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Fund managers highly prioritize selecting portfolios with a high Sharpe

ratio. Traditionally, this task can be achieved by revising the objective

function of the Markowitz mean-variance portfolio model and then

resolving quadratic programming problems to obtain the maximum

Sharpe ratio portfolio. This study presents a closed-form solution for the

optimal Sharpe ratio portfolio by applying Cauchy–Schwarz maximization

and the concept of Kuhn–Tucker conditions. An empirical example is used

to demonstrate the efficiency and effectiveness of the proposed algorithms.

Moreover, the proposed algorithms can also be used to obtain the optimal

portfolio containing large numbers of securities, which is not possible, or

at least is complicated via traditional quadratic programming approaches.

I. Introduction

The mean-variance portfolio model, proposed by

Markowitz (1952, 1959), has served as the guide for

most subsequent asset allocation models. Markowitz

focused on portfolios rather than individual secu-

rities. The innovation of Markowitz was followed

in the 1960s by the Capital Asset Pricing Model

(CAPM), which was articulated most notably by

William F. Sharpe. In 1990, Markowitz, Sharpe and

Miller were awarded Nobel Prizes owing to their

achievements in improving and popularizing the

mean-variance portfolio model. However, the mean-

variance model has also been criticized. For exam-

ple, Borch (1969) and Feldstein (1969) indicated

that the mean-variance framework only leads to

optimal decisions if utility functions are quadratic

or investment returns are jointly elliptically (or

spherically) distributed. Therefore, Bawa and

Lindenberg (1977) proposed a portfolio model

known as the Mean-Lower Partial Moment

(MLPM) portfolio framework based on the concept

of downside risk.
During the 1990s, the popularity of downside risk

among investors grew and the mean return-downside

risk portfolio selection model seemed to be supe-

rior to the mean-variance framework (Grootveld

and Hallerbach, 1999). However, Grootveld and

Hallerbach (1999) examined the differences and

similarities between the variance and downside risk

measures, and published an important article.

Contradicting common beliefs, their study
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demonstrated that few members of the large family
of downside risk measures possess better theoretical
properties within a return-risk framework than does
variance. Moreover, the implementation of
mean-downside risk portfolio models is much more
tedious since there are no shortcuts in computing
portfolio risk (Grootveld and Hallerbach, 1999).

Consequently, the mean-variance model has
remained the most important portfolio framework
during recent years. Numerous scholars have suc-
cessfully continued to study and revise mean-variance
model, such as Huang and Litzenberger (1988), Elton
and Gruber (1995), Elliott and Kopp (1999), Jorion
(2003), Mercurio and Torricelli (2003), Prakash
et al. (2003), Ehrgott et al. (2004), Ambachtsheer
(2005), Campbell and Viceira (2005), Aquino (2006)
and Ulucan (2007). The most recent research by
Ulucan (2007) investigated optimal holding period
(investment horizon) for the classical mean-variance
portfolio model. The historical transaction records of
Istanbul Stock Exchange ISE-100 index stocks and
Athens Stock Exchange FTSE-40 index stocks data
were used in empirical analysis. The results of that
research showed that portfolio returns with varying
holding periods had a convex structure with an
optimal holding period.

The mean-variance portfolio model defines risk in
terms of the possible variation of expected portfolio
returns. Moreover, the ‘efficient frontier’ is the set of
the portfolios generated by the Markowitz mean-
variance portfolio model with the highest achievable
expected returns for given SDs or the lowest
achievable SDs for given expected returns.
However, the portfolios on the efficient frontier
generally exhibit the higher return with higher risk
characteristic, often creating a dilemma for portfolio
management decision makers. Although Markowitz
(1959) proposed applying the expected utility maxi-
mum method to determine the optimal portfolio for
investors, optimal portfolio selection using the
mean-variance model has been a problem and
received considerable discussion (see e.g. Borch,
1969; Feldstein, 1969; Levy and Markowitz, 1979;
Kroll et al., 1984).

On the other hand, Sharpe (1966) introduced the
Sharpe ratio for the performance of mutual funds
and portfolio selection. The Sharpe ratio is built
on Markowitz’s mean-variance paradigm, which
assumes that the mean and SD of the distribution
of one-period returns are sufficient statistics for
evaluating the prospects of an investment portfolio
(Sharpe, 1994). Since Sharpe introduced the Sharpe
ratio, most financial institutions have used it to
evaluate the performance of mutual funds and select
portfolios. Although various measures have been

proposed for evaluating the performance of portfo-
lios (see e.g., Dowd, 2000; Campbell et al., 2001), the
Sharpe ratio is still a major index to measure the
performance of mutual funds. Moreover, this ratio
can be used to select the optimal portfolio on the
efficient frontier generated by the Markowitz mean-
variance model because it considers both the mean
and the SD of the portfolio returns.

Specifically, fund managers can revise the objective
function of Markowitz mean-variance model and
then apply quadratic programming techniques to
obtain the maximum Sharpe ratio portfolio.
However, the number of company stocks is increasing
in stock exchange markets. For example, the New
York Stock Exchange (NYSE) market already has
more than 2800 company stocks, while the National
Association of Securities Dealers Automated
Quotations (NASDAQ) stock market lists approxi-
mately 3600 electric companies. In a stock market
with large number of securities and trade volume, the
computing time will be too long and even infeasible
by using traditional quadratic programming method
to obtain the optimal portfolio. In this article, the
Cauchy–Schwarz Maximization (CSM) and the con-
cept of Kuhn–Tucker (KT) conditions were applied
to obtain a closed-form solution for the optimal
Sharpe ratio portfolio. This approach is more effi-
cient than traditional quadratic programming
method via time and process savings.

This article is organized as follows. We first
introduce the background and purpose of this study.
Next we illustrate the model of optimal portfolio
selection by maximizing the Sharpe ratio, followed
by the discussion on a novel application of CSM
and KT conditions for finding the closed-form
solution of the model. A real world data will then
be used to confirm the proposed closed-form
solutions. Two scenarios including short sales
allowed and short sales disallowed will be discussed.
Moreover, we will use the proposed algorithms to
find the optimal Sharpe ratio portfolio including 250
securities of Standard & Poor 500 (S&P 500), which
is typically not possible by using traditional qua-
dratic programming approaches. The last section
provides conclusions and suggestions for future
research.

II. Optimal Portfolio Selection by
Maximizing the Sharpe Ratio

The Markowitz mean-variance model states that if
the portfolio consists of n securities, then its efficient
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frontier will be solutions of the following

(Markowitz, 1959; Kroll et al., 1984).

Min �2 ¼
Xn

i¼1

Xn

j¼1

wiwjsij ¼ wTSw

subject to
Xn

i¼1

wiri ¼ wTr ¼ �

Xn

i¼1

wi ¼ 1 ð1Þ

where the following notations are used:

�: expected rate of return of portfolio;
�2: variance of return rates of portfolio;
�ri: mean rate of return of security i; and

r ¼ ðr1, r2, . . . , rnÞ
T;

wi: investment proportion (weight) of

security i; and w ¼ ðw1,w2, . . . ,wnÞ
T;

sij: covariance of returns of securities i

and j;
S¼ (sij)n�n: covariance matrix of n securities.

Further constraints can be added to the model

if the investment statement restricts the investment

weights of specific securities. For example, govern-

ment funds regulations usually limit the weights of

stocks investments and restrict the short sales of

securities. In the situation where short sales are not

allowed, a constraint of wi� 0 is needed.
The efficient frontier generated by Markowitz

mean-variance model comprises the set of portfolios

with the highest achievable expected returns for given

SDs or the lowest achievable SDs for given expected

returns. If a fund manager wishes to select the

portfolio with the highest Sharpe ratio, s/he needs to

establish the efficient frontier of portfolios and select

a portfolio with the highest expected Sharpe ratio.

Alternatively, the revised objective function of the

Markowitz mean-variance model below can be used

to obtain the precise maximum Sharpe ratio portfolio

as (Elton and Gruber, 1995)

Max ð�� Rf Þ=�

subject to
Xn

i¼1

wi ¼ 1 ð2Þ

where � ¼ wTr, � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wTSw
p

and Rf¼ risk-free

return rate. Let e represent the vector of excess

return rates (return rates of the securities above the

risk-free rate) of the n securities. Equation 2 becomes

Max wTe=
ffiffiffiffiffiffiffiffiffiffiffiffi
wTSw
p

subject to
Xn

i¼1

wi ¼ 1 ð3Þ

The traditional methods to resolve the quadratic
programming problems, such as Equations 1 and 3,
usually have been related to Lagrange functions.
When the number of securities (n) in portfolio is
large, the resolving processes for Lagrange functions
may become cumbersome. Moreover, the typical
software used to solve linear or quadratic program-
ming, such as LINDO or LINGO, is limited to 200
variables. A closed-form solution for Equation 3 is
thus desirable.

III. Application of CSM and KT conditions

The extended Cauchy–Schwarz inequality in multi-
variate statistics gives rise to the following maximiza-
tion lemma (Johnson and Wichern, 1992).

Lemma: Let B be p� p positive definite matrix and
d be a given p� 1 vector. Then for an arbitrary nonzero
p� 1 vector x, Max ðx

TdÞ2

xTBx
¼ dTB�1d with the maximum

attained when x¼ c B�1d for any constant c 6¼ 0.

Replaced B, d and x by S (the covariance matrix of
securities), e (the vector of excess return rates of
securities) and w (the investment weights matrix)
respectively, the above Lemma implies,

MaxðwTe=
ffiffiffiffiffiffiffiffiffiffiffiffi
wTSw
p

Þ
2
¼ eTS�1e ð4Þ

with the maximum attained when w¼ c S�1e, for
any constant c 6¼ 0.

Note that ðwTe=
ffiffiffiffiffiffiffiffiffiffiffiffi
wTSw
p

Þ
2 is the square of the

Sharpe ratio. Normally, the portfolio with the max-
imum Sharpe ratio has a positive expected return
rate. Hence, Equation 4 above should yield the same
optimal portfolio as Equation 3 if a suitable constant
c is selected to ensure

Pn
i¼1 wi ¼ 1. In other words,

if the covariance matrix and the excess return rates
vector of securities are known, the closed-form
solution of optimal Sharpe ratio portfolio with
short sales allowed can be obtained by the following
algorithm.

CSM algorithm

Let ŵT
¼S�1e¼ (ŵ1, ŵ2, . . . , ŵn) to obtain the primary

solution of the investment weights matrix. The optimal
solution w can be obtained after normalization. That is
w¼ cŵ, where c¼ð1=

Pn
i¼1 ŵiÞ.

The optimal solution given in CSM algorithm does
not guarantee all investment weights are positive. In
a financial market which does not allow short sales,
the requirement of all investment proportions of
securities to be positive is needed. In this case, we

Optimal mean-variance portfolio selection using Cauchy–Schwarz maximization 2797
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propose to employ the concept of KT conditions to
obtain the feasible portfolio with the highest Sharpe
ratio as follows.

CSM–KT-algorithm

Step 1: Compute ŵ
T
¼S
�1
e¼ (ŵ1, ŵ2, . . . , ŵn)¼

[ŵ
T
þ, ŵ

T
�] to obtain the primary solution of

the investment weights vector, where ŵþ is
the vector including all positive weights,
and ŵ� represents the vector including all
negative weights.

Step 2: If the investment weights ŵi of the vector
ŵ are all positive, then proceed to Step 4.
Else proceed to Step 3.

Step 3: Let all of the weights in ŵ� ¼ 0 and exclude
these securities from the portfolio, and
proceed to Step 1 by considering the
securities in ŵþ only.

Step 4: Normalize the optimal solution to w ¼ cŵ,
where c ¼ ð1=

Pn
i¼1 ŵiÞ.

We next provide the theoretical justification on the
CSM–KT-algorithm. The algorithm of quadratic
programming problem, such as Equation 1 or
Equation 3 with wi� 0 are based on the concept of
advanced calculus called KT conditions. Let � repre-
sent the Sharpe ratio and tentatively ignore the
constraints

Pn
i¼1 wi ¼ 1 and wi� 0. A maximum value

of � can be found by taking the derivative of � with
respect to each wi and setting it equal to zero. This
maximum is indicated by point M in Fig. 1(a) for
positive solution or Fig. 1(b) for negative solution.
When wi must be nonnegative and the optimal
solution is negative as demonstrated in Fig. 1(b),
the maximum feasible value of � occurs at point M0

rather than M. In other words, if the unconstrained
maximum of � occurs at a value of negative wi, the

feasible maximum value of � should occur at the
point with wi¼ 0 (see, e.g. Elton and Gruber, 1995;
Taha, 1997). Therefore, the optimal weights obtained
by the CSM-algorithm should be adjusted by letting
the wi¼ 0 and be excluded from the optimal portfolio
when wi is negative. In addition, the remaining
securities with positive weights should be recalculated
by the CSM-algorithm to obtain the optimal
portfolio.

IV. Empirical Analysis

Two scenarios will first be discussed in this section:
short sales allowed and short sales disallowed. In
financial area, ‘short sales’ is defined as the investors
sell stocks that they do not own. In the first scenario,
the example concerns a mutual fund, which invests in
six Dow Jones industrial index stocks and allows
short sales. In the second scenario, the same example
is used but short sales are not allowed. Furthermore,
in the third scenario, the proposed algorithms will
be used to find the optimal Sharpe ratio portfolio
including 250 securities of S&P 500, where the
traditional method is infeasible.

Short sales are allowed

A mutual fund manager is assumed to decide to
invest in six stocks in the Dow Jones industrial index,
which are AT&T (T), International Business
Machines (IBM), Hewlett-Packard (HPQ), Coca-
Cola (KO), Wal-Mart (WMT) and Home Depot
(HD). Furthermore, short sales are allowed in this
case. Annual returns over the period 1983 to 2006 are
considered to estimate the mean return rates and
correlation matrix of the six securities. Historical data
collected from Bloomberg system in Merrill Lynch
International Bank Limited was used to construct the

M

θθ

M'

M

wi wi

(a) (b)

Fig. 1. Two potential locations for the maximum
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return series. Table 1 presents the means and SDs of
these six stock returns. Table 2 presents the correla-
tion matrix of the return rates of six securities. Note
that the covariance matrix can be obtained easily by
the correlation matrix and SDs. Although the empir-
ical data applied annual returns in this study,
quarterly or monthly returns can be used in the
proposed models and obtain the same results.
The process of using quarterly or monthly returns is
the same as that of using annual returns, therefore
employing the data with higher frequencies to extract
optimal portfolios does not affect the outcome.

The data in Tables 1 and 2 are then used to solve
the quadratic programming problem in Equation 3.
A risk-free rate of 5% was assumed.

The optimal investment weights of six stocks, the
mean return rate and the SD of the portfolio with
the maximum Sharpe ratio are obtained and dis-
played in the first column of Table 3. As a compar-
ison, we next apply the CSM-algorithm to the same

data in Table 1. The inverse of the covariance matrix
is multiplied by the excess return rates vector of
securities and the optimal investment weights vector
of six stocks (T, IBM, HPQ, KO, WMT, HD)¼
(�0.01197, 0.00574,�0.00274, 0.02191, 0.01033, 0.00506),
is obtained. For this case, the optimal investment
weight of T and HPQ are negative, implying that
investors should short sell AT&T and HPQ stocks to
achieve the highest Sharpe ratio. The inverse of the
sum of these weights, 0.02833, is 35.2983. To make
the sum of the investment weights equal to one, the
primary weights were therefore multiplied by 35.2983
and the results in the second column of Table 3 were
obtained. This solution confirms that the proposed
algorithm yields the same result as the quadratic
programming.

Short sales are not allowed

When short sales are not allowed, investment weights
cannot be negative. However, the optimal investment
proportions of the example in the first subsection
include some negative numbers. The optimal invest-
ment weights of AT&T (T) and HPQ are �42.24%
and �9.66%. This solution is infeasible when short
sales are not allowed. To solve the problem by
quadratic programming method, the data in Tables 1
and 2 are also applied to Equation 3 with a constraint
wi� 0. The third column of Table 3 presents the
optimal investment weights of six stocks, the mean
return rate and the SD of the portfolio with the
maximum Sharpe ratio obtained by solving quadratic
programming.

The CSM–KT-algorithm first obtained (in Step 1)
the optimal investment weights (T, IBM, HPQ,
KO, WMT, HD)¼ (�0.01197, 0.00574,�0.00274,
0.02191, 0.01033, 0.00506). Since the optimal invest-
ment weights of T and HPQ are negative, this
solution is infeasible. Thus we set w1 and w3 be zero
and recalculate the optimal portfolio composed by

Table 1. The means and SD of the six stocks returns

T IBM HPQ KO WMT HD

Mean (%) 9.12 10.87 12.83 18.82 28.96 37.39
SD (%) 29.29 32.52 32.78 25.55 39.43 56.98

Source: Merrill Lynch International Bank Limited.

Table 2. The correlation matrix of the six stocks returns

T IBM HPQ KO WMT HD

T 1.0000 0.1484 0.3076 0.3685 0.4482 0.3802
IBM 0.1484 1.0000 0.0382 �0.1451 0.2714 0.1025
HPQ 0.3076 0.0382 1.0000 0.2990 0.3634 0.4388
KO 0.3685 �0.1451 0.2990 1.0000 0.2756 0.2796
WMT 0.4482 0.2714 0.3634 0.2756 1.0000 0.7542
HD 0.3802 0.1025 0.4388 0.2796 0.7542 1.0000

Table 3. The maximum Sharpe ratio portfolio of the six stocks

Short sales allowed Short sales not allowed

Quadratic programming CSM-algorithm Quadratic programming CSM–KT-algorithm

T �0.4224 �0.4224 0 0
IBM 0.2027 0.2027 0.1355 0.1355
HPQ �0.0966 �0.0966 0 0
KO 0.7733 0.7733 0.5153 0.5153
WMT 0.3645 0.3645 0.2292 0.2292
HD 0.1785 0.1785 0.1199 0.1199
�(%) 28.90 28.90 22.30 22.30
�(%) 29.12 29.12 22.67 22.67
Sharpe ratio 0.822 0.822 0.763 0.763

Optimal mean-variance portfolio selection using Cauchy–Schwarz maximization 2799
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other four stocks. In other words, AT&T and HPQ
stocks are excluded from the portfolio. The updated
weights are obtained (T, IBM, HPQ, KO, WMT,
HD)¼ (0, 0.00456, 0, 0.01734, 0.00771, 0.00403). After
normalization, the final result is displayed in the
fourth column of Table 3. This solution confirms that
the proposed algorithm yields the same result as the
quadratic programming.

A portfolio with large number of securities

The proposed algorithms can obtain the optimal
Sharpe ratio portfolio with a large number of
securities. This is typically unsolvable by using
traditional quadratic programming. For example,
the number of variables is limited to be 200 (or less)
by LINDO or LINGO software. Moreover, con-
structing the objective function of Equation 3 is
troublesome. The variance of the portfolio will
include 250(250þ 1)/2 terms for 250 stocks.

Since our proposed solution has a closed-form
solution, we can easily construct this portfolio by
considering daily returns of 250 stocks of S&P500
over the year of 2006. All data are obtained from
Bloomberg system. By implementing the CSM-
algorithm, we can obtain the weights of the optimal
portfolio and this portfolio has (�, �)¼ (11.86%,
0.21%) with Sharpe ratio 56.48. Apart from some
straightforward calculation, all we need is to solve the
inverse of a 250� 250 covariance matrix. This can
be done by many computing tools. MATLAB 7.0
software was used in this study.

V. Conclusion

Traditionally, financial analysts can revise the objec-
tive function of the Markowitz mean-variance port-
folio model and resolve quadratic programming to
obtain the maximum Sharpe ratio portfolio. This
article proposed simple algorithms with closed-form
solution by applying the CSM and the concept of KT
conditions to decide optimal portfolios. The scenarios
including short sales allowed and disallowed were
discussed. A real world example demonstrated that
the CSM-algorithm and the CSM–KT-algorithm
correctly generate the closed-form solution for the
portfolio with the highest Sharpe ratio. The proposed
approach is more efficient than traditional quadratic
programming method. Furthermore, in a stock
market with large number of securities and trade
volume such as NYSE or NASDAQ, the computing
process for obtaining the optimal portfolio will be
very complicated by using traditional quadratic

programming methods. Therefore, the proposed
CSM-algorithm and CSM–KT-algorithm can be
important tools for seeking the optimal portfolio.
This study used the CSM-algorithm to obtain the
optimal portfolio with 250 securities. The calculation
will be almost impossible via traditional quadratic
programming approaches.

As in Kroll et al. (1984) and Campbell et al. (2001),
the empirical examples of this article used historical
data to estimate the means vector and covariance
matrix of the return rates of securities. Forecasting
technology, such as Vector Autoregressive (VAR)
model, can be applied to obtain a more precise
means vector and covariance matrix for returns
of securities. Moreover, the CSM-algorithm and
CSM–KT-algorithm provide closed-form solutions
for the portfolio with maximum Sharpe ratio. The
closed-form solutions are helpful to find the confi-
dence intervals of the optimal investment weights of
securities.
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