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Abstract: Supersaturated designs (SSDs) offer a potentially useful way to investi-

gate many factors with only a few experiments during the preliminary stages of

experimentation. While the construction and analysis of symmetrical SSDs have

been widely explored, asymmetrical (or mixed-level) SSDs deserve further inves-

tigation. Mixed-level SSDs can be judged by various criteria. But, justified by

existing results, the χ2 criterion proposed by Yamada and Lin (1999) is adopted

here. Optimality results for mixed-level SSDs are provided. A new construction

method for χ2-optimal SSDs is proposed, and we discuss properties of the resulting

designs. Many new designs are tabulated for practical use.
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1. Introduction

A supersaturated design (SSD) is essentially a factorial design whose run size
is insufficient for estimating all the main effects represented by the design matrix.
In an industrial or scientific experiment, if many factors are to be investigated
(e.g. in a screening study) and the experiment is expensive to conduct, economic
considerations may compel the adoption of an SSD. The data collected by SSDs
are typically analyzed under the assumption of effect sparsity, i.e., the response of
interest depends mainly on a few dominant or active factors, and the interactions
and the effects of the remaining factors are relatively negligible. SSDs were
introduced by Box (1959), but not studied further until the appearance of the
work by Lin (1991, 1993) and Wu (1993). Since then there has been a large
number of papers on this subject, for example, Xu and Wu (2005), Georgiou,
Koukouvinos and Mantas (2006), Yamada, Matsui, Matsui, Lin and Tahashi
(2006) Zhang, Zhang and Liu (2007) Liu, Liu and Zhang (2007), Chen and Liu
(2008) and Nguyen and Cheng (2008). Various fields of research may benefit
from the use of SSDs, including computer and medical experiments (Lin (1995)),
industrial and engineering experiments (Wu (1993), Lin (1999, 2003) and Nguyen
(1996)).

To set the issues, consider a study conducted by Nguyen and Cheng (2008)
to examine the factors affecting the thermal performance of project homes. They
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needed an SSD with 16 runs and 18 two-level factors. Motivated by their study,
suppose the factors are as follows: (1) wall insulation (R1, R1.5 or R2); (2) roof
insulation (R2.5, R3 or R3.5); (3) floor insulation (R0, R0.5 or R1); (4) floor
type (timber, leather or tile); (5) wall type (brick veneer, cavity or concrete); (6)
north glass (5% or 20%); (7) east glass (5% or 15%); (8) west glass (5% or 15%);
(9) south glass (5% or 15%); (10) north blinds (yes or no); (11) east blinds (yes
or no); (12) west blinds (yes or no); (13) south blinds (yes or no); (14) north
eave overhang (20% or 100%); (15) east eave overhang (20% or 70%); (16) west
eave overhang (20% or 70%); and (17) south eave overhang (20% or 100%). The
number of homes that can be used for this study is 12. Then we need an SSD
with 12 runs, 5 three-level factors and 12 two-level factors. For the purpose of
screening the active factors and keeping the prices of these homes comparable, it
is further asked that (i) any two-level factor and three-level factor be orthogonal
to each other; (ii) each home have six factors at the low level and six at the high
level for all 12 two-level factors; (iii) for any two homes, either they take the same
level on each of the three-level factors and different levels on each of the two-level
factors, or they take the same level on only one of the three-level factors and take
the level combinations on the two-level factors equally often. These constraints
make existing mixed-level SSDs inapplicable. See, for example, Deng, Lin and
Wang (1996), Liu and Zhang (2001), Yamada and Matsui (2002), Yamada and
Lin (2002), Fang, Lin and Liu (2003b), Li, Liu and Zhang (2004), Fang, Ge, Liu
and Qin (2004a), Koukouvinos and Mantas (2005), Yamada, Matsui, Matsui, Lin
and Tahashi (2006) and Chen and Liu (2008).

This paper attempts to provide further optimality results for mixed-level
SSDs and to find a combinatorial solution to the problems exemplified above.
Section 2 reviews the χ2(D) criterion (Yamada and Lin (1999) and Yamada and
Matsui (2002)) and other optimality criteria for mixed-level SSDs. In particular,
the χ2(D) is well justified by some existing results, and is adopted as the opti-
mality criterion for evaluating mixed-level SSDs in this paper. Section 3 presents
some optimality results for mixed-level SSDs. Especially, optimal mixed-level
SSDs are shown to be periodic. These optimality results indicate a feasible way
to construct (nearly) χ2(D)-optimal mixed-level SSDs. And a new method for
constructing them is proposed in Section 4. Many designs constructed from this
new method are tabulated in the Appendix.

2. Optimality Criteria

Some definitions and notation are necessary in order to review the optimality
criteria. Thus, a mixed-level (or asymmetrical) design of n runs and m factors
with levels q1, . . . , qm, denoted by D(n; q1, . . . , qm), is an n×m matrix D = (dij)
in which the jth column takes values from a set of qj symbols {0, . . . , qj − 1}.
A D(n; q1, . . . , qm) is called an orthogonal array (OA) of strength two, denoted
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by Ln(q1, . . . , qm), if all possible level combinations for any two factors appear
equally often. When

∑m
j=1(qj − 1) = n − 1, the design D(n; q1, . . . , qm) is called

a saturated design; when
∑m

j=1(qj − 1) > n − 1, the design is called a supersatu-
rated design, denoted by S(n; q1, . . . , qm). When some qj ’s are equal, we use the
notations D(n; qr1

1 · · · qrl
l ), Ln(qr1

1 · · · qrl
l ), and S(n; qr1

1 · · · qrl
l ), respectively, where∑l

j=1 rj = m. Two columns (or rows) are called orthogonal if they (or their
transposes) form an OA of strength two, and called fully aliased if one can be
obtained from the other by permuting levels. In a design, it is necessary that no
columns are fully aliased.

Throughout the paper, we only consider balanced (with equal occurrence
property) designs in which all levels appear equally often for any column.

2.1. χ2(D) and E(fNOD ) criteria

Let c1, . . . , cm be the columns of an S(n; q1, . . . , qm) design D, and n
(ij)
uv be

the number of (u, v)-pairs in (ci, cj). Yamada and Lin (1999) defined an index
between ci and cj , by analogy with the χ2 statistic,

χ2(ci, cj) =
qi−1∑
u=0

qj−1∑
v=0

[n(ij)
uv − n/(qiqj)]2

n/(qiqj)
,

to evaluate the dependency of the two columns. The χ2(D) criterion defined by
Yamada and Matsui (2002) is to minimize

χ2(D) =
∑

1≤i<j≤m

χ2(ci, cj).

Fang, Lin and Liu (2003b) proposed the E(fNOD) criterion for comparing
mixed-level SSDs from the viewpoint of orthogonality and uniformity: minimize

E(fNOD) =
2

m(m − 1)

∑
1≤i<j≤m

χ2(ci, cj)n
qiqj

.

Note that the χ2(D) considers different weights for factors with different levels,
while E(fNOD) does not.

It is obvious that the χ2(D) and E(fNOD) criteria are equivalent in the
symmetric case. It has been shown as well that they are extensions of existing
criteria defined for symmetrical SSDs, see Fang, Lin and Liu (2003b) Xu (2003)
and Li, Liu and Zhang (2004) for details.

2.2. Other optimality criteria and connections

There are several other optimality criteria for evaluating mixed-level SSDs.
One is the generalized minimum aberration criterion developed by Ma and Fang
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(2001) and Xu and Wu (2001). Based on the ANOVA decomposition model, for
a design D(n; q1, . . . , qm), let Xj = (xj

ik) be the matrix consisting of all j-factor
contrast coefficients for j = 0, . . . ,m. If

Aj(D) =
1
n2

∑
k

∣∣∣ n∑
i=1

xj
ik

∣∣∣2,
the generalized minimum aberration criterion is to sequentially minimize Aj(D)
for j = 1, . . . ,m.

For a design D = (dij), let

δij(D) =
m∑

k=1

qkδ
(k)
ij ,

where δ
(k)
ij = 1 if dik = djk, and 0 otherwise; δij(D) is called the natural weighted

coincidence number between the ith and jth rows of D. Define the tth power
moment to be

Mt(D) =
2

n(n − 1)

∑
1≤i<j≤n

[δij(D)]t,

where t is a positive integer. The minimum moment aberration criterion proposed
by Xu (2003) is to sequentially minimize Mt(D) for t = 1, . . . ,m.

Hickernell and Liu (2002) developed the minimum projection uniformity cri-
terion for a D(n; q1, . . . , qm) design D. Define the t-dimensional projection dis-
crepancy D(t)(D; K) as the non-negative square root of

D2
(t)(D; K) =

1
n2

n∑
i,j=1

∑
1≤l1<···<lt≤m

t∏
g=1

(
−1 + qlgδ

(lg)
ij

)
.

The minimum projection uniformity criterion is to sequentially minimize D(t)(D;
K) for t = 1, . . . ,m.

Recently, Liu, Fang and Hickernell (2006) generalized the χ2(D) criterion
to the so-called minimum χ2 criterion, and investigated the connections among
these four criteria. Especially, their Corollary 1 implies the following.

Lemma 1. For any S(n; q1, . . . , qm) design D, D2
(1)(D; K) = A1(D) = 0, M1(D)

is minimized, and

D2
(2)(D;K) = A2(D) =

χ2(D)
n

=
n − 1
2n

[M2(D) − γ1] ,

where γ1 is a constant depending on n, m, and the levels q1, . . . , qm.
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This result implies that, though A2(D),M2(D),D2
(2)(D; K) and χ2(D) arise

from distinct considerations, they are strongly connected: an S(n; q1, . . . , qm)
design that minimizes one of these criteria will minimize them all. This con-
clusion provides a strong justification for using χ2(D) as an optimality criterion
for choosing mixed-level SSDs, and we adopt it as the optimality criterion for
assessing mixed-level SSDs.

3. Optimality Properties of the χ2(D) Criterion

This section provides some optimality results on χ2(D) for mixed-level SSDs.

3.1. χ2(D) for the design obtained by column juxtaposition

For any D(n; qr1
1 · · · qrl

l ) design D, it is obvious that

n∑
i=1,i6=j

δij(D) =
l∑

k=1

rk(n − qk). (3.1)

Theorem 1 of Li, Liu and Zhang (2004) shows the following.

Lemma 2. For any D(n; qr1
1 · · · qrl

l ) design D with m =
∑l

k=1 rk,

χ2(D)=

∑n
i,j=1,i6=j [δij(D)]2

2n
+

1
2

{[ l∑
k=1

rkqk

]2
− n

[ l∑
k=1

rkqk + m(m − 1)
]}

(3.2)

≥ n

2(n − 1)

[ l∑
k=1

rkqk

]2
− n(n − 1) + 2mn

2(n − 1)

l∑
k=1

rkqk+
mn(m + n − 1)

2(n − 1)
. (3.3)

Equality holds if and only if δij(D) is a constant for all i 6= j.

Further, if D is a saturated Ln(qs1
1 · · · qsl

l ), then
∑l

k=1 sk(qk−1) = n−1 and,
from Mukerjee and Wu (1995),

δij(D) =
l∑

k=1

sk − 1, for i 6= j, (3.4)

which implies that D is χ2(D) optimal.
Theorem 4 of Li, Liu and Zhang (2004) and Corollary 3 of Liu, Fang and

Hickernell (2006) show the χ2(D) optimality of mixed-level SSDs obtained by
column juxtaposition of two or more SSDs with constant natural weighted co-
incidence numbers. The theorem below gives the change in χ2(D) values when
two designs are column juxtaposed, in particular when one of the two designs is
a saturated OA.
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Theorem 1. Suppose D0 is a D(n; qr1
1 · · · qrl

l ) and D1 is a D(n; qs1
1 · · · qsl

l ). Let
D0 ∪ D1 be the column juxtaposition of D0 and D1. Then

χ2(D0 ∪ D1) = χ2(D0) + χ2(D1) +

∑n
i,j=1,i 6=j δij(D0)δij(D1)

n

+
[ l∑

k=1

rkqk

][ l∑
k=1

skqk

]
− n

l∑
k=1

rk

l∑
k=1

sk. (3.5)

Further, if D1 has constant δij(D1)’s for i 6= j, then

χ2(D0 ∪ D1) = χ2(D0) + γ2, (3.6)

where γ2 is a constant depending on n, qi, ri and si for i = 1, . . . , l. In particular,
if D1 is a saturated Ln(qs1

1 · · · qsl
l ), then

χ2(D1) = 0, and (3.7)

χ2(D0 ∪ D1) = χ2(D0) + n

l∑
k=1

rk(qk − 1). (3.8)

Proof. To derive (3.5), we first express χ2(D0 ∪ D1) in terms of δij(D0 ∪ D1)
based on (3.2), then note that δij(D0 ∪ D1) = δij(D0) + δij(D1). Using the
expressions for χ2(D0) and χ2(D1) in (3.2), (3.5) is obtained following lengthy
but straightforward algebra.

Equation (3.6) follows from (3.5) by noting that χ2(D1) attains its lower
bound in (3.3), and that (3.1) holds for D0. Equations (3.7) and (3.8) follow
directly since (3.4) holds for D1.

Theorem 1 provides a method for constructing χ2(D)-optimal or nearly op-
timal SSDs by column-juxtaposing a design D0 to a saturated OA, or an SSD D1

with constant δij(D1)’s for i 6= j. From (3.6) and (3.8), if D0 is χ2(D)-optimal,
then the resulting design D is χ2(D)-optimal among those designs obtained by
column-juxtaposing a design to D1, which is also an optimal design. Of course,
optimality may not be achievable among D(n; q(r1+s1)

1 · · · q(rl+sl)
l )’s; the resulting

design does have a χ2(D) value very close to the lower bound in Lemma 2, thus
it is a nearly χ2(D)-optimal SSD. For example, the design D0 can be selected
to be a design with only one balanced column, or with two orthogonal (or two
nearly orthogonal) columns c1 and c2, or more generally a χ2(D)-optimal design.
The next subsection shows when the resulting design is optimal among designs
with the same parameters.
Remark 1. Theorem 2 of Yamada and Matsui (2002) showed the χ2(D) optimal-
ity of a design D obtained by column-juxtaposing several symmetrical saturated
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OA’s D1, . . . , Ds. The χ2(D) value of this design can be easily obtained by using
(3.8) recursively since χ2(Dk) = 0 for k = 1, . . . , s, and the optimality of this de-
sign is ensured since δij(D) =

∑s
k=1 δij(Dk) and (3.4) holds for each Dk. When

the saturated OA’s are asymmetrical, the resulting design is still χ2(D)-optimal
based on Theorem 4 of Li, Liu and Zhang (2004), or Corollary 3 of Liu, Fang and
Hickernell (2006). If not all the Dk’s are saturated OA’s, the χ2(D) optimality
of the resulting design is unclear, but see the subsection below.

3.2. Periodicity of minimum χ2(D)

Given n and q1, . . . , ql, let f(r1, . . . , rl) = min{χ2(D) : D is an S(n; qr1
1 · · ·

qrl
l )}, where designs may have fully aliased columns. The following result shows

that for certain n, f(r1, . . . , rl) is periodic when the number of factors is suffi-
ciently large.

Theorem 2. Suppose a saturated design Ln(qs1
1 · · · qsl

l ) exists. Then for i =
1, . . . , l, there exist positive integers Ri such that for ri ≥ Ri, we have

f(r1 + s1, . . . , rl + sl) = f(r1, . . . , rl) + n
l∑

k=1

rk(qk − 1). (3.9)

Proof. Denote the right-hand side of (3.3) by LB(n, q1, . . . , ql, r1, . . . , rl). Let

g(r1, . . . , rl) = f(r1, . . . , rl) − LB(n, q1, . . . , ql, r1, . . . , rl).

Inequality (3.3) implies that g(r1, . . . , rl) ≥ 0. From (3.8) we have

f(r1 + s1, . . . , rl + sl) ≤ f(r1, . . . , rl) + n

l∑
k=1

rk(qk − 1).

Then we have 0 ≤ g(r1 + s1, . . . , rl + sl) ≤ g(r1, . . . , rl) after some straight-
forward algebra. Note that since 2n(n − 1)f(r1, . . . , rl) is an integer, so is
2n(n − 1)g(r1, . . . , rl). Therefore, for any (t1, . . . , tl) satisfying 1 ≤ tj ≤ sj for
j = 1, . . . , l, 2n(n− 1)g(ks1 + t1, . . . , ksl + tl) is a decreasing integer sequence in
k and has a lower bound. There must exist a positive integer k0 = k0(t1, . . . , tl)
such that, for k ≥ k0,

2n(n − 1)g(ks1 + t1, . . . , ksl + tl) = 2n(n − 1)g(k0s1 + t1, . . . , k0sl + tl).

Let K = max{k0(t1, . . . , tl) : 1 ≤ tj ≤ sj for j = 1, . . . , l}, and Ri = (K + 1)si,

for i = 1, . . . , l. Then for any ri ≥ Ri with i = 1, . . . , l, g(r1 + s1, . . . , rl + sl) =
g(r1, . . . , rl) or, equivalently, (3.9) holds.
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Remark 2. The result of this theorem can be generalized to the case where the
saturated Ln(qs1

1 · · · qsl
l ) is replaced by a design D1 with constant δij(D1)’s for

i 6= j.

This periodicity property of minimum χ2(D) helps us understand mixed-
level SSDs of large size; it shows how larger χ2(D)-optimal mixed-level SSDs are
connected with smaller ones. From (3.8) and (3.9), when the number of factors
is sufficient large, the column juxtaposition of a χ2(D)-optimal design and a
saturated OA (as well as a design D1 with constant δij(D1)’s for i 6= j) is still
a χ2(D)-optimal design. When the number of factors is not so large, the design
obtained in this way will also be satisfactory according to the χ2(D) criterion.

The optimal SSDs obtained through column juxtaposition may contain fully
aliased columns; the next section presents an explicit construction method that
produces optimal SSDs without them.

4. Construction of χ2-Optimal Mixed-Level SSDs

Let Gl be an additive group of l elements, say {0, 1, . . . , l − 1}. For a vector
A = (a1, . . . , au)′ and a matrix B of order v×r, both with entries from Gl, define
their Kronecker sum to be the uv × r matrix

A ⊕l B =

B + a1
...

B + au

 ,

where B + k is obtained from adding k, over Gl, to the elements of B. Let 0q

denote a q × 1 vector of 0’s and Lq = (0, 1, . . . , q − 1)′.
Theorem 3. Suppose p, q, s, t, λ and m0 are positive integers satisfying

m0(s − 1) = λ(ps − 1), (4.1)

pm0 = pλ + q2t. (4.2)

Let n0 = ps and m1 = q2t. If there exist two designs D0 and D1 such that (i)
D0 is an S(n0; pm0) design with λ coincidence positions between any two distinct
rows, and (ii) D1 is the transpose of an Lm1(q

n0), then

D = [0q ⊕p D0, Lq ⊕q D1] (4.3)

is an S(qn0; pm0qm1) design with the natural weighted coincidence number pm0

between any two distinct rows, hence it is χ2(D)-optimal. For the symmetric
case, D is a χ2(D)-optimal S(qn0; qm0+m1) design.

Proof. We need only prove that the resulting design has the natural weighted
coincidence number pm0 between any two distinct rows. For the ith and jth rows
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Table 1. An S(6; 35). Table 2. Transpose of an L12(26).

Run 1 2 3 4 5 Run 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1
2 0 1 1 1 1 2 0 0 0 1 1 1 0 0 0 1 1 1
3 1 0 2 2 1 3 0 1 1 0 0 1 0 0 1 0 1 1
4 1 2 0 1 2 4 1 0 0 0 1 1 0 1 1 0 0 1
5 2 1 2 0 2 5 0 0 1 1 1 0 1 0 1 0 0 1
6 2 2 1 2 0 6 0 1 1 0 1 0 0 1 0 1 0 1

Table 3. S(12; 35212) constructed from the two designs in Tables 1 and 2.

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
2 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
3 1 0 2 2 1 0 1 1 0 0 1 0 0 1 0 1 1
4 1 2 0 1 2 1 0 0 0 1 1 0 1 1 0 0 1
5 2 1 2 0 2 0 0 1 1 1 0 1 0 1 0 0 1
6 2 2 1 2 0 0 1 1 0 1 0 0 1 0 1 0 1
7 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
8 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
9 1 0 2 2 1 1 0 0 1 1 0 1 1 0 1 0 0
10 1 2 0 1 2 0 1 1 1 0 0 1 0 0 1 1 0
11 2 1 2 0 2 1 1 0 0 0 1 0 1 0 1 1 0
12 2 2 1 2 0 1 0 0 1 0 1 1 0 1 0 1 0

of D, where 1 ≤ i < j ≤ qn0, if j − i = 0 mod n0, they have m0 coincidence
positions at the p-level factors, and no coincidence position at the q-level factors,
so the natural weighted coincidence number between the two rows is pm0; other-
wise, they have λ coincidence positions at the p-level factors, and qt coincidence
positions at the q-level factors, and then the natural weighted coincidence num-
ber between them is pλ+q2t. Hence, from (4.2), the natural weighted coincidence
number between any two distinct rows of D is pm0.

Example 1. Here is an example of the construction method using (4.3). It
can be verified that p = 3, q = 2, s = 2, t = 3, λ = 1 and m0 = 5 satisfy
(4.1) and (4.2). There exist designs D0 and D1, as shown in Tables 1 and 2
respectively, where D0 is a χ2(D)-optimal S(6; 35) design obtained by Fang,
Ge and Liu (2004b), and D1 is the transpose of an L12(26) which is found at
the website http://support.sas.com/techsup/technote/ts723 Designs.txt. From
these two designs, an S(12; 35212) is constructed using(4.3); it is shown in Table
3. It has the natural weighted coincidence number 15 between any two distinct
rows, and thus is a χ2(D)-optimal SSD.
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Remark 3. Note that this optimal S(12; 35212) design provides a solution for
the motivating example in the Introduction, as all the constraints given in the
example are satisfied.

Here are some properties of the designs constructed from Theorem 3.

Corollary 1. If D is an S(qn0; pm0qm1) constructed through (4.3), then any
p-level and q-level columns in D are orthogonal to each other. Further, if there
are no fully aliased columns in D0 or D1, then there are no fully aliased columns
in D.

Corollary 2. If D is an S(qn0; pm0qm1) constructed through (4.3), then

(i) each run has m1/q q-level factors at each of the q levels;

(ii) for any two runs, either they take the same level on each of the p-level factors
and different levels on each of the q-level factors, or they take the same level
on each of some λ p-level factors and the level combinations on the q-level
factors equally often.

Based on Theorem 3, we can construct χ2(D)-optimal mixed-level SSDs that
have the properties described in Corollaries 1 and 2. There are very rich results
in the literature for multi-level SSDs with a constant number of coincidence posi-
tions between any two distinct rows. As for OAs, there is a library of over 200 OAs
maintained by Dr. N.J.A. Sloane (http://www.research.att.com/∼njas/oadir/).
This library has been recently updated by Dr. W.F. Kuhfeld at his OA site
(http://support.sas.com/techsup/technote/ts723.html). This site contains all
OAs listed in the Appendix of Kuhfeld and Tobias (2005), as well as new ones
contributed by other authors.

Appendix A displays optimal multi-level SSDs that can be constructed by
the new method, while Appendix B tabulates optimal mixed-level SSDs which
can be constructed from existing multi-level SSDs and OAs. Except for those
designs marked with ∗ in Appendix A, which can also be constructed by a method
proposed by Georgiou, Koukouvinos and Mantas (2006), all other SSDs in these
tables are apparently new. Note that there are no fully aliased columns in any of
the initial SSDs used in the construction, thus if there are no fully aliased rows in
the OAs, the resulting SSDs have no fully aliased columns. Further, any p-level
and q-level columns are orthogonal to each other in any of the resulting SSDs,
and these designs possess the properties listed in Corollary 2.
Remark 4. The construction method proposed in Theorem 3 can also be mod-
ified to construct E(fNOD)-optimal designs. For this case, we need only change
the condition (4.2) to m0 = λ + qt. Then many E(fNOD)-optimal SSDs can be
generated through (4.3) from existing multi-level SSDs with λ coincidence posi-
tions between any two distinct rows, and OAs at Dr. Kuhfeld’s OA website.
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Appendix A. Optimal S(qn0; qm0+m1) designs for q > 2.

q n0 m0 m1 initial SSD [Source] Lm1(q
n0) final SSD

3 6 15 36 S(6; 315) [GK2006†] L36(36) S(18; 351)
3 9 12 27 S(9; 312) [Fang, Ge and Liu (2004b)] L27(39) S(27; 339)∗

3 9 16 36 S(9; 316) [Fang, Ge and Liu (2004b)] L36(39) S(27; 352)∗

3 9 20 45 S(9; 320) [Fang, Ge and Liu (2004b)] L45(39) S(27; 365)∗

3 9 24 54 S(9; 324) [Fang, Ge and Liu (2004b)] L54(39) S(27; 378)∗

3 9 28 63 S(9; 328) [Fang, Ge and Liu (2004b)] L63(39) S(27; 391)∗

3 9 32 72 S(9; 332) [GKM2006‡] L72(39) S(27; 3104)∗

3 9 36 81 S(9; 336) [GKM2006] L81(39) S(27; 3117)∗

3 9 40 90 S(9; 340) [GK2006] L90(39) S(27; 3130)∗

3 9 48 108 S(9; 348) [GK2006] L108(39) S(27; 3156)∗

3 12 33 72 S(12; 333) [GK2006] L72(312) S(36; 3105)
3 18 51 108 S(18; 351) [New] L108(318) S(54; 3159)
3 27 39 81 S(27; 339) [New] L81(327) S(81; 3120)
3 27 52 108 S(27; 352) [New] L108(327) S(81; 3160)
3 27 65 135 S(27; 365) [New] L135(327) S(81; 3200)
4 8 14 48 S(8; 414) [Fang, Ge and Liu (2002a)] L48(48) S(32; 462)
4 8 28 96 S(8; 428) [GK2006] L96(48) S(32; 4124)
4 8 42 144 S(8; 442) [GK2006] L144(48) S(32; 4186)
4 16 20 64 S(16; 420) [FGLQ2004c§] L64(416) S(64; 484)∗

4 16 30 96 S(16; 430) [FGLQ2004c] L96(416) S(64; 4126)∗

4 16 40 128 S(16; 440) [GKM2006] L128(416) S(64; 4168)∗

4 16 45 144 S(16; 445) [GKM2006] L144(416) S(64; 4189)∗

5 25 30 125 S(25; 530) [GKM2006] L125(525) S(125; 5155)

† GK2006: Georgiou and Koukouvinos (2006).

‡ GKM2006: Georgiou, Koukouvinos and Mantas (2006).

§ Fang, Ge, Liu and Qin (2004c).

* Designs can also be constructed via the method in Georgiou, Koukouvinos and Mantas (2006)
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Appendix B. Optimal S(qn0; pm0qm1) designs for p = 2, 3.

p q n0 m0 m1 initial SSD [Source] Lm1(q
n0) final SSD

2 3 12 33 36 S(12; 233) [Liu and Zhang (2000)] L36(312) S(36; 233336)
2 3 12 66 72 S(12; 266) [Liu and Zhang (2000)] L72(312) S(36; 266372)
2 3 12 99 108 S(12; 299) [Liu and Zhang (2000)] L108(312) S(36; 2993108)
2 3 12 132 144 S(12; 2132) [Liu and Zhang (2000)] L144(312) S(36; 21323144)
2 3 16 135 144 S(16; 2135) [EGMBT2004†] L144(316) S(48; 21353144)
2 3 18 68 72 S(18; 268) [Liu and Zhang (2000)] L72(318) S(54; 268372)
2 3 18 102 108 S(18; 2102) [Liu and Zhang (2000)] L108(318) S(54; 21023108)
2 3 18 136 144 S(18; 2136) [EGMBT2004] L144(318) S(54; 21363144)
2 3 24 69 72 S(24; 269) [Liu and Zhang (2000)] L72(324) S(72; 269372)
2 3 24 138 144 S(24; 2138) [Liu and Zhang (2000)] L144(324) S(72; 21383144)
2 4 8 28 32 S(8; 228) [Liu and Zhang (2000)] L32(48) S(32; 228432)
2 4 12 44 48 S(12; 244) [Liu and Zhang (2000)] L48(412) S(48; 244448)
2 4 12 88 96 S(12; 288) [Liu and Zhang (2000)] L96(412) S(48; 288496)
2 4 12 132 144 S(12; 2132) [Liu and Zhang (2000)] L144(412) S(48; 21324144)
2 4 16 60 64 S(16; 260) [Liu and Zhang (2000)] L64(416) S(64; 260464)
2 4 16 90 96 S(16; 290) [Liu and Zhang (2000)] L96(416) S(64; 290496)
2 4 16 120 128 S(16; 2120) [EGMBT2004] L128(416) S(64; 21204128)
2 4 16 135 144 S(16; 2135) [EGMBT2004] L144(416) S(64; 21354144)
2 4 18 136 144 S(18; 2136) [EGMBT2004] L144(418) S(72; 21364144)
2 4 24 138 144 S(24; 2138) [Liu and Zhang (2000)] L144(424) S(96; 21384144)
2 5 20 95 100 S(20; 295) [Liu and Zhang (2000)] L100(520) S(100; 2955100)
2 8 16 120 128 S(16; 2120) [EGMBT2004] L128(816) S(128; 21208128)
3 2 6 5 12 S(6; 35) [Fang, Ge and Liu (2004b)] L12(26) S(12; 35212)
3 2 6 10 24 S(6; 310) [GK2006‡] L24(26) S(12; 310224)
3 2 6 15 36 S(6; 315) [GK2006] L36(26) S(12; 315236)
3 2 9 16 36 S(9; 316) [Fang, Ge and Liu (2004b)] L36(29) S(18; 316236)
3 2 9 32 72 S(9; 332) [GK2006] L72(29) S(18; 332272)
3 2 9 48 108 S(9; 348) [GK2006] L108(29) S(18; 3482108)
3 2 12 11 24 S(12; 311) [Lu, Hu and Zheng (2003)] L24(212) S(24; 311224)
3 2 12 22 48 S(12; 322) [GK2006] L48(212) S(24; 322248)
3 2 12 33 72 S(12; 333) [GK2006] L72(212) S(24; 333272)
3 2 12 44 96 S(12; 344) [GK2006] L96(212) S(24; 344296)
3 2 12 55 120 S(12; 355) [GK2006] L120(212) S(24; 3552120)
3 2 15 28 60 S(15; 328) [GK2006] L60(215) S(30; 328260)
3 2 18 51 108 S(18; 351) [New in Appendix A] L108(218) S(36; 3512108)
3 2 27 52 108 S(27; 352) [Fang, Lin and Ma (2000)] L108(227) S(54; 3522108)
3 4 12 22 48 S(12; 322) [GK2006] L48(412) S(48; 322448)
3 4 12 44 96 S(12; 344) [GK2006] L96(412) S(48; 344496)

† EGMBT2004: Eskridge, Gilmour, Mead, Butler and Travnicek (2004).

‡ GK2006: Georgiou and Koukouvinos (2006)
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Appendix B. Optimal S(qn0; pm0qm1) designs for p > 3.

p q n0 m0 m1 initial SSD [Source] Lm1(qn0 ) final SSD

4 2 8 7 24 S(8; 47) [Fang, Ge and Liu (2002a)] L24(28) S(16; 47224)

4 2 8 14 48 S(8; 414) [Fang, Ge and Liu (2002a)] L48(28) S(16; 414248)

4 2 8 21 72 S(8; 421) [GK2006†] L72(28) S(16; 421272)

4 2 8 28 96 S(8; 428) [GK2006] L96(28) S(16; 428296)

4 2 8 35 120 S(8; 435) [GK2006] L120(28) S(16; 4352120)

4 2 8 42 144 S(8; 442) [GK2006] L144(28) S(16; 4422144)

4 2 12 11 36 S(12; 411) [FGLQ2003a‡] L36(212) S(24; 411236)

4 2 12 22 72 S(12; 422) [GK2006] L72(212) S(24; 422272)

4 2 12 33 108 S(12; 433) [GK2006] L108(212) S(24; 4332108)

4 2 16 10 32 S(16; 410) [FGLQ2003a] L32(216) S(32; 410232)

4 2 16 15 48 S(16; 415) [FGLQ2003a] L48(216) S(32; 415248)

4 2 16 20 64 S(16; 420) [FGLQ2003a] L64(216) S(32; 420264)

4 2 16 25 80 S(16; 425) [FGLQ2003a] L80(216) S(32; 425280)

4 2 16 30 96 S(16; 430) [FGLQ2003a] L96(216) S(32; 430296)

4 2 16 35 112 S(16; 435) [FGLQ2003a] L112(216) S(32; 4352112)

4 2 16 40 128 S(16; 440) [GKM2006] L128(216) S(32; 4402128)

4 2 16 45 144 S(16; 445) [GKM2006] L144(216) S(32; 4452144)

4 2 20 19 60 S(20; 419) [LFXY2002§] L60(220) S(40; 419260)

4 2 24 23 72 S(24; 423) [LFXY2002] L72(224) S(48; 423272)

4 3 8 21 72 S(8; 421) [GK2006] L72(38) S(24; 421372)

4 3 8 42 144 S(8; 442) [GK2006] L144(38) S(24; 4423144)

4 3 12 11 36 S(12; 411) [FGLQ2003a] L36(312) S(36; 411336)

4 3 12 22 72 S(12; 422) [GK2006] L72(312) S(36; 422372)

4 3 12 33 108 S(12; 433) [GK2006] L108(312) S(36; 4333108)

4 3 16 45 144 S(16; 445) [GKM2006] L144(316) S(48; 4453144)

4 3 24 23 72 S(24; 423) [LFXY2002] L72(324) S(72; 423372)

4 8 16 40 128 S(16; 440) [GK2006] L128(816) S(128; 4408128)

5 2 10 9 40 S(10; 59) [Fang, Ge and Liu (2002b)] L40(210) S(20; 59240)

5 2 10 18 80 S(10; 518) [GK2006] L80(210) S(20; 518280)

5 2 10 27 120 S(10; 527) [GK2006] L120(210) S(20; 5272120)

5 2 15 14 60 S(15; 514) [Fang, Ge and Liu (2004b)] L60(215) S(30; 514260)

5 2 15 28 120 S(15; 528) [Fang, Ge and Liu (2004b)] L120(215) S(30; 5282120)

5 2 20 19 80 S(20; 519) [LFXY2002] L80(220) S(40; 519280)

5 2 25 24 100 S(25; 524) [Fang, Lin and Ma (2000)] L100(225) S(50; 5242100)

5 2 30 29 120 S(30; 529) [LFXY2002] L120(230) S(60; 5292120)

5 3 15 21 90 S(15; 521) [Fang, Ge and Liu (2004b)] L90(315) S(45; 521390)

5 4 10 18 80 S(10; 518) [GK2006] L80(410) S(40; 518480)

6 2 12 11 60 S(12; 611) [Lu, Hu and Zheng (2003)] L60(212) S(24; 611260)

6 2 12 22 120 S(12; 622) [GK2006] L120(212) S(24; 6222120)

6 2 24 23 120 S(24; 623) [Lu, Hu and Zheng (2003)] L120(224) S(48; 6232120)

6 3 18 17 90 S(18; 617) [Lu, Hu and Zheng (2003)] L90(318) S(54; 617390)

7 2 14 13 84 S(14; 713) [Fang, Ge and Liu (2002b)] L84(214) S(28; 713284)

7 2 28 9 56 S(28; 79) [Fang, Ge and Liu (2002b)] L56(228) S(56; 79256)

8 2 64 18 128 S(64; 818) [GKM2006] L128(264) S(128; 8182128)

† GK2006: Georgiou and Koukouvinos (2006).

‡ FGLQ2003a: Fang, Ge, Liu and Qin (2003a).

§ LFXY2002: Lu, Fang, Xu and Yin (2002).
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