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Abstract: The first step in many applications of  response surface methodology is typically the screening 
process. Variable selection plays an important role in screening experiments when a large number of  
potential factors are introduced in a preliminary study. Traditional approaches, such as the best subset 
variable selection and stepwise deletion, may not be appropriate in this situation. In this paper we 
introduce a variable selection procedure via penalized least squares with the SCAD penalty. An algorithm 
to find the penalized least squares solution is suggested, and a standard error formula for the penalized 
least squares estimate is derived. With a proper choice of  the regularization parameter, it is shown that the 
resulting estimate is root n consistent and possesses an oracle property; namely, it works as well as if  the 
correct submodel were known. An automatic and data-driven approach was proposed to select the 
regularization parameter. Examples are used to illustrate the e�ectiveness of  the newly proposed 
approach. The computer codes (written in MATLAB) to perform all calculation are available through the 
authors for an automatic data-driven variable selection procedure. 

Keywords: Bayesian variable selection, penalized least squares, SCAD, supersatured design. 
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1. Introduction

any preliminary studies in industrial experimentation contain a large number of  
potentially relevant factors, but the number of  actual active effects are believed to be 

sparse. The variable selection (screening) process is typically the first step in many 
applications of  response surface methodology. It has received increasing attention recently. 
Traditional approaches, such as the best subset variable selection and stepwise deletion, 
may not be appropriate in this situation (Westfall et al. [18]). All-subset regression is typically
preferable to stepwise regression, but all-subset regression is extremely time-consuming and 
in fact may be infeasible in practice. 

M

Fan and Li [5] proposed a nonconcave penalized likelihood approach to selecting 
significant variables. Unlike stepwise variable selection and subset regression, their 
approaches delete insignificant variables by estimating their coefficients to be 0. Thus, their 
approaches estimate the regression coefficients and select significant variables simultaneously. 
This enables one to establish sampling properties for resulting estimates. From a theoretic 
point of  view, they showed that their approach possesses an oracle property with proper 
choice of  penalty function and regularization parameter; namely, the true coefficients that 
are zero are automatically estimated as zero, and the other coefficients are estimated as if  
the true submodel were known in advance. 

Building on the work of  Fan and Li [5], we introduce a variable selection procedure 
for analyzing experimental designs. Our approach can be directly implemented for cases in 
which the final (projective) design matrix is of  full rank. The design matrix for the full 
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model, however, is allowed to be singular. Our settings are different from those in Fan and 
Li [5], which focus on likelihood-based linear models and in which covariates are assumed 
to be random. In our settings, we have shown that the resulting estimate is root n consistent
and possesses an oracle property. We also propose an iterative ridge regression algorithm to 
find the penalized least squares solution. A standard error formula for the estimate is 
derived. This enables us to make statistical inference on the resulting model. An automatic 
data-driven approach to finding the tuning parameter is suggested. 

This paper is organized as follows. In Section 2, the method for variable selection via 
nonconvex penalized least squares is introduced. Section 3 discusses the issues related to 
practical implementation and derive a standard error formula for the resulting estimate. 
Section 4 summarizes the proposed procedure by an algorithm. In Section 5, we demonstrate 
the nonconvex penalized least squares methods by two examples – one is based on Plackett 
and Burman design and the other one is based on uniform design (Fang and Lin, [7]). 
Section 6 presents conclusions and discussions. 

2. Nonconcave Penalized Likelihood and Variable Selection 

Suppose that the observations (x  are independent and identically distributed 
samples from a population with the density 
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( , x )Tf y � . A form of  penalized likelihood is  

1 1

1
log ( , x ) (| |),

� �
�� �

n d
T

i i j
i j

f y p
n �� �

d ix p� �( )  is a penalty function and where  is the dimension of  , �  is a tuning 
parameter, which controls the model complexity. The penalty function is not necessarily the 
same for all coefficients. For example, one may wish to keep important factors in a 
parametric model and hence not be willing to penalize their corresponding coefficients. For 
simplicity of  presentation, we will assume that the penalty function is the same for all 
coefficients. Extension to the case with different penalty function is straightforward, however. 

Some penalty functions have been used in the literature. The  penaltyL2

p �
� � �� 2(| |) | | L1 p� �2 yields a ridge regression, and the  penalty � ��(| |) | |

L
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results in 
LASSO (Tibshirani [17]). More generally, the q penalty leads to a bridge regression (see 
Frank and Friedman [10]). The hard thresholding penalty, defined by � �(| |)

I� � � � �� � 	2 2(| | ) (| | ), Iwhere �( )

p� �(| |)
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 is an indicator function, was studied by Antoniadias 
and Fan [1]. The penalized likelihood estimate is a hard thresholding rule (Donoho and 
Johnstone [4]) when the observations are from an ordinary linear regression model with an 
orthonormal design matrix (Fan and Li [5]). 

Some conditions on  are needed for the penalized likelihood approach to be 
effective. In particular,  should be irregular at the origin, i.e., 
 � �

L
q �1

. Antoniadis 
and Fan [1] provide more insights into how to choose a penalty function from theoretic 
points of  view. A good penalty function should result in an estimator with the following 
three properties: unbiasedness for a large true coefficient to avoid excessive estimation bias, 
sparsity (estimating a small coefficient as zero) to reduce model complexity, and continuity to 
avoid unnecessary variation in model prediction. Necessary conditions for unbiasedness, 
sparsity and continuity have been derived by Antoniadis and Fan [1]. None of  the q ,
including  and 2, and the hard thresholding penalty function simultaneously satisfy 
these three mathematical conditions. 
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A simple penalty function that satisfies all the three mathematical requirements is the 

smoothly clipped absolute deviation (SCAD) penalty proposed by Fan and Li [5], and its 
first order derivative is defined by

� �( )
( 1)( ) ( ) ( )a
ap I I� �

� �� � � � � ���
�


 �  � �

� 2

,

�for some a  and � 0 . For simplicity of  presentation, we will use SCAD for all 
procedures using the SCAD penalty. Denote by �0 the true value of � , and let

� . Without loss of  generality, it is assumed that 0 10, , 0 10 20( ) ( , )T T T T
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 are not zero. Under some regularity conditions, the SCAD 
estimator possesses the following oracle property: With probability tending
to 1 , (i) ; and (ii) 1

1 10 1 10
ˆ( ) {0, ( , 0)}n N I� � ��� � 1 10( , 0)Iwhere � is the Fisher 

information matrix for �� �1  knowing 2 0

a � 3.7 L2 L1 L0.5
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(see Fan and Li [5]). 

From a Bayesian point of  view and simulation comparisons, Fan and Li [5] suggested 
that . This will be used throughout this paper. Figure 1 depicts the , , 
and SCAD penalties. From Figure 1, it can be seen that all penalties but the  penalty 
are singular at the origin. In fact, this is a necessary condition for the sparsity (Fan and Li 
[5]). 

Figure 1. Plot of  penalty functions: (a) 2 , (b) 1 , (c) hard thresholding, (d) 
SCAD penalties. The values of  

L L
�  are 0.5, 1.05, 1.55 and 1.01 for (a), (b), (c) 

and (d), respectively. These values are the same as those in Fan and Li [5]. 
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3. Variable Selection for Designed Experiments 

Assume that observations are an independent sample from the linear
regression model 

1, , ny y�

i i i
TY � �� �x                                (1)                                 

with E( ) 0� 2
i� var( )i� �� ix

( , , )Ty y�y � X

 and , where  corresponds to a fixed experiment design. As 
a natural extension of  the penalized likelihood, we will propose a screening experiment 
approach via penalized least squares. Thus, the proposed approach does not require the 
error distribution to be known. Let , and  is the corresponding design 
matrix. A form of  penalized least squares is 
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It has been shown by Li and Lin [13] that the oracle property holds for the penalized 
least squares estimate when the covariate x  is a fixed design under the following 
conditions. Let  be the dimension of  �10

�11 is finite and 0,V V
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, i.e., the number of  nonzero coefficients. 
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where,  consists of  the first  columns of  ,  and consists
of  the first  columns and rows of  . It is worth noting that these conditions are typical 
conditions for asymptotic normality of  least squares estimator in linear regression model 
when the regressors are fixed designed. Furthermore,  is finite for most experiment 
designs. Here we weaken these two conditions to Conditions (C1) and (C2), which 
guarantee that the asymptotic normality holds for the least squares estimator of  �1

ˆ

n
. Li and 

Lin [13] also show that the penalized least squares estimate is root  consistent and 
establish the oracle property for the penalized least squares estimator. This implies that the 
resulting penalized least squares is more efficient than the ordinary least squares estimate. 
Note that the proposed procedure possesses the oracle property under some mild 
conditions which do not require the design matrix to be of  full rank. The conditions are 
frequently satisfied in practice. 

4. An Algorithm for the Nonconvex Penalized Least Squares 

Note that the SCAD penalty function is singular at the origin and may not have the 
second derivative at some points. In order to apply the Newton Raphson algorithm to the 
penalized least squares, Fan and Li [5] suggested to locally approximate the SCAD penalty 
function by quadratic functions as follows. Given an initial value � (0)  that is close to the 
true value of  � , when j�

(0)
jp� is not very close to 0, the penalty �(| |)

) (0)[ (| |)] (| n( { (| |)/| |} ,j j j j j jp p p� � �

 can be locally 
approximated by the quadratic function as 
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� �ˆ 0.

� �

otherwise, set j With the local quadratic approximation, the solution for the penalized 
least squares can be found by iteratively computing the following ridge regression with an 
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This can be easily implemented in many statistical packages. Hunter and Li [12] 
studied the convergence behavior of  this algorithm by using techniques related to the EM 
algorithm.

When the sample size is greater than the number of  factors, and the design matrix is 
full rank, there exists a unique least squares estimate. The least squares estimate can serve 
as the initial value of  � . When the sample size is relatively large, the least squares 
estimate possesses root  consistency, and hence it is very close to the true value of  n � .
However, the number of  experiments may be less than the number of  potential candidates. 
It is obvious that the design matrix is not full rank, and thus the regression coefficients are 
not identifiable without further assumptions. In the context of analysis of screening
experiments, it is assumed that only a few of  factors are active. Here we suggest to use 
stepwise variable selection to construct an initial value of  � . In other words, we first apply 
stepwise variable selection to the full model with small thresholding values (i.e. large value 
of  significance level � ) such that all active factors are included in the selected model. Of  
course, in this step, some of  insignificant factors will remain in the selected model. 

4.1. Standard Error 

The standard errors for estimated coefficients can be obtained directly because our 
procedure simultaneously performs parameter estimation and variable selection. From the 
iterative ridge regression, the covariance of  the penalized least squares estimate can be 
estimated via  

� 2 1 1
0 0

ˆ ˆcov( ) { ( )} { ( )} ,T T Tn n� �� � � �� �� � � � �X X X X X X             (4)        

� 2ˆ  is an estimator of  �where 2 , for example, the mean squared errors. Here the formula 
applies only to components which do not vanish. 

4.2. Selection of  Regularization Parameter 

To implement the SCAD, it is desirable to have an automatic data-driven method for 
selecting the tuning parameter �  in �p� ( ) . Such a procedure is analogous to an automatic 
subset selection procedure, such as forward selection, backward elimination, but with good 
oracle properties. Cross validation and generalized cross-validation can be employed to select 
the tuning parameter � . However, the cross validation may not be appropriate in the current
setting when the number of experiments is small. Thus we estimate � via minimizing an
approximate generalized cross-validation (GCV) statistic (Craven and Wahba [3]). 

For the penalized least squares, we update the solution by 
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(1) (0) 1( ) { ( )}T Tn �� � � �� � �X X X y

with an initial value �0 . Thus the fitted value  of  y  is  and (0) 1{ ( )}T Tn � � �� �X X X X yŷ
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can be regarded as a projection matrix. Define the number of  effective parameters in the 
penalized least squares fit as e � � �� XP ˆ( ) tr[ { ( )}]. Therefore the generalized cross- validation 
statistics is 
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4.3. Implementation of  SCAD Variable Selection Procedure 

The SCAD variable selection procedure is summarized below, step by step. 
Step 1. If  the number of  regression coefficients is greater than the sample size, then       

first apply stepwise variable selection to the full model with small 
thresholding values. 

Step 2. Choose a grid point set for � , say, 1{ , , }L� �� .
Step 3. Based on the selected model by the stepwise regression, for each l� ,

1, , L� � , find the solution for the penalized least squares with the SCAD 
penalty by iterating (3) until it converges, and further compute the GCV 
statistic in (5). 

l

Step 4. The final estimate for �  is the one with the lowest GCV score. 

5. Examples 

Example 1. A 12-run PB design and the corresponding outcomes are listed in Table 1, 
extracted from Hamada and Wu [11]. This data set was constructed by Hamada and Wu 
[11] based on the linear model Y A AB AC �� � � �2 2 (0, 0.25)N� �� � with . We fit 
the data set by a linear regression model including all linear terms and interaction terms. 
The full model contains 66 (11 main effects plus 55 two-factor interactions) predictors. 

To identify the active effects, stepwise variable selection was employed to the full 
model using SAS. The variables AB, AC, A, AJ, GJ, FG and J were selected. The selected 
variables and their estimated coefficients, standard errors and -values are depicted in 
Table 2. From Table 2, all selected variables are statistically significant at significance level 

p

� � 0.05 . In fact, compared with the true model, stepwise variable selection results in a 
very misleading model, though the truly significant variables are included the selected 
model. From this example, one should be cautious when using stepwise variable selection 
procedure. 

Now we apply penalized least squares with the SCAD penalty for the selected model 
by stepwise procedure, the estimated tuning parameter . The resulting model, 
including estimated coefficients and estimated standard errors, is depicted in Table 2. The 
square root of  the mean square error is 

� �ˆ 0.0121

� �ˆ 0.2479 . All estimated coefficients and their 
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standard errors are very close to their true values. In this case, the proposed method works 
very well. With small values of  F-enter and F-remove, the stepwise variable selection 
procedure is able to retain active effects, though it also includes many inactive effects. On 
the other hand, this drawback of the stepwise variable selection can be alleviated by the 
SCAD, which may correctly identify active effects. Furthermore, the class of models 
considered here is much larger than the one used by Hamada and Wu [11]. 

Table 1. PB 12 run design and response in Example 1. 

run A B C D E F G H I J K response

1 � � � � � � � � � � �  1.058 

2 � � � � � � � � � � �   1.004 

3 � � � � � � � � � � � � 5.200

4 � � � � � � � � � � �  5.320 

5 � � � � � � � � � � �  1.022 

6 � � � � � � � � � � � � 2.471

7 � � � � � � � � � � �  2.809 

8 � � � � � � � � � � � � 1.272

9 � � � � � � � � � � � � 0.955

10 � � � � � � � � � � �  0.644 

11 � � � � � � � � � � � � 5.025

12 � � � � � � � � � � �  3.060 

Table 2. The selected models in Example 1. 
Stepwise Regression SCAD

Factor �̂ ˆ( )SE � p-value �̂ ˆ( )SE � p-value 

AB 1.9126 0.0096 <0.0001 2.0000 0.0679 <0.0001

AC 1.9620 0.0092 <0.0001 1.9808 0.0679 <0.0001

A 1.0209 0.0094 <0.0001 1.0967 0.0679 <0.0001

AJ 0.1424 0.0086 <0.0001

GJ 0.1593 0.0097 <0.0001

FG -0.0679 0.0108 0.0015

J 0.0350 0.0089 0.0112

Example 2. In this example, we demonstrate the SCAD variable selection procedure by 
using analysis of  a data set collected in the study of  the effects of  environmental pollutants 
on human health. The data set is taken from Fang [6]. A brief  description is given below. 

Details can be found in Fang [6]. It is believed that contents of  some metal elements in 
water might directly have impact on human health. Of  interest here is to study the 
association between contents of  six selected metals and the mortality of  some kind cell of  
mice. The six selected metals are Cadmium (Cd), Copper (Cu), Zinc (Zn), Nickel (Ni), 
Chromium (Cr), and Lead (Pb). The levels for the content of  each metal element is set to 
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0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 8, 10, 12, 16, 18 and 20 (ppm). A uniform design (Fang 
and Wang [8]; and Fang et al. [9]) is used to construct a design with 17 experiments. For 
each run, three experiments were conducted. The average of  these three outputs (mortality) 
is displayed in Table 3. 

Table 3. Data for in Example 2. 

Run Cd Cu Zn Ni Cr Pb Response 

1 0.01 0.20 0.80 5.00 14.00 16.00 18.5900

2 0.05 2.00 10.00 0.10 8.00 12.00 22.5200

3 0.10 10.00 0.01 12.00 2.00 8.00 32.4667

4 0.20 18.00 1.00 0.80 0.40 4.00 39.2967

5 0.40 0.10 12.00 18.00 0.05 1.00 32.2767

6 0.80 1.00 0.05 4.00 18.00 0.40 30.9933

7 1.00 8.00 2.00 0.05 12.00 0.10 40.0733

8 2.00 16.00 14.00 10.00 5.00 0.01 42.7100

9 4.00 0.05 0.10 0.40 1.00 18.00 24.8900

10 5.00 0.80 4.00 16.00 0.20 14.00 50.6833

11 8.00 5.00 16.00 2.00 0.01 10.00 60.2767

12 10.00 14.00 0.20 0.01 16.00 5.00 68.7067

13 12.00 0.01 5.00 8.00 10.00 2.00 32.4433

14 14.00 0.40 18.00 0.20 4.00 0.80 29.7600

15 16.00 4.00 0.40 14.00 0.80 0.20 68.0533

16 18.00 12.00 8.00 1.00 0.10 0.05 55.7867

17 20.00 20.00 20.00 20.00 20.00 20.00 79.1600

Table 4. The selected models in Example 2. 

  Stepwise Regression SCAD

Factor �̂ ˆ( )SE � p-value �̂ ˆ( )SE � p-value 

Intercept  36.8657 0.0761 <0.0001  38.7424 2.4792 <0.0001

Cd  14.7373 0.0406 <0.0001  13.8951 1.2747 <0.0001

Cu  12.8916 0.0301 <0.0001  11.8375 1.2473 <0.0001

Ni*Cr � 10.7835 0.0666 <0.0001 � 8.9738 1.3672 0.0002

Zn*Pb  10.9933 0.0727 <0.0001  12.2283 1.3378 <0.0001

Cd*Cd � 5.7473 0.0569 0.0001 � 7.7394 1.7256 0.0020

Cr � 7.4304 0.0353 <0.0001 � 7.2145 1.3494 0.0007

Pb*Pb   8.4473 0.0723 0.0001  10.8729 1.8728 0.0004

Zn*Cr � 7.1860 0.0746 0.0001 � 5.3017 1.6051 0.0108

Pb   4.0711 0.0348 0.0001

Zn*Zn   2.4276 0.0518 0.0005

Cu*Cr � 1.1144 0.0555 0.0025

Ni   1.3451 0.0386 0.0008

Cd*Ni   1.1082 0.0765 0.0047

Ni*Pb   0.0790 0.0328 0.1376
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To avoid numerical instability, all x  variables are standardized first. In our initial 

model, we include an intercept, all linear effects, quadratic effects and the first order 
interaction effects. This yields a linear regression models with 28 terms, including the 
intercept. Since there are only 17 design combination in this experiment. Thus, variable 
selection is necessary. Similar to the previous analysis, the stepwise regression analysis is 
first performed. The stepwise regression selects Cd, Cu, Ni*Cr, Zn*Pb, Cr, Pb*Pb, Zn*Cr, 
Pb, Zn*Zn, Cu*Cr, Ni, Cd*Ni and Ni*Pb, whose estimate, standard error and -value are 
depicted in Table 4. All of  them except Ni*Pb are significant at level 0.05. Based on the 
selected model by stepwise regression, we apply the SCAD variable selection procedure to 
select significant variables. The selected 

p

�  is 0.0748. The resulting estimate of  significant 
effects along with their standard errors and -values are depicted in Table 4, from which it 
can be seen that all six metal elements have significant impact on mortality. 

p

6. Conclusion and Discussion 

In this paper, we have introduced the SCAD variable selection procedure for screening 
experiments. It has been shown that the proposed approach possesses an oracle property. 
Two data examples illustrated the effectiveness of  the proposed approach. In our earlier 
work (Li and Lin [13, 14]), the proposed procedure has been successfully applied to 
analyzing data from supersaturated designs(Lin [15, 16]). The computer codes (written in 
MATLAB) to perform all calculations can be obtained from the authors. 

The regularity conditions (C1) and (C2) in Section 3 ensure that the proposed 
procedure can be used to screen experiments. Although the design matrix for the full model 
can be singular, condition (C2) implies that the design sub-matrix responding to active 
factors is full rank, and therefore alias structure among the active factors is not allowed. 
One should be cautious in the situation that active factors or their interactions are aliased 
with another ones. It needs some further research on how to deal with such situations. 
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