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Kinetic models are nonlinear systems that depict the dependence between process variables and components
or products where the process variables are usually assumed to be fixed. This is under the assumption that the
process variables that govern the outputs are fully controllable. However, process variables are not always
fully controllable and are more often hard-to-control during normal operation on a full-scale chemical production
plant. This Article outlines the methodology of statistical robustness studies for kinetic models. Such an
application is apparently new in engineering design and analysis. We illustrate the use of computer experiments
and evaluate different response models and designs for determining optimum conditions, which are robust
against the variability in the hard-to-control variables. The methodology is demonstrated with two examples,
the main one being the ethoxylation of ethylene glycol in an inter cooled pipe reactor. The practical value of
statistical robustness studies is that it quantifies the convoluted effect of model uncertainty and model input
deviation.

Introduction

Ethylene glycol oligomers (ethylene glycol (EG), diethylene
glycol (DEG), triethylene glycol (TEG), and higher ethylene
glycols) are commonly used in a wide variety of applications
including resins, films, fibers, antifreezes, aircraft anti-icer and
deicers, heat transfer fluids, solvents, inks, and gas dehydration.
Ethylene glycol oligomers are formed by reacting EG with
ethylene oxide (EO). The market demand for the various
oligomers may change, and it is therefore useful to be able to
optimize the production of certain products. Di Serrio1 published
a kinetic model for predicting the reactions and selectivities for
an ethylene glycol process. The reactions are dependent on, for
example, temperature, feed ratio, and catalyst concentration.

The objective of the kinetic model for the ethylene glycole
process is to explain the dependence between the process
variables (temperature, feed ratio, etc.) and the products (DEG,
TEG) according to the fundamentals of the reactions. However,
in any design and operation of a chemical process, there are
several parameters that have a degree of uncertainty and
variability associated with them. Process variables, such as
temperature and feed ratio in the ethylene glycol process, may
be subjected to variability, which contributes to the variability
in the products produced by the reactor. While it is critical to
address these uncertainties during plant operation, it is also
important that the variability in the process variables be taken
into consideration in the reactor model development and design
stage. The model parameters (rate constants, etc.) are generally
estimated from experimental data, which are associated with
random and normally distributed measurement errors. Methods
for incorporating the variability in the model parameters into
the design stage have received considerable attention in the
chemical engineering literature.2

The process variables that govern the reactions are usually
considered to be fully controllable during normal operation and
are therefore treated as fixed in kinetic models. However, some
process variables may also be subject to uncertainty and
introduce variability into the outputs predicted by the reactor

model. In the statistical literature, these variables are referred
to as hard-to-control, and the effect of their variability on the
predicted outputs is of interest. By incorporating the variability
in the process variables at the model building and design stage,
operability regions that are insensitive or robust to these
uncertainties may be obtained. In addition, if the uncertainty in
the outputs due to the variability in the inputs can be quantified,
the convoluted effect of model uncertainty and model input
deviation can be quantified, which will contribute to a more
accurate and safer over design of equipment.

Any process is considered to be robust when it performs
consistently on target and when it is insensitive to factors that
are difficult or hard-to-control during normal operation. Statisti-
cal robustness studies is the methodology whereby experimental
design, analysis, and model building are deployed to develop
or improve a process or product to be insensitive to the
variability transmitted to the outputs from factors or variables
that are difficult or impossible to control when the process is
operational.3 The methodology of robustness studies is well
documented for empirical studies,3-5 but has not been utilized
previously for fundamental or kinetic models.

The objective of robustness studies is to determine conditions
on the process variables for which the process outputs are robust
against the variability in the hard-to-control variables. Such a
robustness study is one major contribution of the Taguchi
method.6 For this purpose, two response models are evaluated
for the outputs of the process, that is, the mean response model
and the variance response model. Performing statistical robust-
ness studies entails the conducting of experiments or computer
runs with the mean and variance models at different settings of
the process variables. Therefore, we apply the methodology of
the design and analysis of computer experiments to specify the
variables’ settings, and to construct approximation or surrogate
models of the original computer code, facilitating the exploration
of the design space, optimization, and continuous improvement.7

Response surface and Kriging models are mainly used as
approximation models.8

In this Article, we present the methodology of statistical
robustness studies together with the design and analysis of
computer experiments for kinetic models. We apply and
demonstrate the advantages of the methodology to the ethylene
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glycol process. We illustrate how this methodology can be used
in kinetic modeling for quantifying the variability or uncertainty
effect that hard-to-control process variables has on the outputs
of a process during normal operation. In addition, we show how
the successful application of robustness studies leads to sustain-
able operating areas where the transmitted variability is mini-
mized. The methodology also enables the estimation of the
combined or interaction effects of the process variables on the
mean and variance of the process. We evaluate several
experimental designs for sampling the computer code for the
kinetic and variance models. We compare response surface and
Kriging models for approximating the input-output relation-
ships for the kinetic and variance models, and make recom-
mendations for application in industry.

Statistical robustness studies have not previously been applied
to kinetic models, and neither have computer experiments been
applied for robustness studies. This Article is outlined as follows.
First, we present the methodology of statistical robustness
studies for both linear and nonlinear models. Thereafter, the
design and analysis of computer experiments are discussed. The
application of the methodology to two examples is then
discussed in detail, the main one being the kinetic model for
the ethylene glycol process.

Methodology of Process Robustness Studies

Linear Models. In this section, we present a brief introduction
to linear models because it is a prerequisite for the discussion
of nonlinear models in the next section. Suppose that a
relationship exists between a response Y and q ) r + s process
variables, that is, x ) (x1, x2,..., xr)T and z ) (z1, z2,.., zs)T. The
variables x are considered to be controllable, and the variables
z are the hard-to-control variables during normal operation. The
model for the observations can be written as:

where η(x, z, �) is a regression function, that is, the mean or
expected response at (x, z) written as E(Y(x, z, �)) ) η(x, z, �).
The parameters of the model are � ) (�1, �2,..., �p)T, and the
errors ε are considered to be normally distributed with mean 0
and common variance σ2.

Let the mean and variance-covariance matrix of the hard-to-
control variables, z, during normal operation be equal to µz and
Sz, respectively, with E(zi) ) µzi

and Var(zi) ) σzi
2, CoV(zi, zj) )

σzizj
, i * j ) 1,..., s. For the experimental design, it is assumed

that the variables (x, z) belong to a design or experimental range
R ) (Rx, Rz).

When little or no knowledge is available about the true
functional relationship, then η(x, z, �) can be approximated by
a truncated Taylor series, that is, a polynomial in x and z of
degree d, usually equal to 1 or 2, to produce a useful
approximation. A second-order model contains linear, quadratic,
and two-order interaction terms between the controllable and
hard-to-control variables, for predicting the response surface of
the performance variable of interest. The second-order response
surface model is of the form 2:

where a is the vector containing all of the terms in the model
and � is the vector containing all of the parameters in the model.
Model 2 is fitted to the experimental data to produce the
estimates of �u, for example, using least-squares estimation.

The response surface model for the process mean is obtained
by taking the expectation of the predicted model 2 over the
prior distribution of the hard-to-control variables, that is,
Ez(Ŷ(x, z, �)) ) Ŷµ|z(x, z, �). This model is then used to optimize
the process mean for the expected values or other of the hard-
to-control variables z. The model for the process mean
Ŷµ|z(x, z, �) can also be referred to as the first moment of the
response variable Ŷ about zero.

The variance function is obtained from the second moment
of the response variable Y about the mean µz, that is, E(Ŷ(x, z, �)
- µz)2 ) Ŷσ|z(x, z, �)2. The second moment is approximated by
taking the conditional variance operator across the response
surface model 2 over the prior distribution of the hard-to-control
variables. Montgomery3 gave a detailed discussion of robustness
studies for empirical models. Coetzer and Keyser9 developed
second-order response surface models and applied statistical
robustness studies to determine conditions of the process
parameters that minimize the effect of the variability in the hard-
to-control variables on gasifier performance.

Nonlinear Models. The main aim of fundamental or kinetic
modeling is to explain the dependence between process variables
and products according to the fundamental principles of the
process under study. Figure 1 depicts the sequential process for
iterative learning and scientific discovery for fundamental
process robustness studies utilizing, for example, kinetic models.
Fundamental modeling requires the sequential steps of selecting
an experimental design, data collection, and model fitting for
estimating the kinetic constants. However, for estimating
nonlinear models, it is required to deploy a nonlinear optimal
design to select the variable conditions for estimating the
constants of the model most accurately. Atkinson and Donev10

provided an excellent introduction to the theory of optimal
design for nonlinear models. Atkinson et al.11 presented
optimum designs for estimating the kinetics of a reversible
chemical reaction.

Because the fundamental model is a function of both the
controllable and the hard-to-control variables, we recommend
that the optimal design should contain both types of variables
in a combined array. The kinetic model is fitted to the data using

Y(x, z, �) ) η(x, z, �) + ε (1)

Y(x, z, �) ) aT� + ε
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Figure 1. Schematic diagram of robustness studies utilizing the kinetic or
fundamental model.
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an appropriate numerical routine for estimating the constants
of the model. For kinetic experiments and model fitting, it is
assumed that all of the variables that govern the process are
fully controllable and therefore fixed. This is so because the
first objective of such a study is to develop a kinetic model
that can represent the fundamentals of the process. When this
is done, experiments can be conducted with the model by
running the computer code. The focus of this Article is not about
model fitting but rather on how to use the kinetic model for
process robustness studies.

Consider the model in (1) to be an accurate representation
of the true fundamentals of the process under study; that is,
model 1 is a nonlinear model or system of nonlinear equations,
which is governed by controllable variables x and hard-to-control
variables z. The kinetic constants are � ) (�1, �2,..., �p)T.
Assume, as before, the mean and variance-covariance matrix
of the hard-to-control variables, z, during normal operation are
equal to µz and Sz, respectively, with E(zi) ) µzi

and Var(zi) )
σzi

2, CoV(zi, zj) ) σzizj
, i * j ) 1,..., s. For robustness studies, the

kinetic model 1 is approximated through a second-order Taylor
series expansion about the means of the hard-to-control variables
µzi

. That is,

From eq 3, the expected value of the model over the prior
distribution of z can be approximated by:

where ∂Iz(x, z, �) is the vector of second-order derivatives of
the model to the hard-to-control variables z. From approximation
3 and expectation 4, the second-order variance approximation
of model 1 over the prior distribution of z can be specified as

The constants �u are replaced by their estimates bu, u )
1, 2,..., p, and σ2 is replaced by its estimate σ̂2, for the predicted
kinetic model. Therefore, two response models are constructed,
that is, the mean response model and the variance response
model, for conducting process robustness studies. The predicted
kinetic model Ŷ(x, z, �) in eq 1 is used for the mean response
model, and the variance function in eq 5 is used for the predicted
variance response model. The aim is to evaluate the effect of
the variability in the hard-to-control variables on the model
outputs for determining robust process conditions.

The kinetic model represents the system or process under
study, and the variance response model represents the transmit-
ted variability through the system due to the variability in the
hard-to-control variables. Therefore, we recommend the use of
the design and analysis of computer experiments for robustness
studies on kinetic models. This methodology is deployed to
sample the computer code and to construct approximation
models of the mean response and the variance response as
functions of the process variables. Lehman et al.12 presented
the design of computer experiments to determine robust variable

conditions when uncontrollable variables are present in the
system. They construct computer experiments by simulating
random outputs or responses, and calculating the variance
thereof, from the computer experiments based on a random
distribution of the uncontrollable variables.

In contrast, we construct the variance function from the kinetic
model directly and perform computer experiments on the
variance model to determine robust control variables. The
variance model is also considered to be deterministic and
therefore permits the application of known computer experi-
ments for sampling the computer code and for constructing the
approximation models for the input-output relationships. It has
a further advantage in that dual or multiple response surface
optimization can be performed with the approximation models.
We illustrate by way of two examples that the methodology
presented in this Article is very efficient and easy to use for
performing process robustness studies with the design and
analysis of computer experiments.

Computer Experiments

Designs for Computer Experiments. Computer models are
used extensively to predict the performance of real life complex
engineering systems. However, these analyses may result in high
computational costs, which limit their use in reliability analysis
and design optimization. Therefore, the design and analysis of
computer experiments were developed to reduce the computa-
tional expense of performing such computer analysis by
providing a methodology for the sampling of the computer code
and constructing approximation or surrogate models of the
input-output relationships.13 The approximation models are
then used in lieu of the original analysis or simulation code,
facilitating the exploration of the design space, optimization,
and reliability analysis.7

The design and analysis of computer experiments were
developed from the methodology of the design and analysis of
physical experiments. However, the theory of the design of
experiments (DOE)14 and response surface (RS)15 are based on
the fact that an observation in a physical experiment is affected
by variability due to the effect of a number of independent
factors and random variability. In contrast, computer experi-
ments are deterministic and yield the same result from repeated
runs.

Therefore, space filling experimental designs are employed
for computer experiments. Latin hypercubes, orthogonal arrays,
and uniform designs (UD) are examples of different types of
space filling designs.16 Since uniform designs were introduced
in the early eighties by Fang,17 it became very popular. The
design points of a uniform design are uniformly scattered on
the experimental domain. It is a type of fractional factorial
design with an added uniformity property. According to Fang
and Lin,16 the uniform design is superior to other designs
because many other design criteria are simultaneously optimized
together with minimization of the uniformity property.

A big advantage of uniform designs is that less information
is required of the underlying model. A large number of different
uniform designs are available at the Web site developed by Fang
et al.,18 and they are specified by the notation Un(qs), where U
stands for UD, n is the number of runs, s is the number of
factors, and q is the number of levels. See Fang and Lin,16 Fang
et al.,19 for the theory and application of uniform designs.
However, other designs, such as the CCD and D-optimal
designs, may also be employed for performing computer

Y(x, z, �) ) η(x, µz, �) + ∑
i)1

s

(zi - µzi
)(∂η

∂zi
)

+∑
i)1

s

∑
j)1

s
1
2

(zi - µzi
)(zj - µzj

)( ∂
2η

∂zi∂zj
) + ε

(3)

Yµ|z(x, z, �) ) Ez(Y(x, z, �))

) η(x, µz, �) + 1
2
∂Iz(x, z, �)TSz∂Iz(x, z, �)

(4)

Yσ|z(x, z, �)2 ) Varz(Y(x, z, �))

) E(Y(x, z, �) - Yµ|z(x, z, �))2

≈ Iz(x, z, �)TSzIz(x, z, �) + σ2

(5)
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experiments, although they were developed specifically for
physical experiments and response surface modeling.15

Statistical Approximations of Computer Experiments

Statistical Modeling. To construct approximations of com-
puter codes, statistical techniques are required: (a) choosing an
appropriate experimental design to sample the computer analysis
code, (b) choosing a model to describe the input-output
relationships, and (c) fitting the model to the data.8

Response surface (RS) modeling of the form 2 can be used
as an approximation method.15 With “traditional” DOE, random
variation is accounted for by replicating experiments and by
spreading the sample points out in the design space. Because
deterministic experiments lack random error, the “classical”
notions of blocking, replication, and randomization are ir-
relevant; thus sample points should be chosen to fill the design
space.20 Therefore, a more appropriate method for approximat-
ing deterministic computer experiments might be the use of
Kriging, which is an exact interpolation or “smoothing” of the
data, and, consequently, its validity will not depend on the
existence of random error. Kriging is discussed in detail in
the next section.

Suppose that nt number of points is sampled from the design
space in the controllable and hard-to-control variables R )
(Rx, Rz) according to the experimental design for the computer
code. The second-order response surface model is of the form
2, and the least-squares estimation produces the estimates b of
� from:

where X is the matrix of nt sampled data points expanded to
contain all of the terms in the second-order model. Note that
the matrix X contains linear functions of the controllable and
hard-to-control variables. Furthermore, dual response surface
models are constructed, that is, one for the mean response and
one for the variance response. Therefore, we obtain estimates
bµ from the approximation model of the mean response, and bσ

from the approximation model of the variance response.
Polynomial response surface models can be easily constructed
and allow quick convergence of noisy functions for optimization.

Kriging. Kriging is an interpolation technique that was
originally developed in the field of geostatistics. Sacks et al.20

initiated the application of Kriging to the design and analysis
of computer experiments where it postulates a combination of
a regression part and a stochastic part:

In eq 7, x are the design variables, y(x) is the unknown
response function, f(x) is the known (usually polynomial)
regression function of x, and Z(x) is the realization of a stochastic
process with mean zero, variance σ2, and nonzero covariance.
While f(x) approximates the design space, Z(x) creates “local-
ized” deviations or departures so that the Kriging model
interpolates the nt data points.

In this Article, the design variables consist of controllable
variables x and hard-to-control variables z. Therefore, eq 7 can
be rewritten as y(w) ) y(x, z). The change in notation is
necessary to emphasize the study in two types of design
variables. Furthermore, we will fit dual Kriging models: one
for the mean response yµ(w) and one for the variance response
yσ(w). However, in the discussion that follows, we will omit
the subscripts because the estimation procedure is the same for
both responses. The covariance matrix of Z(w) is given by:

where R is the correlation matrix, and R(wi, wj) is the correlation
function between any two of the sampled nt data points wi and
wj. R is a (nt × nt) symmetric matrix with ones along the
diagonal. The correlation function R(wi, wj) needs to be specified
by the user. Several correlation functions can be used and are
discussed by Sacks et al.20 Throughout this Article, the Guassian
correlation function 9 is employed:

where nd is the number of design variables, θk are the unknown
correlation parameters used to fit the model, and wik and wjk are
the kth components of sample data points wi and wj.

Predicted values of the response y(w) at untried values of w
are given by:

where y(w) is the column vector of length nt, containing the
sample values of the response, and f(w) is a column vector with
the same length that is filled with ones when f(w) is taken as a
constant. In (10), rT(w) is the correlation vector between an
untried w and the sampled data points {w1, ..., wnt

} and is defined
as:

�̂ in eq 10 is estimated using eq 12:

The variance (σ̂2) between the underlying model �̂ and y is
estimated as:

The maximum likelihood estimates (MLEs) of θk in eq 9 used
to fit the model are found by maximizing eq 14:

Any values for θk will create an interpolative model, but the
“best” Kriging model is found by solving the k-dimensional
unconstrained nonlinear optimization problem given in eq 14.8

Simpson et al.8 state that Kriging models have found limited
application in engineering design, perhaps because of the lack
of readily available software, the added complexity of fitting
Kriging models, or the additional effort to use these models.
Prediction with a Kriging model requires the inversion and
multiplication of several matrices as compared to response
surface models where prediction only requires the computation
of a simple polynomial equation once the model has been fit.

Simpson et al.8 made a comparison between response surface
and Kriging models for the multidisciplinary design of an
aerospike nozzle, which consists of a computational fluid
dynamics model and a finite-element model. The RS and Kriging
approximations yielded comparable results with minimal dif-
ference in predictive capability. Simpson et al.7 compared four
approximation model types in terms of their capability to
generate accurate approximations for two engineering applica-

b ) (XTX)-1XTY (6)

y(x) ) f(x) + Z(x) (7)

CoV[Z(wi), Z(wj)] ) σ2R([R(wi, wj]) (8)

R(wi, wj) ) exp[-∑
k)1

nd

θk|wik - wjk|
2] (9)

ŷ(w) ) �̂ + rT(w)R-1(y(w) - f(w)�̂) (10)

rT(w) ) [R(w, w1), R(w, w2), ..., R(w, wnt
)]T (11)

�̂ ) (f(w)TR-1f(w))-1f(w)TR-1y(w) (12)

σ̂2 ) (y(w) - f(w)�̂)TR-1(y(w) - f(w)�̂)
nt

(13)

-
[ns ln(σ̂2) + ln|R|]

2
(14)
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tions with typical engineering behaviors and a wide range of
nonlinearity. They found that the Kriging and radial basis
function models tend to offer more accurate approximations over
a wide range of DOE types. Second-order response surfaces
yielded average results and performed particularly well when
approximating low-order nonlinear functions.

Error Analysis of Response Surface and Kriging
Models. Because the approximation models interpolate the
sample data, additional validation points are collected in the
design variables’ ranges to assess the accuracy of each ap-
proximation model over the region of interest. For each set of
validation points, the error is defined as the difference between
the actual response from the computer analysis and the predicted
value from the RS or Kriging model. We define the root-mean-
square error as:

where ne is the number of additional validation points. The rmse
provides a good estimate of the “global” error over the region
of interest.7

Example 1: The Branin Function. Lehman et al.12 presented
the design of computer experiments to determine robust variable
conditions when uncontrollable variables are present in the
system. They developed a sequential algorithm for the construc-
tion of designs by simulating random outputs or responses, and
calculating the variance thereof, from the computer experiments
based on a random distribution of the uncontrollable variables.
Lehman et al.12 used the Branin function21 to illustrate their
M-robust design, that is, maximizing or minimizing the mean
response 4 subject to a limit on the variance function 5 (see
criterion (22) of example 2). In this section, we also use the
Branin function to first prove the reliability of the proposed
methodology.

The Branin function is defined as:

The true response function has four inputs and is defined to
be

with (x1, x2) being the control variables defined on the range
[-5, 10] × [0, 15], and (x3, x4) are the hard-to-control or
uncontrollable variables defined on the range [-2, 1, 4, 7] ×
[3.75, 7.5, 11.25]. The joint distribution of the uncontrollable
variables is given in Table 1 of Lehman et al.12 The aim is to
determine the control variable settings that minimize yµ|(x3,x4)

subject to yσ|(x3,x4) e 100.
The joint distribution of the uncontrollable variables was used

to calculate the Var(x3) and Var(x4), whereas CoV(x3, x4) is equal
to zero. Equation 5 was used to calculate yσ|(x3,x4)

2 . Figures 2 and
3 depict the true yµ|(x3,x4) and yσ|(x3,x4), respectively.

The U52(44) uniform design was used to sample the computer
codes for both the yµ|(x3,x4) and the yσ|(x3,x4)

2 functions. A cubic RS
model was fitted to the data and validated using a grid of 81
data points in the design ranges of the four variables. The rmse
was equal to 9.207 and 5.520 for the yµ|(x3,x4) and yσ|(x3,x4)

approximation models, respectively. Clearly, the cubic models
constructed on the data from the uniform design provide very
accurate predictions of the original mean and variance functions.

Robustness studies can now be performed by determining
the variables’ settings for minimum yµ|(x3,x4), which are robust
against the variability in the uncontrollable variables. Figure 4
depicts the feasible area in x1 and x2 for yµ|(x3,x4) < 17.205 and
yσ|(x3,x4) < 100 obtained from overlaying contours of the cubic
RS models. Note that the true optimum value in (x1, x2) )
(π, 2.275) is contained in the feasible area.12 Therefore, similar
results were obtained by utilizing the methodology of statistical
robustness studies and the design and analysis of computer
experiments. This example clearly illustrates that optimum
variable conditions can be obtained by applying the methodology
presented in this Article for nonlinear or kinetic models.

Example 2: Ethoxylation of Ethylene Glycol. Reactor
Modeling. Ethoxylation and propoxylation are extensively used
by industry to produce products such as polypropylene glycols
and polyethylene glycols that are largely used as chemical
intermediates, lubricants, and components for cosmetic formula-
tions. Ethylene glycol oligomers are formed by reacting EG with
ethylene oxide (EO). Di Serrio1 published a kinetic model for
predicting the reactions and selectivities for an ethylene glycol
process. The ethoxylation of ethylene glycol (EG) has been
selected as a test problem for applying the methodology of

Table 1. Estimated Rate Constants for the Reactor Model

constant ln A [cm3/mol/min] B [kcal/mol]

k0 37.5 ( 2.6 21.7 ( 1.9
k 28.0 ( 1.4 15.8 ( 1.1

rmse ) �∑
i)1

ne

(yi - ŷi)
2

ne
(15)

z(w1, w2) ) (w2 - 5.1

4π2
w1

2 + 5
π

w1 - 6)2
+

10(1 - 1
8π) cos(w1) + 10 (16)

y(x1, x2, x3, x4) )
1

30
z(x1, x2)z(x3, x4) + (x1 - π)2 (17)

Figure 2. Surface plot for yµ|(x3,x4).

Figure 3. Surface plot for yσ|(x3,x4).
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robustness studies and for comparing the predictive capability
of RS and Kriging models.

Although many more examples of determining kinetic models
and estimating the parameters thereof exist in the literature,22-26

the ethoxylation of EG was selected because the reaction
mechanisms and the kinetic constants are published.1 The kinetic
model is nonlinear for which no analytical solution can be
obtained. The model contains all of the characteristics of reactor
modeling and analysis in the chemical industry and could
therefore be used to illustrate the application and advantages
of statistical robustness studies for kinetic models.

The reactor is modeled as an ideal plug flow reactor. Because
the selectivities of the different products are temperature
dependent, an option is included in the reactor to limit the
maximum temperature increase by adding intercoolers as needed
along the reactor length. This results in a sawtooth temperature
profile that varies between the reactor inlet temperature and the
specified maximum temperature.

The kinetic equations are integrated numerically using a fifth-
order adaptive step Runge-Kutta method with Cash-Carp
coefficients.27 During integration, the temperature increase is
calculated using heats of formation for the different components
in the reactor. If a limit on the maximum temperature increase
above the feed temperature has been specified, the temperature
profile is monitored during integration until the difference
between the current temperature and inlet temperature is
exceeded. Linear interpolation is then used to calculate the
location where the limit is exceeded, and the temperature is
reset to the inlet temperature.

The inputs or design variables required to solve the model
are: (1) inlet temperature (T(K)), (2) optional maximum tem-
perature increase (∆T(K)), (3) EG:EO feed ratio (EG:EO), (4)
catalyst concentration (CC(mol %)), and (5) EO fractional
conversion (%).

The model output included selectivities to DEG, TEG, heavies
(components heavier than TEG), and the time to reach the target
ethylene oxide conversion. For the linear approximation of the
variance function 5, numerical derivatives of the outputs with
respect to all input variables except EO fractional conversion
were calculated using a perturbation of 1 K for inlet temperature
and maximum temperature, 0.1 for the EG:EO ratio, and 0.001
mol % for the catalyst concentration. Numerical derivatives of
the output with respect to the kinetic parameters were also
calculated by perturbing the parameters by 1%, respectively.

Kinetic Modeling. The catalyzed oligomerization of EG with
EO can be represented as follows:1

The cation of the catalyzed species can migrate to different
hydroxyl groups via proton transfer. This is assumed to occur
fast and is modeled as equilibrium reactions. The concentrations
of all of the ionic species in solution can be calculated as
follows:

The kinetic expression for reaction 18 is given by:

The changes in composition of the different components with
time are given by:

Figure 4. Feasible area for yµ|(x3,x4) < 17.2 05 and yσ|(x3,x4) < 100 (feasible area in black).

HOCH2CH2(EO)iO
-K+ + EO f

HOCH2CH2(EO)i+1O
-K+, i ) 0, 1, ... (18)

[HOCH2CH2(EO)iO
-K+] )

[HOCH2CH2(EO)iOH]C0

[HOCH2CH2OH] + Ke ∑
j)1,2,...

[HOCH2CH2(EO)jO
-K+]

,

i ) 0, 1, 2, ... (19)

ri ) ki[HOCH2CH2(EO)iO
-K+][EO], i ) 0, 1, 2, ...

(20)
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Equations 19-21 describe the change in composition under
reactive conditions with time. Because the conditions investi-
gated in this work typically favor shorter oligomers, only
reactions up to i ) 3 were simulated. The catalyst equilibrium
coefficient in eq 19 is Ke ) 3.5, assuming that all of the ki in eq
20 are constant and denoted by k. The rate constants were
assumed to follow an Arrhenius temperature dependency, that
is, k ) A exp((-B)/(RT)). The estimated kinetic constants
together with their standard errors are depicted in Table 1.1

Application of the Design and Analysis of Computer
Experiments to the Reactor Model. Computer Experi-
ments. We applied the design and analysis of computer
experiments to the kinetic model and the variance function of
the model to sample the analysis code and to construct
approximation models for the ethylene glycol process discussed
in the previous section. We selected five different experimental
designs to evaluate as alternatives for collecting the sample data
points and for constructing the RS and Kriging models. The
five designs are: (a) face centered central composite (CCD FC),
(b) D-optimal design, and the following uniform designs: (c)
U32(44), (d) U24(44), and (e) U30(34). Note the classical CCD
FC and D-optimal designs were also evaluated in this study
because they are very popular and well-known experimental
designs in industry. Therefore, their ability in generating accurate
approximation models was compared to that of the space-filling
designs.

Experimental designs were constructed in the following four
variables: inlet temperature (T), temperature increase in the
reactor (∆T), alcohol ratio (EG:EO), and catalyst concentration
(CC). Temperature was varied between 393 and 423 K, ∆T
between 5 and 60 K, EG:EO ratio between 5 and 7, and CC
between 0.01 and 0.10 mol %. The selectivities of the products
as well as the derivatives for calculating the variance model
were obtained numerically as discussed in the previous section.

Approximation Models. The kinetic model predicts selectiv-
ity for the products DEG, TEG, and heavier components, which
constitute the full product composition. Because the desired
product is DEG, we evaluated the results in terms of the DEG:
TEG ratio. Therefore, the aim is to determine the optimum or
desired variable conditions, which yield high DEG:TEG ratio
and simultaneously minimizes its variance transmitted through
the kinetic model due to the variability in the hard-to-control
variables.

Second-order RS and Kriging models were constructed for
the selectivity to the product ratio (DEG:TEG), as well as for
the square root of the variance function, that is, the standard
deviation (SD) of the selectivity to the product ratio (DEG:
TEG). For this example, we assumed that all of the design
variables, that is, inlet temperature (T), temperature increase in
the reactor (∆T), alcohol ratio (EG:EO), and catalyst concentra-
tion (CC), may be hard-to-control variables during normal
operation. From experience, values for Var(T), Var(∆T), and
Var(EG:EO) were assumed to be 25 K, 25 K, and 0.1,
respectively. Var(CC) was assumed to be negligibly small. The
variance function was calculated using eq 5 and by incorporating
the variability of all of the design variables.

Note these variables are considered to be hard-to-control to
illustrate the robustness concept. However, in practice it is not
unreasonable to experience temperature fluctuations on an actual

production plant due to changing ambient conditions, for
example, a rain shower, poorly tuned control loops, fluctuating
utility conditions, etc. The temperature increase in the reactor
will be more difficult to control, specifically the inlet temperature
to a heat exchanger. The reactor design selected for the example
consists of pipe sections connected to heat exchangers. There-
fore, once the reactor is built, the inlet temperature to the heat
exchanger is fixed by the length of the pipe and the extent of
the reaction up to the heat exchanger. If the reaction rate or the
volumetric flow rate on the plant is different from design, then
the adiabatic temperature rise before the heat exchanger will
be different from design.

The parameter estimates were obtained through least-squares
estimation on R28 for the RS models. “DACE”,29 Design and
Analysis of Computer Experiments, is a Matlab30 toolbox for
estimating Kriging models. Matlab was used to construct
Kriging approximation models based on the same sample data
points used to fit the RS models. The data were modeled using
a constant term for the global model 7 and a Gaussian correlation
function, eq 9, for the local deviations or departures determined
by the correlation matrix, R in eq 9.

A grid of 34 ) 81 data points in the four variables’ design
ranges was used for the validation of the RS and Kriging models.
The rmse for the five experimental designs are summarized in
Table 2, for the product ratio, DEG:TEG, and the SD of the
product ratio, SD(DEG:TEG), respectively. The Kriging and
RS approximations yield comparable results with minimal
difference in predictive capability for all of the designs
evaluated. Based on this example, the U30(34) uniform design
is superior in terms of its predictive capability for both the DEG:
TEG ratio and the SD. The face centered CCD yielded very
similar results as compared to the U30(34) design for the DEG:
TEG selectivity ratio, but is much worse, that is, about 90%, as
compared to the U30(34) design for the SD of the DEG:TEG
ratio for both the RS and the Kriging models. The D-optimal
design also performs very poorly as compared to the uniform
designs for the SD of the DEG:TEG ratio, but performs better
than the U32(44) and U24(44) designs for the DEG:TEG ratio.
This seems to suggest that the four-level uniform designs do
not perform well in computer experiments and in prediction
with approximation models for the specific example. In sum-
mary, the U30(34) design outperforms the other designs and is
therefore used for the robustness study discussed in the next
section.

Robustness Study. The aim of process robustness studies is
to determine settings of the design variables for which the
outputs or products are insensitive to the variability transmitted
to the outputs from the variables that are hard-to-control during
normal operation. We evaluate the robustness of the process
through the kinetic model, which is governed by the variables
T, ∆T, EG:EO ratio, and CC. We assume that all of the design
variables may be hard-to-control and determine the operating
conditions that result in the most sustainable output, or smallest
variability, of the DEG:TEG ratio and the heavier components

d[HOCH2CH2OH]

dt
) -r0

d[HOCH2CH2(EO)iOH]

dt
) ri-1 - ri, i ) 1, 2, ...

(21)

Table 2. Root-Mean-Square Error of Approximation Models for
DEG:TEG Ratio and the Standard Deviation, SD(DEG:TEG Ratio)

approximation models SD(DEG:TEG ratio)

design Kriging RS Kriging RS

CCD FC 0.43 0.46 2.63 2.62
D-Opt 0.67 0.67 1.66 1.66
U32(44) 0.92 0.86 0.33 0.53
U24(44) 1.20 1.20 0.32 0.32
U30(34) 0.31 0.45 0.25 0.27
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(S-Heavies). The RS model obtained with the U30(34) design is
used for the robustness study. The following points were
observed:

Figure 5 depicts the predicted contours of the SD of DEG:
TEG ratio as a function of T and ∆T. The SD reduces toward
lower temperatures and lower ∆T. For interpretation purposes,
EG:EO ratio and CC were fixed at their respective mean values.
The smallest predicted SD is 28% less than the largest predicted
SD, which indicates that there is a substantial amount of
variability transmitted to the product ratio DEG:TEG due to
the variability in T, ∆T, EG:EO ratio, and CC, at the specified
conditions. This result has a huge practical implication becuase
it quantifies the uncertainty, which can be used in the over design
of the reactor.

Figure 6 depicts the predicted contours of the DEG:TEG
selectivity ratio as a function of T and ∆T. High selectivities
are observed at high temperatures and high ∆T.

However, due to the dual responses, that is, mean and
variance responses, dual response optimization may be per-
formed. For example, the following engineering objectives may
be of interest:

where c is specified by the engineer. Figure 7 depicts the feasible
area for criterion (22) for c ) 2.32, but with a DEG:TEG ratio
greater than 40. The contour overlay plot indicates the most
sustainable operating area for minimizing the variability or
uncertainty due to the variability in T, ∆T, EG:EO ratio, and
CC, as well as maximizing the selectivity toward the product
ratio simultaneously, at the specified conditions. Notice that
these criteria are arbitrarily chosen for the current example. The
overlaying plots were created using Design-Expert.31

There are many dual response optimization criteria other than
(22) available in the literature that may be applied to robustness

studies for nonlinear models as discussed in this Article.32-36

However, this is left for a future publication; the main aim of
this Article was to present the methodology of process robust-
ness studies for nonlinear models.

A similar analysis was done for the product S-Heavies. The
overlaying of contour plots obtained from the different response
surface analysis often provides workable solutions for process
improvement and design. Figure 8 presents a feasible operating
area produced from overlaying different predicted contour plots
for the SD and selectivity of the different products. The feasible
area is for the following optimization criteria: maximize the
selectivity toward a product ratio range between [40, 50],
minimize the selectivity toward S-Heavies to be <0.0004%, and
minimize the SD of DEG:TEG to be <2.3223, and the SD of
S-Heavies to be <0.00003%.

Although these different criteria are chosen arbitrarily, it
indicates typical objectives that would be valuable to engineering
studies and design. Incorporating the standard errors of the
kinetic constants in Table 1 in the robustness analysis will affect
the feasible area obtained according to the different criteria.
Therefore, in practice, the standard errors of the constants can
be used to generate a confidence region at a certain confidence
level for the optimum variable settings, which optimize specific
design criteria in terms of performance and robustness.15

Furthermore, although it was not addressed in the current Article,
the uncertainty in the kinetic constants can also be used in
reactor design and development.2 However, the aim of the
current Article was to illustrate that statistical robustness studies
and development of robust processes form a very important part
of process design, development, and improvement.

Concluding Remarks

In this Article, we presented the methodology of statistical
robustness studies for nonlinear or fundamental models. It was

Figure 5. SD (DEG:TEG) as a function of T and ∆T for EG:EO ) 6 and CC ) 0.06.

Maxx,zYµ|z(x, z, �) subject to Yσ|z(x, z, �) e c (22)
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illustrated that process robustness studies can be utilized for
processes not only described by models that are linear in the
parameters, but also by models that are nonlinear in the
parameters, such as kinetic models. Statistical robustness studies
require the calculation of the variability transmitted to the
outputs of the process or system due to the variability or

uncertainty of the hard-to-control variables when the process
is operational. We illustrated the use of computer experiments
in combination with robustness studies and constructed ap-
proximation models for the mean response and the variance
response models. We showed that Kriging and RS models
perform similarly in terms of their predictive capability, but that

Figure 6. DEG:TEG selectivity ratio as a function of T and ∆T for EG:EO ) 6 and CC ) 0.06.

Figure 7. The feasible operating area for criterion (22) for c ) 2.32, but with a DEG:TEG ratio greater than 40 (feasible area in black).
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the uniform designs outperform the CCD and the D-optimal
design in the design and analysis of computer experiments.

The effective use of this methodology will result in quantify-
ing the variability or uncertainty effect that hard-to-control
process variables have on the outputs of processes during normal
operation. This methodology, which makes use of kinetic
equations, can lead to sustainable operating areas where the
variability effect will be minimized. The methodology also
enables interaction effects to be estimated. This is very valuable
because the interactions between variables are not always easily
identifiable from the form of the kinetic model. Interactions are
also important in evaluating sustainable operating regimes.

An additional practical implication of statistical robustness
studies is that it quantifies the convoluted effect of model
uncertainty and model input deviation. The calculated uncer-
tainty (SD) can then be used to over design equipment, rather
than just using rules of thumb or gut feel to estimate the over
design to incorporate. To effectively apply this analysis to real
world problems would require that the standard deviation in
process inputs be quantified. For instance, the EG:EO ratio in
the case study could be controlled by two controllers controlling
the flow rates of EG and EO to the reactor. The appropriate
standard deviation to use would depend on the type of control
equipment. Obviously, control equipment that allows tight
control would result in less uncertainty or variability in the
process; hence a smaller design contingency would be required.
A SD analysis could then be used to quantify the cost of over
design required versus different types of control systems, based
on a known process model.

Topics for research can be identified following the methodol-
ogy discussed in this paper. For example, the methodology, and
the advantages, of statistical robustness studies must be more
widely applied and published for engineering analysis and
design. Alternative experimental designs may be developed for
robustness studies, specifically, designs for dual response modeling

for nonlinear models and complicated systems. Dual response
optimization can be applied for robustness studies, and new
methods may be developed that are more efficient for multiple
optimization of responses generated from computer experiments.
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