β1x1 + · · ·+βkxk + ε,

where ε is a white noise. If it suffers from lack of fit arising from the existence of surface
curvature, then the first-order polynomial model would be modified by adding higher-order2

terms into the model. Therefore, we might fit a second-order polynomial model of

y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k−1

∑
i=1

k

∑
j=i+1

βi jxix j + ε. (1.1)4

Such a sequential feature is proved to be efficient in practice.
Some (second-order) response surface designs (RSDs) for sequential experimentations6

are the central composite designs (CCDs), the small composite designs (SCDs) and the
augmented-pair designs (APDs). The CCDs developed by Box and Wilson (1951) and the8

SCDs by Draper and Lin (1990) have been popularly used among experimenters and dis-
cussed in most textbooks and papers, see for example, Myers, Montgomery and Anderson-10

Cook (2009) and Draper and Lin (1996).
A composite design consists of (i) a fractional factorial portion called cube portion, (ii)12

a set of 2k axial points at a distance α from the origin, plus (iii) n0 center points. The cube
portion for CCD is a fractional factorial 2k−p of resolution V or higher; while for SCD, this14

is reduced to a proper size of Plackett and Burman designs (Plackett and Burman, 1946).
The augmented-pair designs (APDs) were proposed by Morris (2000). It consists of a16

first-order two-level orthogonal design with n1 runs and n0 center points in the first stage.
This design is then augmented by n2 = (n1

2 ) runs. For each pair of runs xu and xv in n1, a run18

in n2 is generated as xuv =−0.5(xu +xv). There are two reasons why APDs deserve special
attention: (i) unlike the CCDs and SCDs, the run size of the APD design in the first stage20

is minimal; and (ii) the quadratic effects of APDs are always orthogonal to all main-effects
and interaction effects. We consider such an orthogonal quadratic effect (OQE) property,22

Property (ii), an important property, as the quadratic effects which could not be estimated in
the first stage should be estimated with the maximum precision in the second stage.24

Let the u-th row of Xn×p, the expanded model matrix of a design for k factors in n runs,
be written as (1,x2

u1,x
2
u2, . . . ,xu1,xu2, . . . ,xu1xu2,xu1xu3, . . .). Here, p = 1

2 (k+1)(k+2) is the26

number of parameters in (1.1). The X ′X matrix of designs with the OQE property will have
the form28 (

A 0
0 B

)
, (1.2)

where the square matrix A has k + 1 columns, and the square matrix B has k(k + 1)/230

columns. The (X ′X)−1 matrix will be of the form(
A−1 0

0 B−1

)
. (1.3)32
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Since not all SCDs have the OQE property, in this paper we denote an SCD with this
property as SCD* (and an RSD with this property as RSD*). Note the X ′X and (X ′X)−12

matrices of the CCDs and the Box-Behnken designs (BBDs) (see Box and Behnken, 1960
and Nguyen and Borkowski, 2008) are also of the form in (1.2) and (1.3). In addition, B and4

B−1 in (1.2) and (1.3) are diagonal matrices.
In this paper, an algorithm to construct RSD*’s for sequential experimentation (including6

SCD* as a special case) is proposed. In Section 2, a general algorithm which can be used to
augment designs in the first stage with additional design points is proposed. Section 3 will8

show how to adapt this algorithm to construct RSD*’s and SCD*’s. Section 4 will catalogue
some existing designs and some new designs generated by the proposed algorithm. Section10

5 provides the concluding remarks.

2. An SOD Algorithm12

Without loss of generality, a three-level design factor (xi, i = 1, . . . ,k) can be coded as
−1,0,1. Let Dk×n be a three-level RSD for k factors in n runs with each factor having the14

same number of +1’s and −1’s. We then have ∑xi = 0, ∑x3
i = 0 and ∑x2

i = ∑x4
i = bi,

where bi is the number of ±1 of factor i. Now, impose the following conditions on D:16

(i) ∑x2
i x j = 0 (i < j);

(ii) ∑x2
i x jxk = 0 (i < j < k);18

(iii) ∑xix j = 0 (i < j);

(iv) ∑xix jxk = 0 (i < j < k);20

(v) ∑xix jxkxl = 0 (i < j < k < l); and

(vi) ∑x2
i x2

j −bib j/n = 0 (i < j);22

where the summations are taken over the n design points. There are, respectively, q1 =
k(k− 1) summations in (i), q2 = k(k−1

2 ) summations in (ii), q3 = (k
2) summations in (iii),24

q4 = (k
3) summations in (iv), q5 = (k

4) summations in (v), and q6 = (k
2) summations in (vi). It

can be seen that these conditions are the conditions for D to be orthogonal (see Section 10.226

of John, 1971). A 3k full factorial, an orthogonal design will satisfy all six conditions. The
CCDs and BBDs will satisfy the first five conditions (i)–(v), while the first three conditions28

(i)–(iii) will imply the OQE property.
The u-th row of D can be used to construct a vector Ju of length q = ∑qi. Define the first30

q1 elements of Ju as x2
u1xu2,x2

u1xu3, . . ., the next q2 elements of Ju as x2
u1xu2xu3,x2

u1xu2xu4, . . .,
and the last q6 elements of Ju as x2

u1x2
u2 − b1b2/n,x2

u1x2
u3 − b1b3/n, . . .. Let J1×q = ∑Ju.32

Further define f as the sum of squares of the first q−q6 elements of J, and g as the sum of
squares of the last q6 elements of J. If the value of any element in row u∗ of D changes, say34

from −1 to +1 or from 0 to −1, to recalculate J (and consequently f and g), we only have
to recalculate just Ju∗ instead of the entire Ju’s. This observation motivates us to propose the36

following SOD (second-order RSD) algorithm:

1. Start with a random design Dk×n. Each column of D has a pre-specified number of 0’s38

and an equal number of +1’s and −1’s (If the number of 0’s in some or all columns
of D is 0, these columns will become two-level columns.)40
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2. Randomly permute the positions of 0’s and +1’s and −1’s in each column.

3. Calculate Ju, u = 1, . . . ,n and J = ∑Ju. Then evaluate f and g.2

4. Sequentially minimize f and g by swapping the positions of −1, + 1 and 0 in each
column of D. The algorithm stops when (i) both f and g become 0, i.e. D becomes4

orthogonal; or (ii) only f becomes 0 (only the first five orthogonality conditions are
satisfied) and each ∑x2

i x2
j = c, a constant, i.e. D becomes a slope-rotatable design6

(see Park, 1987); or (iii) there is no further improvement of f in the swapping.

The above steps correspond to one try of SOD. Several tries are recommended to ensure8

a good resulting design.

Remarks:10

• Let D1 and D2 be two designs with objective functions f1, g1 and f2, g2. Design D1
is preferred over D2 if f1 < f2; or f1 = f2 and g1 < g2; or f1 = f2 and g1 = g2 and d-12

value for D1 is higher than d-value for D2, where d-value= |X ′X |1/p/n. This d-value,
known as "information per point", is a popular measure of goodness of a design.14

• SOD can augment additional factors to a base design Db. This makes it possible for
easy-to-change factors to be added to a design containing hard-to-change factors (see16

Parker, Kowalski and Vining (2006).

• SOD can also augment additional runs to a base design Db. This feature is very handy18

for sequential experimentation and to construct the SCD*’s in the next Section.

Our SOD algorithm has no difficulty in generating standard RSDs such as CCDs for20

k ≤ 8 and BBD-type designs for k ≤ 7. Our BBD-type design for k = 6 actually im-
proves the the corresponding BBD in terms of rotatability and D- and G-optimality (see22

http://designcomputing.net/gendex/sod/).

As an illustrated example, consider the following eight-point design used at the first stage24

for an investigation of k = 5 factors (excluding the center points):

1 1 1 -1 1
-1 1 1 1 -1
-1 -1 1 1 1
1 -1 -1 1 1

-1 1 -1 -1 1
1 -1 1 -1 -1
1 1 -1 1 -1

-1 -1 -1 -1 -1

26

These points made up an orthogonal two-level design which was also used in the first
stage of the 5-factor APD shown in Table 1 of Morris (2000). Our base design Db in this28

case will consist of these eight points. We next add, say 20 runs to this Db to form a second
order design. Given below are 20 cube points from 35 augmented to this Db found by SOD30

(with the number of 0’s in each column set to be eight).
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1 -1 -1 0 0
-1 0 0 1 -1
1 0 0 -1 -1
0 -1 0 1 -1

-1 -1 1 0 0
0 -1 -1 0 -1

-1 0 -1 1 0
-1 1 -1 0 0
0 1 0 -1 -1
0 1 1 0 -1
1 0 1 1 0
1 0 -1 -1 0
0 -1 0 -1 1

-1 0 1 -1 0
0 -1 1 0 1
0 1 0 1 1
0 1 -1 0 1
1 1 1 0 0
1 0 0 1 1

-1 0 0 -1 1

It can be shown that the combined design is a 5-factor RSD* (i.e. an RSD with the OQE2

property) in 28 runs. This design has eight runs less than the 5-factor APD of Morris (2000),
and in fact, has a higher d-value.4

3. Using SOD to Construct SCDs with OQE Property

In this section, the proposed SOD algorithm is applied to SCD*’s, i.e. SCDs with OQE6

property. When it may not be possible to enforce all orthogonality conditions (as in the case
of 3k full factorials) or the first five orthogonality conditions (as in the case of CCDs and8

BBDs), it is more sensible to enforce just the first three orthogonality conditions. Recall
that Conditions (i)–(iii) implies the OQE property. To enforce these three conditions, we10

redefine f as the sum of squares of the first q1 + q2 + q3 elements of J, and g as the sum
of squares of the next q4 +q5 elements of J (Since the ∑x2

i x2
j values of an SCD will be nc,12

i.e. the size of the SCD’s cube portion, it is not necessary to include the last q6 elements
of J in the objective functions.) The basic idea in constructing an SCD* is to construct a14

good augmented design, given a base design Db. Two types of SCD* are reported here. For
Type-I SCD*, the 2k axial points are fixed at the second stage, SOD is used to search the16

best first-order design which should be used at the first stage. Here Db is the design with
all 2k axial points. For Type-II SCD*, a small first-order design is used at the first stage.18

The 2k axial points are anticipated at the second stage. The SOD algorithm is then used to
search for the best additional design points. Here, Db is the design with the initial design20

plus all 2k axial points.
As an illustrative example, we show how to construct a Type I SCD* for five factors.22

Here, the base design Db consists of a set of 10 axial runs. SOD was used to augment this
Db with the 12 cube points from 25. The 12 points obtained below by SOD will be used24
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in the first stage and the set of 10 axial points will be used in the second stage. This is, of
course, five columns from a 12-run Plackett and Burman design as shown in Draper and Lin2

(1990).

-1 -1 -1 -1 -1
-1 1 1 -1 1
-1 1 1 1 1
1 -1 1 -1 1
1 1 -1 -1 1

-1 -1 -1 1 1
1 -1 -1 1 1
1 1 1 1 -1

-1 -1 1 1 -1
-1 1 -1 -1 -1
1 -1 1 -1 -1
1 1 -1 1 -1

4

Next, we show how to construct a Type-II SCD* for five factors. Suppose an eight-point
design, as given in previous section, is used at the first stage. The base design Db now6

consists of these eight points plus a set of 10 axial runs. SOD is then used to augment this
Db with additional eight design points from 25. Thus, the 18 runs to be conducted at the8

second stage consists of the set of 10 axial points plus the eight points below, obtained via
SOD.10

-1 -1 1 -1 -1
1 1 1 -1 -1

-1 1 -1 1 -1
1 1 -1 -1 1
1 -1 -1 1 -1
1 -1 1 1 1

-1 -1 -1 -1 1
-1 1 1 1 1

Type-II SCD*’s, like APDs (but unlike Type I SCD*’s), could have a minimal number of12

points at the first stage. It can be seen that the number of cube points in an SCD* must be a
multiple of four, regardless of whether it is an SCD* of Type I or Type II.14

4. Designs for Sequential Experimentation

Table 4.1 displays the d-value ×103 (and run sizes n) of selected designs with no center16

points for sequential experimentations. For SCDs and CCDs, α is set to 1. Unlike BBDs
which can only be used non-sequentially, these designs can be used either sequentially or18

non-sequentially. The first two columns of Table 4.1 are the number of factors k and pa-
rameters p. The 3rd column is associated with the SCDs of Draper and Lin (1990). The20

columns of these SCDs were selected from the appropriate Plackett and Burman designs
(Plackett and Burman, 1946). Only SCDs for k = 3, 4 and 6 are SCD*’s, as none of the22
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Table 4.1. Comparison of d-value ×103 (and run sizes) of SCDs and CCDs
(α = 1 and n0 = 0) and APDs (n0 = 0).

SCDs of Draper SCD* SCD*

k p & Lin (1990) Type I Type II CCDs APDs

3 10 303 (10) 303 (10) 303 (10) 463 (14) 303 (10)

4 15 308 (16) 308 (16) 308 (16) 457 (24) 373 (36)

5 21 241 (21) 259 (22) 355 (26) 440 (26) 308 (36)

6 28 263 (28) 263 (28) 368 (36) 456 (44) 298 (36)

7 36 196†(36) 262 (38) 226 (38) 465 (78) 269 (36)

8 45 221†(46) 280 (48) 252 (48) 474 (80) 272 (78)

9 55 200†(56) 246 (58) 231 (58) 480 (146) 253 (78)

10 66 165†(66) 224 (68) 207 (68) 493 (148) 238 (78)

†We have improved the d-value ×103 of these designs for k = 7, 8, 9, 10 to

234, 243, 232 and 219 respectively.

rows of the selected columns of the Plackett and Burman designs for these SCDs is deleted.
The remaining columns of Table 4.1 are associated with SCD*’s of Types I and II, the CCDs2

and APDs. For SCDs, Type I SCD*’s and CCDs, the numbers of runs in the first and second
stages are n− 2k+ n0 and 2k respectively. For APDs and Type II SCD*’s, the number of4

runs in the first and second stages and are 4+n0 and n−4 (for k = 3), 8+n0 and n−8 (for
k = 4, 5, 6 and 7), and 12+n0 and n−12 (for k = 8, 9, and 10) respectively. The cube points6

for the 5-factor SCD*’s Types I and II are shown in the previous Section.
It is interesting to note that all SCD, SCD* and APD for k = 3 have a similar structure:8

a saturated orthogonal two-level design in four runs and six axial runs. It can be seen that
no class of design in Table 4.1 is a clear winner. If the experimenters wish to conduct10

their experiments sequentially and do not wish to spend a lot of resources initially, Type II
SCD*’s and APDs are attractive alternatives. All Type II SCD*’s for k ≤ 6 and the APD for12

k = 7 have high d-value.
When the experiment is conducted in a single stage, the SCDs of Draper and Lin (1990)14

and Type I SCD*’s should be considered if the runs are expensive or when an independent
estimate of error is available while CCDs are highly recommended if resources are readily16

available and a high degree of the precision of parameter estimates is expected. Note that
for k = 7, 8, 9 and 10, with just two additional runs, Type I SCD*’s increase the d-value of18

SCDs of Draper and Lin (1990) substantially.
SCD*’s and APDs can be viewed as good substitutes to BBDs for two reasons: (i) these20

designs have far fewer runs than BBDs; and (ii) the percentage of the 0-level of each factor
(the level of least interest to the experimenters) of these designs is more acceptable than22

those of BBDs. The number of runs including the recommended number of center points of
BBDs for 3-7 factors are 15, 27, 46, 54, and 62 runs respectively. The percentages of the24

0-level for each factor of BBDs are 47, 56, 65, 56 and 61% respectively.
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Designs in Table 4.1 are available at http://designcomputing.net/SCD/. The SCDs
for k = 7, 8, and 9 of Draper and Lin (1990) have also been improved by Angelopoulos,2

Evangelaras and Koukouvinos (2009) using complete search. Complete search seems only
feasible for seven or less factors. For more than seven factors, we have to resort to heuristic4

methods. Angelopoulos, Evangelaras and Koukouvinos (2009) have discussed the maxi-
mization of the rotatability index Q∗ (see Draper and Pukelsheim, 1990) by varying the α6

values in the axial runs.

5. Concluding Remarks8

An algorithm for construction of SCD*’s is proposed. These are SCDs with the OQE
property, i.e. the property that the quadratic effects are orthogonal to all main-effects and10

interaction effects. These designs are not only more efficient but also more flexible than
those of Draper and Lin (1990). The purpose of this paper is, however, not just to pro-12

vide a catalogue of designs for sequential experimentation but to introduce an algorithm to
construct this type of design (http://designcomputing.net/gendex/sod/). An exper-14

imenter looking for a 6-factor RSD can use this algorithm to construct a Type I SCD* for
six factors in 32 runs with d-value=0.322 instead of using any 6-factor design in Table 4.1.16

This SCD* requires four less runs than the corresponding APD and at the same time has a
higher value of d-value than the latter. As mentioned, RSM is an iterative process. Consider18

an experiment for eight factors using an orthogonal two-level design for 12 runs in the first
stage. In the second stage, the experimenter might decide to drop the two non-significant20

factors and augment these 12 runs with additional runs so that the resulting design is a good
second order one. The APD algorithm requires 66 additional runs. The resulting design is22

an APD with 78 runs and d-value=0.317. Our algorithm requires only 24 additional runs
(12 axial runs plus 12 runs from a 26). The resulting design is an SCD* with 36 runs and24

d-value=0.359.
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