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Abstract: Consider the common situation in many response surface applications. In the first stage, a 
two-level design and central point(s) have been conducted, and the analysis indicated that the curvature of  
the response surface is significant. In such a scenario, a second stage of  experiments is called for so that a 
second order model can be fitted. The problem of  constructing two-stage response surface designs with 
high efficiency is studied in this paper. The focus will be on the design of  experiment for the second stage. 
The appropriateness of  the well-known D-optimal criterion for designing the second stage experiments is 
first discussed. A new criterion, C-optimality, is then proposed to find design points in the second stage, 
given the points in the first stage. The proposed criterion is a weighted sum of  efficiency measures from 
four subsets of  parameters in a second order model. By selecting suitable weights, one can construct 
two-stage response surface designs with evenly high estimation efficiencies for all the parameters. A 
construction algorithm is then introduced. The superiorities of new designs are demonstrated by a 
thorough comparison with existing designs. 

Keywords: Central composite design, D-efficiency, response surface design, second order model. 
______________________________________________________________________ 

1. Introduction 

pharmaceutical company had been working on finding the best production condition 
to increase the productivity of  penicillin. The target quantity (response variable) is the 

productivity of  penicillin measured in kilogram per hour. Four variables (fermentation time, 
fermentation temperature, percentage of  starch in the culture stuff, and Stirring speed) are 
considered to influence the productivity of  penicillin in a complicated way. For example, 
high fermentation temperature and high percentage of  starch in the culture stuff  speed up 
the production of  penicillium mold which secrete penicillin. However, high density of  
penicillium mold restrain the secreting of  penicillin. Hence, the temperature and percentage 
of  starch should be controlled to keep the density of  penicillium mold at a suitable level. 
Long fermentation time certainly leads to increasing of the total amount of penicillin 
produced, but to decreasing of  the amount of  penicillin produced per hour since the ability 
of  penicillium mold for secreting penicillin decreases after some time. 

A

Since the experiment is costly and time-consuming, the engineer considered to 
conducting the experiment in two stages with a total of  at most 20 runs. In the first stage, 
she had used the two-level eight-run IV

4 12 −
 fractional factorial, together with four replicates 

of  the central point, i.e., the point with all the variables at intermediate level. After the first 
stage of the 12 runs, all the four variables had been found significant, and so did the curvature 
of the response surface. 

The engineer had then decided to conduct eight more runs in the second stage 
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experiment to fit a second order model  

2
0( ) ,i i ij i j ii i

i i j i
E y x x xβ β β β

<
= + + +∑ ∑ ∑ x                      (1) 

, iy x s′E y( )  is the expectation of the response variable where  are the production condition 
variables, and sβ ′  are parameters to be estimated. The problem was: how can we plan the 
additional eight runs? Originally, she had considered to use the eight “face points”, i.e., the 
points with one variable at low or high level and the others at intermediate level. But after a 
verification, she found that the parameters for the cross-product terms in the model would 
not be identifiable in such designs. It is desirable that the experimental runs in the second 
stage must be able to offer information on the cross-product terms. Furthermore, since the 
experiment is to be conducted in two stages, the experimental runs can only be randomized 
in each stage. So a blocking factor  z 0=(z 1=  when the run is in the first stage, and z  
when the run is in the second stage) should be considered in the second order model. Thus the 
model becomes 

2
0( ) .i i ij i j ii i

i i j i
E y x x x x zβ β β β

<
= + + + +∑ ∑ ∑ γ                   (2) 

Under such a model, we offer the optimal design for the second stage, given the design 
points in the first stage (typically a two-level fractional factorial design with center points). 
Two principles to be considered are the model identifiability and the estimation efficiency. 
This paper is organized as follows. A new criterion for two-stage response surface design is 
proposed in Section 2. An algorithm for the construction of two-stage response surface 
designs based on the new criterion is described in Section 3. These newly constructed designs 
are then compared with other related designs in Section 4. Conclusion remarks are given in 
Section 5. 

2. Construction of Two-Stage Response Surface Designs 

An important concern in the construction of experimental designs is the trade-off  
between estimation efficiency and run size economy. Run size is typically limited by real-life 
considerations, such as budget or time. For a given run size, the optimal design can be 
constructed via maximizing certain optimality criteria, such as estimation efficiency. In this 
paper, we discuss the problem of  constructing two-stage designs for second order response 
surface analysis based on the following practical considerations: 

(i) In the first stage, a two-level fractional factorial with N1  points is employed, 
accompanied by N0  central point replicates (for significant tests of  main effects 
and finding potential curvature of  the response surface). 

N N1 +(ii) Given the 0  points in the first stage, N2  design points are to be selected at 
the second stage, for fitting a second order model. These N2  points (most likely 
with three-level) for the second stage should be selected to obtain the highest 
estimation efficiency based on certain criterion. 

Assume that  is the response variable,  are continuous variables considered 
to influence the response, and a cubic experimental region is standardized to  The 
second order model (1) has a total of 

1,..., kx x

( 2)p k

y
[ 1,1] .k−

= ( 1) / 2k+ +  parameters. But since the 
experimental runs cannot be conducted in a completely random order in a two-stage 
experiment, Model (1) should be replaced by Model (2), in which a blocking parameter is 
involved. The empirical model for Model (2) can be written in a typical vector-matrix form: 
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( ) ,E Y Xβ=  where  is the  of observed responses, Y -vectorN β  is the  of  
parameters,  is the  model matrix with each row corresponding a run. The 
least squares estimator of the parameter vector is 

( 1)-vectop + r
N p× ( 1)+X

1ˆ ( )X X X Yβ −′ ′= ,  with variance-covariance 
matrix proportional to  1.−

N

( )X X′

1) /+
The most well-known and popularly used design criterion is probably the D-efficiency, 

defined as  (the larger, the better). An implicit assumption for D-criterion 
is that all parameters are equally important. As will be discussed below, this may not be 
appropriate for the two-stage design. When we use the D-criterion in the construction of  
two-stage response surface designs, the estimation efficiencies of  the parameters are often 
unevenly distributed, i.e., the parameters may be estimated with very different efficiencies. 
Note that different sets of  parameters influence the response surface in different aspects: for 
example, linear term parameters determine its center, cross-product term parameters 
determine its principal axes, and pure quadratic term parameters determine its shape, etc. 
Hence, any set of  parameters with low estimation efficiencies will distort an aspect of  the 
response surface greatly. Moreover, in the construction of  a two-stage response surface 
design, estimation efficiency may be required for some special set(s) of  parameters. For 
example, when a 

1/(| | pX

k m
V

D X= ′

2 −
 fractional factorial or a  full factorial is used in the first stage, all 

the parameters related to the linear and cross-product terms can be estimated with sufficient 
high efficiency in the first stage. Thus, the points in the second stage should be selected so 
that the parameters related to the quadratic terms can be estimated as accurately as possible. 

k2

To overcome these problems, here we propose a new criterion, called C-efficiency. To 
define C-efficiency, we divide the parameters in Model (2) into five groups. Group  
includes the constant term 

I
0β , ( , 1,...,i i kβ = ), group  includes the  linear parameters L k  

group  includes the  bilinear parameters B k k( 1− )/2 ( ,1ijβ ≤ )k ,i j< ≤  group  includes 
the  pure quadratic parameters 

Q
k ( ,iiβ 1,i , ),k=  and group  includes the blocking 

parameter 

b
,λ  which is a nuisance parameter. The model matrix  is also divided 

accordingly as  and  Define 
X

, ,I L ,BX QX .bXX X

− −
− − − −

′ ′ =
1/

1 1( ) ,
jk

j j j j jD N X X X X I L′ ′= −j jX X , j , , ,B Q          (3) j jX X

 is the complementary sub-matrix of j  in , jX k  is the number of  columns in where jX− X
.j jX D  measures the estimation efficiency of  the parameters in group j  for , , .,j I Q=  

cy is then defined as  
L B

The C-efficie

w w

n

, ,

QI L B ww w w
I L B QD D D ,C D=                           (4) 

where I L B  are nonnegative weights and I L B Q, Qw w w w 1+w w+ + = . In the definition 
of  the weights represent the importance of the parameter sets − more important 
parameter sets carry heavier weights. For different first-stage points, one can specify different 
weights to  The following specifications of  the weights are recommended. 

,C

C.

(i) Among the four sets of  parameters, set I is usually less important compared with 
other three sets, and hence we propose to set 0.Iw =  However, if the experimenter 
considers the intercept is as important as other parameters, positive weight  

can be used. 
Iw > 0

(ii) Since the pure quadratic parameters can not be estimated at all in the first stage, it 
is the most important to raise the estimation efficiency of  the parameter set  
Hence, we propose to set  to carry the largest weight. 

.Q
Qw
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(iii) When the first stage design is a two-level resolution III fractional factorial 
III

(2 )k m−
∗  

design, some linear parameters are confounded with bilinear parameters in the 
first stage, hence we propose to set 0, 1/ 4I L Bw w w= = =   and  1/ 2Qw = ;

k m2(iv) When the first stage design is a two-level resolution IV fractional factorial ( IV
− ) 

design, some bilinear parameters are confounded with each other in the first stage, 
hence we propose to set 0, 1/ 3I L Bw w w= = = 2 / 3;Qw = and  

(v) Finally, when the first stage design is a two-level resolution V fractional factorial 
 design or the  full factorial design, all the linear and bilinear parameters 

can be estimated in the first stage, hence we propose to set 
(2 )k m

V
− k2

0,I L Bw w w= = =  and 
. Qw 1=

N N1 +Given a set of 0  first-stage points and a set of  weights,  the  
value is maximized in selecting 

C, , ,I L B Qw w w w ,
 second-stage points. N2

3. Construction Algorithm 

Many algorithms have been proposed in the literature for the construction of  designs 
by improving a pre-specified criterion iteratively. Basically, these algorithms are either 
row-wise exchanging or column-wise exchanging. Here a row represents a point (a run), 
and a column represents the coordinates of  a variable in the design. Let  denote a design 
involving  variables and 

d
k N  runs, produced after a step in the computational process. A 

row-wise exchange algorithm improves  in the next step by exchanging one or several 
row(s) in it, while a column-wise algorithm does the job by exchanging one or several 
columns. Typical row-wise exchange algorithms are introduced in Fedorov [5], Cook and 
Nachtsheim [3], and Johnson and Nachtsheim [7]. 

d

In the construction of  two-stage RSD's, we tried the two types of  algorithms: both the 
row-wise exchanging and column-wise exchanging algorithms. In our cases, the N1  
two-level points and N0  central points from the first stage are fixed, so an improved 
procedure is only processed to find the N2  points for the second stage. Here we prefer the 
column-wise algorithms over row-wise algorithms, for the following observations. Firstly, it 
is sometimes desirable to have the symmetric property, namely, the proportions of  the three 
levels,  in the { 1, 0, 1},− + N  runs are the same for all the  variables so that the 
parameters can be estimated with equal efficiencies. Such a symmetric condition can be 
easily integrated into the column-wise algorithms, but is difficult for the row-wise algorithms. 
Secondly, for a column to be improved, instead of exchanging it by another candidate column, 
the pair-wise exchanging strategy exchanges two different elements of this column repeatedly 
until the best improvement of  the design criterion is achieved. The pair-wise exchanging 
strategy replaces the column to be exchanged by selecting a column from a subset of  the 
candidate columns, and hence, significantly reduces the computational time. Moreover, in 
the pair-wise exchanging strategy, the symmetric condition mentioned above is naturally 
kept, provided that the condition is satisfied in the original design. For more details of  
pair-wise exchanging strategy, see Li and Wu [8]. Finally, we found that column-wise 
algorithms cooperated with a pair-wise exchanging strategy are much faster than row-wise 
algorithms in finding good RSD's. Usually, a row-wise algorithm requires twice or three 
times of  computation time to obtain an equally good design as a column- wise algorithm 
does. 

k

A column-wise algorithm is performed for 300 to 500 randomly selected initial designs, 
for each of  which the criterion is improved iteratively. Let 1( ,..., )kd d d=  be a design to be 
improved, where j  is the -thjd  column; and the criterion to be optimized (maximized) be 

 Each iteration includes following steps: .C
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(i) Arrange the columns in an order (1) ( )  so that when ,..., kd d jd( )  is deleted, the  

value is the 

C
-thj  largest for the subdesign involving remaining  columns. 

Select the first  columns  as the columns to be exchanged for 
 

k 1−
m (1) ( ),..., md d

1 .m k≤ ≤
(ii) For (1)  using the pair-wise strategy iteratively on it so that  values are improved 

until no more improvement can be achieved. 
,d C

(iii) Repeat Step 2 for ( ) , 2,...,jd j m.=  

 After all the initial designs are optimized, there are usually more than one designs 
have the largest  value, among which one can be selected as the design to be used 
according to other considerations. 

C

In the procedure, when  only one column is exchanged in each iteration, while 
when  all the columns are exchanged in each iteration. For the case  the 
iterative process converges rapidly, but the chance of  obtaining an optimal design is small. 
While for the case  the iterative process converges too slowly for large  but the 
chance of  obtaining an optimal design is large. It is found that an intermediate  is a 
better choice to get a trade-off  between the two extreme cases. Li and Wu [8] recommend 
to use  in the construction of  supersaturated designs where  is large (e.g., larger 
than 20). In our experience, we recommend to use 

m 1=
1,m =

,k
m

m k=

m 5=

,m k=

k
m 3=  because  is usually less than 10 

in the construction of  RSD. Instead of  maximizing C directly, equivalently, we maximize  
k

log log log log log .I I L L B B QC w D w D w D w D= + + + Q

j

 

 Since  for 
1/1{| |/| |} jk

j jD N X X X X− ′′= , , , ,j I L B Q=  we have  

, , , , , ,
log log log| | log| |.j j

j j
j I L B Q j I L B Qj j

w w
C N X X X X

k k= =

′′= − + −∑ ∑  

X X| |′, , ,j I L B Q= Thus we need not to compute j  for  directly, but only compute D  

and | |j jX X′  for , , , ,j I L B Q=  consequently reducing the computation times by avoiding 

the computation of  an inverse matrix in each X X| |′.jD  Furthermore, the computation of  

can be further simplified. Let xX

X−

 be the submatrix in the model matrix  constituted by 
columns involving a factor with the linear column  which is to be substituted by another 
linear column  and let  be the complimentary submatrix of 

,X
,x

,y xX  in the original  
Note that 

.X
xX

,x
 consists of  columns, which are the linear column  the square 

column of  and the  bilinear columns involving  Then  
k +

k 1−
1 ,x

.x

1| | | || ( )x x x xX X X X X X X X X X X X−
− − − − − −
′ ′ ′ ′′ = − |.

|,
|

|,

 

 When column  is substituted by column  the first factor, |  in the above 
expression for the updated |  is kept unchanged, only the second factor is updated by 

z z  where 

X X− −
′,zx

X
X X′

) zX X−
1| (zX X X X X −

− − −
′ ′ ′− zX  is the submatrix in the updated  

constituted by columns involving the linear column  Hence, when a column  is 
updated by a column  we need not recompute the updated  but only 

,X
x.z

|X X′,z
)

|,
|1| (z z zX X X X X −

− − −
′ ′ ′−

( 1).k +
zX X−

| |

X , which is the determinant of  a square matrix of  order 
 Moreover, since, for each column to be exchanged in a column exchange procedure, 

there may be many pairs to be exchanged, the saving of  computation time is significant. 
The computations of j jX X′  for , ,j I L= ,B Q  can be simplified in the same way. 
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4. Comparisons 

Morris [9] compared four kinds of  response surface designs: central composited design 
(CC designs, Box and Wilson [1]); small composite designs (SC designs, Draper and Lin, 
[4]); augmented pairs designs (AP designs); and Box and Behnken designs (BB designs). 
The criteria he used are the generalized standard deviation,  and the generalized 
standard deviations for the three groups of  parameters:  for group  

,GLD
L ;LGLD BGLD

,D D
 for 

group  and  for group  These criteria are the inverse of  square root of   ,LQGLD;B .Q
,BD  and  respectively. The overall conclusion in Morris [9] is that CC design is the best, 

judged by  and 

,QD
GLD, LGLD ;BGLD  while judged by  AP and BB designs are equally 

best. 
,QGLD

Note that among these four types of  designs, the run sizes in the first stages are 
different. It is generally recognized that design with more runs is likely to have a higher 
efficiency. A design with higher resolution is likely to have higher estimation efficiencies for 
the linear and cross-product terms in Model (2). Hence it is not surprising that CC designs 
are always the best under the criteria of  and ,BGLDLGLD  simply because they include a 
resolution V  fractional factorial or even a  full factorial in the first stage. k m

V2 − k2

In this work we compare two-stage response surface designs constructed based on  

and  criteria respectively with three designs: HC designs (Hartley [6]), SC designs, and 
AP designs. These design are also known as “systematically constructed designs,” and they 
have the same two-level points, a single central point in the first stage, and the same total 
run number for the second stage. The number of  central point replicates certainly influence 
the estimation efficiency of a design. We include a single central point in each design to keep 
the design as small as possible. Since different types of  systematically constructed designs 
have different run sizes for a given  the comparisons are separated for these three types 
of  systematically constructed designs. 

D
C

,k

)N p=Minimal response surface designs (designs with the run size  can be used under 
model (1), but cannot be used under model (2), which has 1+p  parameters. Thus our 
comparisons are generally based on model (2) if  the designs are not minimal, but based on 
model (1) only if  the designs are minimal. 

In the comparisons, the weights  and  in  were selected differently 
for different situations as proposed at the end of  Section 2. The comparisons are presented 
in Table 1, in which the  

, ,I L Bw w w

,

, Qw C

,LD BD,D  and  values are compared. From Table 1, the 
following conclusions can be made. 

QD

(i) In all the cases, C-optimal designs have D-efficiencies almost as high as D-optimal 
designs, while the three types of  systematically constructed designs always have 
low D-efficiencies. 

(ii) D-optimal designs always have the highest  and  C-optimal 
designs have and D lmost as high as D-optimal designs, while 
the three types of  systematically constructed designs always have low -LD  

-eBD

-LD

encies

-efficiencies.BD
-LD  

es.  

-efficienciesB  

-eD

a
 and

fficienci
(iii) D-optimal designs have the lowest  In contrast, the three types of  

systematically constructed designs and C-optimal designs usually have higher 
 

ffici .Q

-efficiencies.QD
C(iv) The  criterion has a character of  spreading estimation efficiencies as evenly as 

possible. This is more evidently for larger 2.N  
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Table 1. Design comparison on various D -efficiencies. 

k  Design 1N  N  First stage Design w  D  LD  BD  QD  
HC,SC,AP .268 .182 .121 .193 

C-optimal .372 .480 .453 .113 3 
D-optimal 

4 11 ∗
−3 12

III
 1 1 1

(0, , , )
4 4 2

 

.385 .601 .550 .091 

HC,SC .272 .176 .211 .136 

C-optimal .393 .583 .575 .078 

D-optimal 

8 17 
4 12
III ∗
−  1 1 1

(0, , , )
4 4 2

 

.393 .583 .575 .078 

AP .306 .541 .242 .209 

C-optimal .435 .719 .546 .185 

4 

D-optimal 

8 37 
4 12IV
−  1 2

(0, 0, , )
3 3

 

.455 .827 .718 .128 

HC .387 .667 .593 .088 

C-optimal .427 .769 .664 .085 

D-optimal 

16 27 −5 12V  (0, 0, 0,1)  

.439 .735 .674 .082 

SC .218 .091 .163 .107 

C-optimal .402 .559 .543 .083 

D-optimal 

11 22 12-run PB 1 1 1
(0, , , )

4 4 2
 

.412 .677 .655 .060 

AP .307 .503 .262 .209 

C-optimal .444 .736 .549 .169 

5 

D-optimal 

8 37 5 22 IV
−  1 2

(0, 0, , )
3 3

 

.470 .810 .696 .120 

HC,SC .240 .069 .229 .082 

C-optimal .398 .441 .509 .074 

D-optimal 
16 29 

6 22
III ∗
−

 1 1 1
(0, , , )

4 4 2
 

.400 .451 .527 .059 

AP .279 .479 .201 .209 

C-optimal .422 .649 .481 .154 

6 

D-optimal 
8 37 

6 32 III
−  1 1 1

(0, , , )
4 4 2

 

.456 .716 .657 .081 

SC .183 .054 .155 .064 

C-optimal .354 .410 .431 .049 

D-optimal 
22 37 

6 22
III ∗
−

 1 1 1
(0, , , )

4 4 2
 

.370 .409 .476 .038 

AP .254 .494 .201 .209 

C-optimal .324 .385 .322 .095 

7 

D-optimal 
8 37 

6 32 III
−  1 1 1

(0, , , )
4 4 2

 

.385 .392 .467 .058 

SC .192 .053 .185 .050 

C-optimal .338 .295 .395 .046 

D-optimal 
30 47 36-run PB 1 1 1

(0, , , )
4 4 2

 

.357 .363 .441 .035 

AP .239 .526 .190 .224 

C-optimal .438 .668 .490 .191 

8 

D-optimal 

16 137 8 42 IV
−  1 2

(0, 0, , )
3 3

 

.531 .849 .761 .100 

SC .188 .035 .189 .041 

C-optimal .342 .273 .403 .037 

D-optimal 

38 57 40-run PB 1 1 1
(0, , , )

4 4 2
 

.347 .223 .426 .022 

AP .239 .526 .190 .224 

C-optimal .440 .696 .485 .189 

9 

D-optimal 
16 137 −8 52 III  1 1 1

(0, , , )
4 4 2

 

.546 .861 .793 .078 

SC .165 .030 .161 .035 

C-optimal .327 .232 .387 .024 

D-optimal 
46 67 48-run PB 1 1 1

(0, , , )
4 4 2

 

.346 .209 .414 .023 

AP .240 .511 .202 .223 

C-optimal .442 .698 .484 .179 

10 

D-optimal 

16 137 10 62 III
−  1 1 1

(0, , , )
4 4 2

 

.553 .832 .778 .073 
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From the comparison results, we can conclude that using of C-efficiency criterion in 
the construction of  two-stage RSD's offers a good balance between the global estimation 
efficiency and the even distribution of  estimation efficiencies among groups of  parameters. 
The proposed method for the construction of two-stage RSD's offers a convenience for 
experiment planners on how to design N2

D ,C

( )D s′

 points for the second stage, given the design 
points in the first stage. Two criteria −  and  can be used in selecting these design points 
in the second stage. As pointed out by one referee, the design efficiencies for quadratic 
coefficients Q  are rather low. This is due to the fact that the quadratic terms are typically 
confounded with the intercept for most second-order response surface designs. 

Consider the penicillin example introduced at the beginning. In this case  
and  The second order model (2) has 

14, 8k N= =
0 4.N = p 1 16+ =

3,

 parameters − one constant term, 
four linear terms, six cross-product terms, four pure quadratic terms, and one blocking term. 
Since the four central point replicates offers only one degree of  freedom, for Model (2), we 
will need the minimal of  points. Using the  and  criterion, we 
constructed designs with  and 24, respectively. For the  criterion, we use 
weights  and 

N2 16 8 1 7= − − =
2 8,16N =

1/ 3= 2 /qw

D C
C

IV
4 12 −0,I L bw w w= = =  since the first stage includes a  

fractional factorial in which the group of  linear parameters can be estimated with enough 
high accuracy. The efficiency qualities of  these designs are compared in Table 2, and the 
C-optimal designs with  which were recommended to the pharmaceutical engineer, 
are presented in Tables 3. From Table 2, we can see that the  efficiency increases with 

8,=N2

QD
N2  for both types of designs, but C-optimal designs have higher  values than D-optimal 
designs by about  to   

QD
10% 25%.

 
Table 2. Comparison C- and D-optimal RSD's. 

2N  Design  D LD RD QD **
Qr

-optimalC  .351 .538 .420 .087 
8 

-optimalD  .372 .544 .499 .079 
1.10 

-optimalC  .432 .689 .565 .154 
16 

-optimalD  .446 .789 .667 .122 
1.26 

-optimalC  .445 .739 .595 .170 
24 

-optimalD  .452 .802 .672 .136 
1.24 

      *: The first stage is 4 12 ,−
IV  4,k =  (0, 0, 1/3, 2 /3).w =  

:Q QD D QD      **: The ratio of   for C- optimal and  for D-optimal. 

 
Table 3. The second stage of  C- and D-optimal RSD’S for the 
penicillin experiment whose first stage design is a  
fractional factorial with four center points. 

IV
4 12 −

-optimalD  -optimalC  
1 1 1 1 1 1 1 1 
1 1 − 1 1 − 1 0 − 1 − 1 

− 1 − 1 − 1 1 1 − 1 0 1 
− 1 1 − 1 − 1 − 1 0 1 0 

0 − 1 1 − 1 0 0 1 − 1 
− 1 0 1 − 1 0 1 − 1 0 

1 1 0 1 0 − 1 0 1 
− 1 − 1 1 0 − 1 − 1 0 0 
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f
for su

5. Concluding Remarks 

Two-stage response surface design is very common and very useful. In this paper, we 
consider the case where the experimental region is a -dimensional cubic standardized to 

 the first stage experiment consisted of  two-level points and central point replicates, 
and the second stage experiment consisted of  three-level points. The second order models 
(1) and (2) are used. The problem we studied is how to select the second-stage points given 
the first-stage design points. 

k
[ 1,1] ,k−

A new criterion C or such a two-stage setting is proposed. Its log function is a weighted 
sum of log functions of -efficisD bsets of parameters. The weights can be 
selected to emphasize the importance of subsets of parameters. The criterion C  has an 
advantage over the well known criterion  in this case that the estimation accuracy can be 
evenly spread among the parameters. 

 

encies  

D

A column-wise exchanging algorithm with pair-wise exchanging strategy is also 
proposed and described in details. This algorithm is generally faster than row-wise 
exchanging algorithms, and has the advantage that the symmetric condition can be naturally 
kept in the computation process. 

Comparisons of  C-optimal RSD's with those able to be conducted in two stages under 
a fair base (in term of  identical number of  runs, etc) are presented. The comparisons show 
that C-optimal RSD's are better than other RSD's for the criterions  and  , ,L BD D D .QD
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