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a b s t r a c t

Latin hypercube designs (LHDs) have recently found wide applications in computer

experiments. A number of methods have been proposed to construct LHDs with

orthogonality among main-effects. When second-order effects are present, it is

desirable that an orthogonal LHD satisfies the property that the sum of elementwise

products of any three columns (whether distinct or not) is 0. The orthogonal LHDs

constructed by Ye (1998), Cioppa and Lucas (2007), Sun et al. (2009) and Georgiou

(2009) all have this property. However, the run size n of any design in the former three

references must be a power of two (n=2c) or a power of two plus one (n=2c+1), which is

a rather severe restriction. In this paper, we construct orthogonal LHDs with more

flexible run sizes which also have the property that the sum of elementwise product of

any three columns is 0. Further, we compare the proposed designs with some existing

orthogonal LHDs, and prove that any orthogonal LHD with this property, including the

proposed orthogonal LHD, is optimal in the sense of having the minimum values of

ave(9t9), tmax, ave(9q9) and qmax.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Latin hypercube designs (LHDs), introduced by McKay et al. (1979), are popular for computer experiments because they
allow the investigation of factors at many levels in relatively few trials. An n� k LHD for k factors in n runs is denoted by an
n� k matrix L(n, k)=(lij), where lij is the level of factor j in the i th experimental run and each factor in L(n, k) includes n

uniformly spaced levels. However, the original construction of LHDs by mating factors randomly is susceptible to having
potential high correlations among factors.

Efforts have been made to optimize LHDs. Owen (1992), Tang (1993) and Ma and Zhang (2001) proposed orthogonal
array-based LHDs that achieve stratification in low dimensions. Tang (1994) and Morris and Mitchell (1995) proposed
LHDs that attain the largest minimum inter-site distance among all LHDs. Park (1994) constructed LHDs that optimize the
integrated mean square error criterion. Owen (1994) attempted to lower pairwise correlations between input factors. Tang
(1998) considered correlations among higher-order terms derived from the factors. Butler (2001) showed how to construct
LHDs in which the terms of a class of trigonometric regression models are orthogonal to one another. Beattie and Lin (1997,
2004, 2005) showed that certain LHDs can be constructed by rotating the points in a two-level full factorial design.
Bursztyn and Steinberg (2002) applied the rotation to groups of factors to increase the number of factors in the resulting
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design. Recently, Steinberg and Lin (2006) and Pang et al. (2009) combined the above two ideas with the knowledge of
Galois field to produce orthogonal LHDs with n runs, where n=pd, d=2c and p is a prime. Joseph and Hung (2008) proposed
a multi-objective optimization approach to find good LHDs by combining correlation and distance performance measures.
Lin et al. (2009) proposed a method for constructing orthogonal or nearly orthogonal LHDs. By relaxing the condition that
the number of levels for each factor is identical to the run size, Bingham et al. (2009) introduced a method for constructing
a rich class of designs that are suitable for use in computer experiments.

For a polynomial model of degree q, having k factors xi, i=1,y,k,

Y ¼ mþ
X
irk

bixiþ
X

i1 r i2 rk

bi1i2
xi1 xi2þ � � � þ

X
i1 r ���r iq rk

bi1���iq
xi1 � � � xiqþe,

where bi is the linear effect of xi, bi1 ���it
is the t-order interaction of xi1 , . . . ,xit , in particular bii corresponds to the

quadratic effect of factor xi and bi1i2
is the bilinear interaction of factors xi1 and xi2 for i1ai2. It is desirable to include

orthogonal independent variables in a regression model, so that the estimates of the regression coefficients would
be uncorrelated. When fitting the first-order model, the orthogonal LHD ensures the independence of estimates
of linear effects. Furthermore, it is desirable to have an orthogonal LHD that can estimate the linear effects without being
correlated with the estimates of quadratic effects and bilinear interactions, when fitting the first-order model while the
second-order effects, i.e. the quadratic effects and bilinear interactions, are present. Thus we seek LHDs with the following
properties:

(a) the estimates of linear effects of all factors are uncorrelated with each other;
(b) the estimates of linear effects of all factors are uncorrelated with the estimates of all quadratic effects and bilinear

interactions.

There are some existing LHDs both with Properties (a) and (b), for example, the L(2c +1, 2c) and L(2c +1+1, 2c) constructed by
Ye (1998); the L(2c + 1, 2c) and L(2c +1+1, 2c) constructed by Sun et al. (2009) for any positive integer c; the Lð2cþ1,cþ1þðc2ÞÞ
and Lð2cþ1

þ1,cþ1þðc2ÞÞ for any positive integer cr11 constructed by Cioppa and Lucas (2007) through extending Ye’s
procedure; and the LHDs constructed in Georgiou (2009) via (generalized) orthogonal designs. In particular, the number of
factors k in any design constructed by Sun et al. (2009) attains its maximum value among all the corresponding LHDs
satisfying both Properties (a) and (b).

One limitation of the designs presented in Ye (1998), Cioppa and Lucas (2007) and Sun et al. (2009) is their severe
restriction on the run size n, i.e. n=2c + 1 or 2c + 1+1, which is a rather severe restriction. This paper presents an approach for
constructing LHDs with n=r 2c + 1+1 or r 2c + 1 runs and k=2c factors for any positive integer r, while still keeping Properties
(a) and (b). Note that if an alternative model is employed (e.g., Gaussian process model), the desirable properties may be
different and thus the proposed design may not be appropriate.

This paper is organized as follows. Section 2 compares some existing construction methods. In Section 3, we present the
construction method of L(r 2c +1+1,2c) and L(r 2c +1, 2c) with Properties (a) and (b) for any two positive integers c and r.
Section 4 provides some criteria for measuring the performance of LHDs, and illustrates that the designs with Properties (a)
and (b) perform well under these criteria. Concluding remarks are given in Section 5.

2. Existing methods

We first review the construction method for orthogonal LHDs due to Sun et al. (2009), and then make comparisons with
others.

Lemma 1 (Sun et al., 2009). (1) Construction of L(2c + 1+1, 2c). For any integer cZ1, the construction algorithm for an

orthogonal L(2c + 1+1, 2c) with Properties (a) and (b) can be illustrated as follows.

Step 1. For c=1, let

S1 ¼
1 1

1 �1

� �
, T1 ¼

1 2

2 �1

� �
:

Step 2. For c41, define Sc and Tc as

Sc ¼
Sc�1 �S�c�1

Sc�1 S�c�1

 !
, Tc ¼

Tc�1 �ðT�c�1þ2c�1S�c�1Þ

Tc�1þ2c�1Sc�1 T�c�1

0
@

1
A,

where operator �works on any matrix with an even number of rows by multiplying the entries in the top half of the matrix by �1

and leaving those in the bottom half unchanged.

Step 3. An L(2c +1+1, 2c) can be obtained as

Lc ¼ ðT
T
c ,02c ,�TT

c Þ
T,
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where AT denotes the transpose of A and 02c denotes the 2c
�1 column vector with all elements zero.

(2) Construction of L(2c + 1, 2c). For any integer cZ1, the construction algorithm for an orthogonal L(2c + 1, 2c), Lc, with

Properties (a) and (b) can be illustrated as follows.

Steps 1
0

and 2
0

. Same as Steps 1 and 2 for construction of Sc and Tc.

Step 3
0

. Let Hc=Tc�Sc/2, Lc=(HT
c , �HT

c)T.

The number of factors in any of the above constructed designs attains its maximum value among all the corresponding LHDs

satisfying both Properties (a) and (b).

Suppose D=(dij)n� k is a fractional factorial design whose levels are taken to be 0,y,p�1. The corresponding centered
design is Dc=(dc

ij), i.e., the levels are labeled as (2i�p+1)/2, i=0,y,p�1. Let R=(rij) be the corresponding rotation matrix
defined in Beattie and Lin (2005) and Pang et al. (2009). Then we have the following conclusion.

Theorem 1. If D contains three columns du, dv and dw satisfying du+dv=dw mod p, then the resulting design L=DcR obtained

through rotating Dc by R does not satisfy Property (b).

Proof. Suppose L=(lij) satisfies Property (b). From Dc=LR0, for any three columns dc
j1

, dc
j2

, dc
j3

of Dc, where j1, j2, j3 can be
equal, we have

Xn

i ¼ 1

dc
ij1

dc
ij2

dc
ij3
¼
Xn

i ¼ 1

Xk

t1 ¼ 1

lit1
rj1t1

Xk

t2 ¼ 1

lit2
rj2t2

Xk

t3 ¼ 1

lit3
rj3t3
¼
Xk

t1 ¼ 1

Xk

t2 ¼ 1

Xk

t3 ¼ 1

rj1t1
rj2t2

rj3t3

Xn

i ¼ 1

lit1
lit2

lit3
:

From the supposed condition we know that for any three numbers t1, t2 and t3,
Pn

i ¼ 1 lit1
lit2

lit3
¼ 0, where t1, t2, t3 can be

equal. Hence,

Xn

i ¼ 1

dc
ij1

dc
ij2

dc
ij3
¼ 0, for any j1,j2,j3: ð1Þ

On the other hand, let [x]p denote the residue of x modulo p, then

Xn

i ¼ 1

dc
iudc

ivdc
iw ¼

n

8p2

Xp�1

i ¼ 0

Xp�1

j ¼ 0

ð2i�pþ1Þð2j�pþ1Þð2½iþ j�p�pþ1Þ ¼
n

24
ð1�p2Þa0,

which contradicts (1), thus we complete the proof. &

From this theorem, we can easily obtain the following result.

Corollary 1. All the designs Lðpd,dbðpd�1Þ=dðp�1ÞcÞ constructed via the methods of Steinberg and Lin (2006) and Pang et al.

(2009) do not satisfy Property (b) except for the unique case of d=p=2.

Some comparisons among the LHDs constructed by Ye (1998), Steinberg and Lin (2006), Pang et al. (2009) and Sun et al.
(2009) are listed in Tables 1 and 2, where d=2c, c is any positive integer, and p is a prime. In Table 2, several existence
results due to Cioppa and Lucas (2007), Lin et al. (2009) and Georgiou (2009) are also listed. For simplicity, we denote the
methods of Ye (1998), Cioppa and Lucas (2007), Steinberg and Lin (2006), Pang et al. (2009), Lin et al. (2009), Georgiou
(2009) and Sun et al. (2009) by Ye, CL, SL, PLL, LMT, Ge and SLL, respectively. From the above discussions and these two
tables, we can see that

(i) in most cases, SLL has a more flexible choice of the number of factors than the other six methods;
(ii) designs due to Ye, CL, Ge and SLL accomplish the nice Properties (a) and (b), and thus they have the minimum values of

ave(jtj), tmax, ave(jqj) and qmax among all the corresponding LHDs, as will be discussed in Section 4, while those
obtained by SL, PLL and LMT only keep Property (a), except the trivial case of n=4;

(iii) for n=2c +1 or 2c +1+1 runs, Ye’s method can only produce an LHD with at most k=2c factors, while Sun et al. (2009) can
generate an LHD with the maximum number of factors among LHDs satisfying both Properties (a) and (b).

ARTICLE IN PRESS

Table 1
Comparisons among the construction methods of Ye, SL, PLL and SLL for n44.

Method Ye SL PLL SLL

Run size n 2c+ 1 or 2c+ 1+1 2d pd 2c + 1 or 2c + 1+1

Maximal number of factors k 2c
d

n�1

d

� �
d

n�1

dðp�1Þ

� �
2c

Property (a) Yes Yes Yes Yes

Property (b) Yes No No Yes

Design optimalitya Yes No No Yes

a Design optimality means achieving minimum values of ave(jtj), tmax, ave(jqj), and qmax simultaneously (see Section 4).
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3. Construction of orthogonal LHDs with flexible run sizes

We next extend the method of Sun et al. (2009) presented in Section 2 to construct L(r 2c +1, 2c) or L(r 2c +1+1, 2c) with
Properties (a) and (b), where r and c are two positive integers. This increases the flexibility of the run sizes of the
constructed LHDs with Properties (a) and (b).

Suppose Tc is as defined in Lemma 1, and let

Ar2c
�2c ¼ ððT1

c Þ
0, . . . ,ðTr

c Þ
0
Þ
0,

where Ti
c=Tc+(i�1)2cSc. Then

Lðr2cþ1
þ1,2c

Þ ¼

Ar2c
�2c

002c

�Ar2c
�2c

0
B@

1
CA ð2Þ

is an LHD with r 2c +1+1 runs and 2c factors. From Lemma 1 in Sun et al. (2009), we can easily prove that

Theorem 2. For any two positive integers c and r, the design given in Eq. (2) is an L(r 2c +1+1, 2c) with Properties (a) and (b).

Example 1 (Construction of orthogonal L(25,4)). Since 25=3�22 +1+1, from Theorem 2 there exists an LHD with 25 runs
and 22 factors,

Lð25,4Þ ¼

A12�4

004
�A12�4

0
B@

1
CA,

with Properties (a) and (b), where

A12�4 ¼ ððT
1
2 Þ
0,ðT2

2 Þ
0,ðT3

2 Þ
0
Þ
0

¼

1 2 3 4 5 6 7 8 9 10 11 12

2 �1 4 �3 6 �5 8 �7 10 �9 12 �11

3 �4 �1 2 7 �8 �5 6 11 �12 �9 10

4 3 �2 �1 8 7 �6 �5 12 11 �10 �9

0
BBB@

1
CCCA
0

:

Further, the method can also be modified to construct orthogonal LHDs with n=r 2c + 1 runs and k=2c factors. Suppose Hc

is as defined in Lemma 1, and let

Br2c
�2c ¼ ððH1

c Þ
0, . . . ,ðHr

cÞ
0
Þ
0,

ARTICLE IN PRESS

Table 2
Existence of orthogonal LHDs for some given run sizes n.

n Maximal number of factors k

Ye CL SL PLL LMT Ge SLL

8 4 4 4

9 4 4a 4 4

16 6 7 12a 12a 8 8

17 6 7 8 8

32 8 11 16

33 8 11 16

64 10 16 32a 32

65 10 16 32

128 12 22 64

129 12 22 64

256 14 29 248a 248a 128

257 14 29 128

512 16 37 256

513 16 37 256

1024 18 46 512

1025 18 46 512

a These designs do not satisfy Property (b), and thus cannot achieve the minimum values of ave(jtj), tmax, ave(jqj), and qmax simultaneously.

F. Sun et al. / Journal of Statistical Planning and Inference 140 (2010) 3236–3242 3239



Author's personal copy

where Hi
c=Hc+(i�1)2cSc. Then it can be easily shown that

Lðr2cþ1,2c
Þ ¼

Br2c
�2c

�Br2c
�2c

 !
ð3Þ

is an LHD with r2c + 1 runs and 2c factors and has the same nice properties in Theorem 2. Thus, similar to Theorem 2, we
conclude that

Theorem 3. For any two positive integers c and r, the design given in Eq. (3) is an L(r 2c + 1+1, 2c) with Properties (a) and (b).

Example 2 (Construction of orthogonal L(24,4)). Since 24=3�22 + 1, from what we have just discussed, there exists an
orthogonal LHD with 24 runs and 22 factors,

Lð24,4Þ ¼
B12�4

�B12�4

 !
,

which preserves the nice properties, where

B12�4 ¼ ððH
1
2Þ
0, ðH2

2Þ
0, ðH3

2Þ
0
Þ
0

¼
1

2

1 3 5 7 9 11 13 15 17 19 21 23

3 �1 7 �5 11 �9 15 �13 19 �17 23 �21

5 �7 �1 3 13 �15 �9 11 21 �23 �17 19

7 5 �3 �1 15 13 �11 �9 23 21 �19 �17

0
BBB@

1
CCCA
0

:

Remark. 1. For any r=2l with l40, the L(2c + l +1+1, 2c + l) and L(2c + l +1, 2c + l) constructed by Sun et al. (2009) have much
more choices of factor sizes than the L(r 2c +1+1, 2c) and L(r 2c +1, 2c) given in Eqs. (2) and (3), respectively. For this case, the
designs due to Sun et al. (2009) are recommended.

2. For r=2lm with l40 and m being an odd number, the L(m 2c + l + 1+1, 2c + l) and L(m 2c + l +1, 2c + l) instead of the L(r 2c +1+1,

2c) and L(r 2c +1, 2c) are recommended.

3. (a) If one wants to conduct the experiments from the run size economy point of view, the LHDs with r=1 are

recommended, in which case the method coincides with that in Sun et al. (2009), see Table 2 for some existence results.

(b) If one prefers to investigate the factors in a more detailed manner (i.e. with more levels) in LHDs, the newly

constructed designs with r41, especially those with odd r, are recommended.

Table 3 shows some existence results of orthogonal LHDs with n=r 2c + 1 and r 2c + 1+1 for r=3, including that obtained by
our proposed method. It can be seen that the proposed method has more flexible choices of the run size when compared to
other methods.

4. Optimality properties of the constructed LHDs

We now evaluate the performance of the LHDs which are referred to in the previous section. The criteria, as discussed in
Steinberg and Lin (2006), arise from the alias matrices when fitting a first-order model while the second-order effects may
be present. Let X denote the regression matrix for the first-order model of an L(n, k), including a column of ones and the k

factors in the design, which are scaled to the hypercube [�1,1]k. Let Xint denote the n� k(k�1)/2 matrix with all the
possible bilinear interactions, and let Xquad denote the n� k matrix with all the pure quadratic terms. The alias matrices for
the first-order model associated with the bilinear interactions and the pure quadratic terms are then given by

T ¼ ðX0XÞ�1X0Xint and Q ¼ ðX0XÞ�1X0Xquad,

respectively. A good design for factor screening should maintain relatively small terms in these alias matrices (Steinberg
and Lin, 2006). Based on the elements of these matrices, Georgiou (2009) defined the average absolute alias and the
maximum absolute alias of the quadratic and the bilinear interactions of a design to evaluate the performance of an LHD.
The measures are

aveðjqjÞ ¼

Pkþ1
i ¼ 1

Pk
j ¼ 1 jqijj

kðkþ1Þ
, qmax ¼max

i,j
jqijj
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and

aveðjtjÞ ¼
2
Pkþ1

i ¼ 1

Pkðk�1Þ=2
j ¼ 1 jtijj

kðk2�1Þ
, tmax ¼max

i,j
jtijj,

where qij and tij are elements in the ith row and jth column of matrices Q and T, respectively. LHDs with smaller values of
the above measures of interest are preferred.

For the LHDs with Properties (a) and (b), we can obtain the following result, regarding their quadratic terms and bilinear
interactions.

Theorem 4. If D is an L(n, k) possessing Properties (a) and (b), then D has the minimum values of ave(jtj), tmax, ave(jqj) and qmax

among all the orthogonal L(n, k)’s.

Proof. For any orthogonal L(n, k), suppose X, Xint and Xquad are the three matrices previously defined, where the first
column of X is the column of ones, and each of the other columns of X is a permutation of {�1, �1+2/(n�1),y,1�2/
(n�1), 1}. Then the elements in the first row of X0Xquad will all be

a¼ 1

ðn�1Þ2

Xn

i ¼ 1

ð2i�n�1Þ2 ¼
nðnþ1Þ

3ðn�1Þ
,

and the first row of ðX0XÞ�1 is (1/n,0,y,0). So, the elements in the first row of matrix Q ¼ ðX0XÞ�1X0Xquad will all be a=n for
any orthogonal L(n, k). For design D, since it keeps Property (b), all elements of ðX0XÞ�1X0Xquad are 0 except for those in the
first row. Thus D has the minimum values of ave(jqj) and qmax among all the orthogonal L(n, k)’s.

Since design D satisfies Properties (a) and (b), we have ðX0XÞ�1X0Xint ¼ 0 and ave(jtj)=tmax=0. Thus we complete the

proof. &

Theorem 4 tells us that all the LHDs constructed in Section 3 are optimal under the ave(jtj), tmax, ave(jqj) and qmax

criteria. Further, from this theorem, we can easily verify that if an orthogonal LHD does not satisfy Property (b), then
aveðjtjÞ40, tmax40, and ave(jqj) cannot take the minimum values. This is true for the orthogonal LHDs constructed via the
methods of Steinberg and Lin (2006) and Pang et al. (2009).

5. Concluding remarks

From the newly proposed method, a class of orthogonal L(n, k)’s can be constructed algebraically, where n=r 2c + 1 or
r 2c +1+1, k=2c, and c and r are any two positive integers. Such designs are easy to construct and do not require complicated
algorithms to achieve small correlations between input factors. In fact, the estimates of the linear effects of all factors are
uncorrelated not only with each other, but also with the estimates of all quadratic effects and bilinear interactions. Further,
we prove that the LHDs with Properties (a) and (b) also have the minimum values of ave(jtj), tmax, ave(jqj) and qmax among
all the orthogonal LHDs with the same run and factor sizes. Such designs can be very useful in factor screening when fitting
a first-order model, while the quadratic effects and bilinear interactions exist. In addition, the newly constructed designs
enable the experimenters to choose the number of runs with more flexibility.

ARTICLE IN PRESS

Table 3

Existence of orthogonal LHDs with n¼ 3 � 2cþ1 and 3 � 2cþ1
þ1 runs for c=2,y,9.

n Maximal number of factors k

Ye PLL LMT Proposed method

24 4 4

25 4 6a 12a 4

48 6 8

49 6 8a 24a 8

96 8 16

97 8 16

192 10 32

193 10 32

384 12 64

385 12 64

768 14 128

769 14 128

1536 16 256

1537 16 256

3072 18 512

3073 18 512

a These designs do not satisfy Property (b), and thus cannot achieve the minimum values of ave(jtj), tmax, ave(jqj), and qmax simultaneously.
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Joseph and Hung (2008) showed that space-filling property and orthogonality do not necessarily agree with each other,
i.e., the uniformity does not guarantee that the design possesses low correlations among its effects; sometimes
maximization of inter-site distances can result in LHDs in which the factors are highly correlated, and vice versa. The
proposed designs can only guarantee the nice orthogonality properties, and thus are optimal in terms of all design criteria
based on orthogonality.

For the analysis of the computer experiments, one could focus on the mean model (such as what we have concerned
here) and assume a relative simple form for the covariance structure. In this case, a polynomial model is commonly
employed. The proposed design is shown to be effective. On the hand, one could assume a simple mean model (e.g., an
intercept only) with a relative complicated covariance structure, such as a Gaussian process model. In this case, whether
the proposed orthogonal LHD will be beneficial deserves further study.
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