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Locating the optimal operating conditions of the process parameters is critical in a

lifetime improvement experiment. For log-normal lifetime distribution with compound

error structure (i.e., symmetry, inter-class and intra-class correlation error structures),

we have developed methods for construction of D-optimal robust first order designs. It

is shown that D-optimal robust first order designs are always robust first order

rotatable but the converse is not always true.
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1. Introduction

It is known to be difficult to derive optimal designs for linear models with correlated observations. For some cases, the
D-optimal design may not exist. Bischoff (1996) pointed that D-optimal design does not exist for linear model with some
correlated error structures, and for the tri-diagonal structure he derived maximin designs. Kiefer and Wynn (1981)
suggested seeking optimal designs only in the class of uncorrelated and homoscedastic errors. For special factorial linear
models with correlated observations, optimal designs are known (see, for example, Kiefer and Wynn, 1981, 1984).
Gennings et al. (1989) studied optimality under a non-linear model with correlated error. Little is known on optimal
designs of linear regression models for correlated observations (Bischoff, 1992, 1995, 1996). Recently, Das and Park
(2008a) derived efficient robust rotatable designs for autocorrelated error structure instead of D-optimal designs, and they
(2008b) developed D-optimal robust first order designs under tri-diagonal correlation structure with lag n. Improvement
of performance of a system plays an important role in reliability theory. Statistical design of experiments has been
popularly used in reliability theory in order to improve the quality of a system (see, for example, Taguchi, 1986, 1987;
Condra, 1993).

In response surface methodology (RSM), when we are remote from the optimum operating conditions for the system,
we usually assume that a first order model is an adequate approximation to the true surface in a small region of the
explanatory variables x’s. If there is a curvature in the system, then a polynomial of higher degree, such as the second order
model must be used. The method of steepest ascent helps us for moving sequentially along the path of steepest ascent, that
is, the direction of maximum increase in response through sequentially selecting appropriate response function.
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Practitioner is experimenting with a system in which the goal is not to find a point of optimum response, but to search for a
new region in which the process or product is improved (see, for example, Draper and Lin, 1996).

In reliability theory, the random variable under consideration is the life of a system. A question of fundamental
importance is how to improve the mean life or reliability of the system for a given mission time. Mean life is conveniently
written as a function of the exploratory variables. For exponential lifetime distribution a similar study was done by
Mukhopadhyay et al. (2002). Aitkin and Clayton (1980) fitted complex censored survival data to exponential, Weibull and
extreme value distribution. Design of experiments and concepts of optimality have been abundantly used in reliability
theory, in order to improve the mean life.

The conventional response surface designs are not appropriate in lifetime distributions, because they do not satisfy the
assumptions of lifetime distributions (i.e., non-linearity, dependence of errors, non-normality, etc.). In this paper we have
derived the necessary and sufficient conditions of first order D-optimality for log-normal lifetime distribution with a
general correlated error structure; specifically, compound symmetry, inter-class and intra-class correlation structures.
Construction methods of D-optimal robust first order designs under each of the correlation structure are proposed.

The rest of the paper is organized as follows. In Section 2, correlated log-normal lifetime distribution model is
developed. In Section 3, D-optimal robust first order designs for log-normal lifetime distribution is discussed. D-optimal
robust first order designs are constructed for some well-known correlation structures in Section 4. The concluding remark
is given in Section 5.

2. Log-normal lifetime distribution with correlated experimental errors

Let T be the lifetime of a component or a system, measured in some unit, which follows log-normal distribution. Let x1,
x2, y,xk be k controllable explanatory variables in the system which are highly related with lifetime T. The probability
density function (p.d.f.) of lifetime T given the vector x¼ ðx1,x2, . . . ,xkÞ

0, is of the form

f ðtÞ ¼
1

tdð2pÞ1=2
exp �

ðlnt�lnhðxÞÞ2

2d2

" #
, tZ0, dZ0: ð2:1Þ

ln T is assumed to follow Normal distribution with mean lnhðxÞ and variance d2 for a given x. In fact that d is
independent of x implies proportional hazards for lifetimes and constant variance for log lifetimes of individuals. For more
details of such a popular model and its applications, see, Pike (1966); Peto and Lee (1973); Nelson (1972); and Meeker and
Escobar (1998).

The probability density function of the log lifetime Ynð ¼ lnTÞ, given x, is a Normal distribution with mean lnhðxÞ and
variance d2. Take lnhðxÞ ¼ gðx,bÞ, thus, EðTÞ ¼ hðxÞexpðd2=2Þ ¼ egðx,bÞexpðd2=2Þ40, where b is a vector of unknown
coefficients. Once the data are obtained, the point is to estimate the parameters b in an appropriate manner. It is
assumed that given x, T follows a log-normal distribution in an ideal situation with mean egðx,bÞexpðd2=2Þ. This is the same
as assuming lnT ¼ gðx,bÞþdt, where t follows the Standard Normal distribution.

For estimating the parameters b we have to conduct experiment to collect the data on the basis of which the estimation
to be done. Once an experiment is conducted, the experiment introduces some noise factors which may be numerous,
some may be unidentifiable. The total impact on (lnT) of all these noise factors represented by the experimental condition
is denoted by ‘e’. Consider the response surface gðx,bÞ is of the first order. We write y¼ lnTþe¼ b0þb1x1þ � � � þ

bkxkþdtþe, or

yu ¼ b0þb1xu1þb2xu2þ � � � þbkxukþdtuþeu, 1rurN, ð2:2Þ

where eu’s represent the experimental errors. The most convenient distributional choice of e, the vector of errors eu’s is a
multivariate Normal distribution with EðeÞ ¼ 0, DðeÞ ¼ s2

1W1, and rank ðW1Þ ¼N, where W1 is any unknown general
variance covariance structure of errors. The prescription of the proper design matrix is a problem of regression design of
experiments (see Box and Hunter, 1957; Pukelsheim, 1993; Khuri and Cornell, 1996; Box and Draper, 2007; Panda and Das,
1994; Das, 1997, 2003, 2004; Das and Park, 2008a, 2008b). Little is known in the literature for our specific situation of Log
Normal lifetime distribution. In Section 4 we have developed some D-optimal robust first order designs for some special
correlation structures of errors W1 for the situation as mentioned herein.

3. D-optimal robust first order designs for log-normal lifetime distribution

The model as explained in (2.2) can be written as

Y¼ Xbþe, ð3:1Þ

where eu ¼ dtuþeu,Y¼ ðy1,y2, . . . ,yNÞ
0 is the vector of recorded observations, X ¼ ð1 : ðxuiÞ;1rurN,1r irkÞ is the model

matrix; b¼ ðb0,b1, . . . ,bkÞ
0 is the vector of regression coefficients and e¼ ðe1,e2, . . . ,eNÞ

0. Then EðeuÞ ¼ 0,VarðeuÞ ¼

ðd2
þs2

1Þ ¼ s2 say, Covðeu,eu0 Þ ¼ Covðeu,eu0 Þ; EðeÞ ¼ 0,DðeÞ ¼ d2INþs2
1W1 ¼ s2W say, and e�Nð0,s2WÞ, where W is an N�N

matrix whose ði,jÞth element (iaj) is Covðei,ejÞ=s2 and all diagonal elements are unity. Note that if Covðei,ejÞ ¼ 0 for all iaj,
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then DðeÞ ¼ s2IN . The best linear unbiased estimator (BLUE) of b, for known W is b̂ ¼ ðX0W�1XÞ�1
ðX0W�1YÞ, with

Dðb̂Þ ¼ s�2ðX0W�1XÞ�1
¼ s�2ðfvijgÞ

�1 say 0r i,jrk, ð3:2Þ

where v00 ¼ 10W�11,v0j ¼ 10W�1xj,vij ¼ x0iW
�1xj and xi ¼ ðx1i,x2i, . . . ,xNiÞ

0.

The objective of the D-optimality criteria is to minimize jðX0W�1XÞ�1
j, or equivalently maximize jX0W�1Xj where

ðX0W�1XÞ is known as the moment matrix.

Definition 3.1 (Rotatable design). A design is said to be rotatable if the variance of the estimated response at a point is a
function of only the distance from the design center (i.e., center of the coordinate axes, or at ð0,0, . . . ,0Þ) to that point.

Definition 3.2 (Robust first order rotatable design). A design D on k factors under the correlated model (3.1) which remains
first order rotatable for all the variance–covariance matrices belonging to a well-defined class W0 ¼ {W positive definite:
WN�N defined by a particular correlation structure possessing a definite pattern} is called a robust first order rotatable design

(RFORD).

Definition 3.3 (D-optimal robust first order design). A first order regression design x of k factors in the correlated model
(3.1) is said to be D-Optimal Robust First Order Design (D-ORFOD) if the determinant jX0W�1Xj is uniformly maximum (over
the design space X ¼ fjxuijr1;1rurN, 1r irkg) for all the variance–covariance matrices belonging to a well-defined
class W0.

Theorem 3.1. The necessary and sufficient conditions for a D-optimal robust first order design in the model (3.1) are (for all

1r i,jrkÞ
(i)
 v0j ¼ 10W�1xj ¼ 0,

(ii)
 vij ¼ x0iW

�1xj ¼ 0, iaj,

(iii)
 vii ¼ x0iW

�1xi ¼ m,
where m is the maximum possible value (a positive constant) over the design space X as in Definition3.3.

Proof. For a first order design x, the moment matrix is MðxÞ ¼ X0W�1X ¼ ðfvijgÞ as given in (3.2). Let Mi,i be the i� i leading
principal submatrix of MðxÞ, 1r irkþ1. Since MðxÞ is a positive definite matrix, with vij ¼ vji, for 0r i,jrk; vii40, for
0r irk; and Mi,i is positive definite, for 1r irkþ1; we have

MðxÞ ¼M¼Mkþ1,kþ1 ¼
Mk,k v

v0 vkk

 !
¼

Mk,k 0

v0 1

� �
�

Ik M�1
k,k v

00 vkk�v0M�1
k,k v

0
@

1
A,

where v¼ ðv0k, . . . ,vðk�1ÞkÞ
0. Therefore

detðMÞ ¼ detðMk,kÞdetðvkk�v0M�1
k,k vÞ:

Since both detðMk,kÞ and vkk are positive, both Mk,k and M�1
k,k are positive definite and v0M�1

k,k vZ0, this implies

detðMÞrdetðMk,kÞvkk

with the equality holds if and only if v¼ 0 (equivalently, v0M�1
k,k v¼ 0), that is vik ¼ 0, for all 0r irk�1.

Similarly, expanding Mk,k, we can show that detðMÞrdetðMk�1,k�1Þvðk�1Þðk�1Þvkk, with equality holds if and only if
viðk�1Þ ¼ 0,0r irk�2. By applying induction on Mk�1,k�1,Mk�2,k�2, . . . ,M2,2, we have

detðMÞr
Yk

i ¼ 0

vii,

with equality holds if and only if vij ¼ 0,0r io j,1r jrk. This inequality is also known as the Hadamard’s Inequality
(Anderson, 1984, p. 54).

Since M is symmetric matrix, this implies that vij ¼ 0,0r iajrk. Thus, the maximum value of det(M) is v00v11 . . .vkk if
and only if vij ¼ 0,0r iajrk. Based on design matrix X over design space X given in Definition 3.3, the maximum value
possible for each vii is the same (equal to m, say). Therefore, from the above result det(M) will attain maximum possible
value ð ¼ v00mkÞ if and only if vij ¼ 0,0r iajrk; and vii ¼ m,1r irk: This completes the proof. &

The variance of the estimated response ŷx at x of a first order D-optimal design with correlated error is given by
VðŷxÞ ¼ 1=v00þð1=mÞ

Pk
i ¼ 1 x2

i ¼ f ðr2Þ, where r2 ¼
Pk

i ¼ 1 x2
i , v00 ¼ 10W�11 and m as in Theorem 3.1. If vii is constant ¼

lðomÞ, 1r irk, then the design is a robust first order rotatable as the variance of the estimated response ŷx is a function
of only the distance from the design center, but not a D-optimal (as lom) robust first order design. This can be stated as
the following theorem.

Theorem 3.2. A D-optimal robust first order regression design is always a robust first order rotatable design but the converse is

not always true.
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4. D-optimal designs for well-known correlation structures

In this section, we study the necessary and sufficient conditions for D-optimality of a first- order regression design, the
variance function and the corresponding D-optimal robust first order regression designs under compound symmetry,
inter-class and intra-class structure of errors commonly encountered in practice.

4.1. Compound symmetry correlation structure

Compound symmetry variance covariance matrix will have such a pattern when the observations are divided into ‘m’
sets of size ‘n’ each such that every observation has the same variance, and within each set of observations, the covariances
are equal and the covariance between two observations from two distinct sets is a constant which may be different from
the constant intra-class covariance in a set. Its variance covariance matrix of errors is

DðeÞ ¼ s2
1½Im � ðA�BÞþEm�m � B� ¼ s2

1W1ðrn,rn

1Þ, ð4:1Þ

where A¼ ð1�rnÞInþrnEn�n,B¼ rn

1En�n, In indicates an identity matrix of order n, En�n is an n�n matrix with all elements
1, N¼mn and � denotes Kronecker product.

Under the compound symmetry variance–covariance structure s2
1W1ðrn,rn

1Þ, s2W will be reduced to s2Wðr,r1Þ, as in

(4.1), where r¼ qrn, r1 ¼ qrn

1, and q¼ s2
1=ðs2

1þd
2
Þ. Also note that, W�1ðr,r1Þ ¼ ½Im � ðA1�B1ÞþEm�m � B1�, where

A1 ¼ ðd2�g2ÞInþg2En�n,B1 ¼ d3En�n,d2 ¼ g2þð1=ð1�rÞÞ,g2 ¼ ½ðm�1Þnr2
1�ðm�2Þnrr1�f1þðn�1Þrgr�= R,d3 ¼ ðf1�d2 �ðn�1Þ

rg2g=ðm�1Þnr1Þ and R¼ ð1�rÞ½ðm�2Þnr1f1þðn�1Þrgþf1þðn�1Þrg2�ðm�1Þn2r2
1�:

Following Theorem 3.1, the necessary and sufficient conditions for D-optimal robust first order regression design
(D-ORFOD) under the variance–covariance structure s2Wðr,r1Þ can be summarized in Theorem 4.1 below.

Theorem 4.1. A set of necessary and sufficient conditions for a D-optimal robust first order regression design under the

variance–covariance structure s2Wðr,r1Þ as over the design space X are
(i)
 v0j ¼ 0, i:e:;
PN

u ¼ 1

xuj ¼ 0;
(ii)
 vij ¼ 0, iaj;

(iii)
 if ðg2�d3Þo0,XN

u ¼ 1

x2
ui ¼N;

Xn

u ¼ 1

xui ¼
X2n

u ¼ ðnþ1Þ

xui ¼ � � � ¼
Xmn

u ¼ nðm�1Þþ1

xui ¼ 0;
(iv)
 if ðg2�d3Þ40,XN

u ¼ 1

x2
ui ¼N;

Xn

u ¼ 1

xui ¼
X2n

u ¼ ðnþ1Þ

xui ¼ � � � ¼
Xmn

u ¼ nðm�1Þþ1

xui ¼7n: ð4:2Þ
Note that ðg2�d3Þ40 holds in the following two cases: Case I: r14r40,0or1r0:5;m,no6; and Case II:
0or or;m,no12. The basic parameters characterizing the correlation structure (4.1) being r and r , the interpretation
1 1

of ðg2�d3Þ40 can be obtained from the above two cases only, and ðg2�d3Þo0 everywhere else. Given below only the
conditions either ðg2�d3Þo0 or ðg2�d3Þ40 will be considered.

The variance function of a D-ORFOD under the structure s2Wðr,r1Þ as in (4.1) is

VðŷxÞ01 ¼
s2

N

1

fd2þðn�1Þg2þnðm�1Þd3g
þ

r2

d2�g2

� �
if ðg2�d3Þo0, ð4:3Þ

VðŷxÞ02 ¼
s2

N

1

fd2þðn�1Þg2þnðm�1Þd3g
þ

r2

ðd2�g2Þþðg2�d3Þn

� �
if ðg2�d3Þ40, ð4:4Þ

where r2 ¼
Pk

i ¼ 1 x2
i :

Next, we develop two methods of construction of D-optimal robust first order regression designs under the structure
s2Wðr,r1Þ: Method I gives D-ORFODs for ðg2�d3Þo0, and Method II gives D-ORFODs for ðg2�d3Þ40.

Method I: For the values of correlation coefficient r and r1 satisfying ðg2�d3Þo0, a D-ORFOD of k factors under the
variance–covariance structure s2Wðr,r1Þ as in (4.1) can be constructed by selecting any k columns from Hm � Un, where �
denotes Kronecker product, Hm is a Hadamard matrix of order m�m, and Un is a column vector of order n� 1 with
elements þ1 or �1 such that sum of elements of Un is zero. Note that the resulting designs satisfy (i)–(iii) of (4.2), and its
variance function is as (4.3).

Method II: A D-ORFOD of k factors under the variance–covariance structure s2Wðr,r1Þ, whatever be the values of
correlation coefficient r and r1 satisfying ðg2�d3Þ40, can be constructed by selecting any k columns barring the first
column from Hm � Jn, where � denotes Kronecker product, Hm is the Standard Hadamard matrix of order m�m (having all
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the elements of the first row and the first column as 1’s), and Jn is a column vector of order n� 1 of all 1’s. It can be readily
verified that (i), (ii) and (iv) of (4.2) hold for these designs and its variance function is as (4.4).

Examples. D-ORFODs with two factors, four groups, each of four observations, (i.e., all examples consist of k¼2, m¼4,
n¼4, N¼mn¼ 16) are constructed below. The designs (D-ORFODs, denoted by di from Method i; i¼1 and 2) are displayed
below (row being factors and column being runs). We construct D-ORFODs via

H4 ¼

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

0
BBB@

1
CCCA, H4 � U4 ¼

U4 U4 U4 U4

U4 �U4 U4 �U4

U4 U4 �U4 �U4

U4 �U4 �U4 U4

0
BBBB@

1
CCCCA, H4 � J4 ¼

J4 J4 J4 J4

J4 �J4 J4 �J4

J4 J4 �J4 �J4

J4 �J4 �J4 J4

0
BBBB@

1
CCCCA,

where U4 ¼ ð1,1,�1,�1Þ0 and J4 ¼ ð1,1,1,1Þ0: Then the designs d1 and d2 can be constructed by using the first two columns of
H4 � U4, and the second and third columns of H4 � J4, respectively. Also note that the first four runs are associated to the
first group, the second four runs are associated to the second group.
(i)

(iii)

(iv)
d1 :
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
x1
 1
 1
 �1
 �1
 1
 1
 �1
 �1
 1
 1
 �1
 �1
 1
 1
 �1
 �1
x2
 1
 1
 �1
 �1
 �1
 �1
 1
 1
 1
 1
 �1
 �1
 �1
 �1
 1
 1
d2 :
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
x1
 1
 1
 1
 1
 �1
 �1
 �1
 �1
 1
 1
 1
 1
 �1
 �1
 �1
 �1
x2
 1
 1
 1
 1
 1
 1
 1
 1
 �1
 �1
 �1
 �1
 �1
 �1
 �1
 �1
4.2. Inter-class correlation structure

It is an extension of intra-class structure. This situation is observed if the observations are grouped into some groups
such that within each group there is the same intra-class structure and between groups there is no correlation. Inter-class
structure is actually a particular case of compound symmetry structure which is obtained from W1ðrn,rn

1Þ as in (4.1),
assuming rn

1 ¼ 0 and is given below.

DðeÞ ¼ s2
1½Im � A� ¼ s2

1W1ðrn,0Þ, ð4:5Þ

where � denotes Kronecker product, A is as in (4.1) and N¼mn. Similarly as the variance–covariance structure s2Wðr,r1Þ

as in (4.1), s2W under the inter-class variance–covariance structure s2
1W1ðrn,0Þ as in (4.5) will be reduced to s2Wðr,0Þ,

where r¼ s2
1=ðs2

1þd
2
Þrn.

The necessary and sufficient conditions for D-optimal robust first order regression design under the inter-class
variance–covariance structure s2Wðr,0Þ can be simplified to Theorem 4.2 below.

Theorem 4.2. A set of necessary and sufficient conditions for a D-optimal robust first order regression design under the inter-

class variance–covariance structure s2Wðr,0Þ, over the design space X are
v0j ¼ 0,i:e:
PN

u ¼ 1

xuj ¼ 0;
(ii)
 vij ¼ 0; iaj;
XN

u ¼ 1

x
2

ui
¼N;

Xn

u ¼ 1

xui ¼
X2n

u ¼ ðnþ1Þ

xui ¼ � � � ¼
Xmn

u ¼ nðm�1Þþ1

xui ¼ 0, if r40; and
XN

u ¼ 1

x
2

ui
¼N;

Xn

u ¼ 1

xui ¼
X2n

u ¼ ðnþ1Þ

xui ¼ � � � ¼
Xmn

u ¼ nðm�1Þþ1

xui ¼ 7n, if ro0:
Note that Methods I and II provide D-ORFODs for r40 and ro0, respectively, under the inter-class variance–covariance
2
structure s Wðr,0Þ.

4.3. Intra-class correlation structure

Intra-class structure is the simplest variance–covariance structure which arises when errors of any two observations
have the same correlation and each has the same variance. It is also known as an uniform correlation structure. This
happens when all the observations studied are from the same batch or from the same run in a furnace. This is actually a
special case of inter-class structure when m¼1, as given below.

DðeÞ ¼ s2
1½ð1�r

nÞINþrnEN�N � ¼ s2
1W1ðrnÞ, ð4:6Þ
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where s140, and �ðN�1Þ�1orno1. Similarly as the variance–covariance structure in (4.1) and (4.5), s2W under the
intra-class variance–covariance structure s2

1W1ðrnÞ as in (4.6) will be reduced to s2WðrÞ, which is also an intra-class
structure as in (4.6), where r¼ s2

1=ðs2
1þd

2
Þrn.

Following Theorem 3.1, the necessary and sufficient conditions for D-optimal robust first order regression design under
the intra-class variance–covariance structure s2WðrÞ can be simplified to v0j ¼

PN
u ¼ 1 xuj ¼ 0; vij ¼

PN
u ¼ 1 xuixuj ¼ 0, iaj;

and vii ¼
PN

u ¼ 1 x2
ui ¼ constant ¼ N ¼ m:

Theorem 4.3. A design is a D-optimal robust first order under the intra-class structure if and only if it is a D-optimal first order

rotatable design in the usual model (i.e., when errors are uncorrelated and homoscedastic), whatever be the value of the intra-

class correlation coefficient r 2WðrÞ.

5. Concluding remarks

In this paper, we consider D-optimal designs for log-normal lifetime distribution: the mean lifetime gðx,bÞ of a
component is a reasonable function of the explanatory variables. This article derives the model lnT ¼ gðx,bÞþdt, where
t�Nð0,1Þ. Assuming additive error component e, which arises mainly due to experimentation, the final model
lnT ¼ gðx,bÞþdtþe has been derived. From practical point of view, this model is more appropriate for a lifetime
improvement experiment.

Recently, Myers et al. (2002) analyzed ‘‘The Worsted Yarn Data’’ (Myers et al., 2002, Table 2.7, p. 36) using a
conventional (errors are uncorrelated and homoscedastic) second order response surface design, and treating response
(y¼T) as the cycles to failure (T). They noticed that variance is not constant and the analysis is inappropriate. Using the log
transformation of the cycles to failure (i.e., y¼ lnT), they analyzed the data, and found that log model, overall, is an
improvement on the original quadratic fit. There remains evidences of heterogeneity in variances, however. Myers et al.
(2002, p. 128) also noticed that in industrial applications experimental units are not independent at times by design. This
leads to correlation among observations via a repeated measures scenario as in split plot design. Das and Lee (2009) showed
that simple log transformation is insufficient to reduce the variance constant, and they found that log-normal distribution
is much more appropriate. Thus, it is reasonable to consider y¼ lnT as the response with correlated errors for the model of
a lifetime distribution. If errors are indeed uncorrelated and homoscedastic, the usual response surface designs are
appropriate for the response y¼ lnT . The D-optimal first order designs for some well-known correlation structures have
been developed. It is crucial to use proper optimal operating conditions of the process parameters in a lifetime
improvement experiment.
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