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The ability to predict linkages among data objects is central to many data mining tasks, such as productrecommendation and social network analysis. Substantial literature has been devoted to the link prediction
problem either as an implicitly embedded problem in specific applications or as a generic data mining task.
This literature has mostly adopted a static graph representation where a snapshot of the network is analyzed
to predict hidden or future links. However, this representation is only appropriate to investigate whether a
certain link will ever occur and does not apply to many applications for which the prediction of the repeated
link occurrences are of primary interest (e.g., communication network surveillance). In this paper, we introduce
the time-series link prediction problem, taking into consideration temporal evolutions of link occurrences to predict
link occurrence probabilities at a particular time. Using Enron e-mail data and high-energy particle physics
literature coauthorship data, we have demonstrated that time-series models of single-link occurrences achieve
comparable link prediction performance with commonly used static graph link prediction algorithms. Further-
more, a combination of static graph link prediction algorithms and time-series models produced significantly
better predictions over static graph link prediction methods, demonstrating the great potential of integrated
methods that exploit both interlink structural dependencies and intralink temporal dependencies.
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1. Introduction
Many data mining tasks involve (sometimes implic-
itly) prediction of linkages among data objects.
Examples of explicit link prediction problems include
automatic Web hyperlink creation, prediction of
genetic or protein-protein interactions, and the record
linkage problem. Other well-studied problems can
be viewed as an implicit link prediction problem
once the data are rendered with a network/graph
representation. Examples are abundant. Information
retrieval (Salton 1989) can be viewed as dealing with
prediction of links between words and documents
in a word-document bipartite graph representing
word occurrences. Recommender systems (Resnick
and Varian 1997) can be viewed as services predicting
links between users and items in a user-item bipar-
tite graph representing preferences or purchases. As
a generic data mining problem, link prediction has
recently received substantial interest in the field of
relational learning (Getoor 2003). Relational or multi-
relational learning (Dzeroski and Lavrac 2001) deals
with richly structured data, which may be described
by a relational database or using relational or first-
order logic. Objects of multiple types can be linked
with each other. Many methods have been developed

to exploit the relational structure to predict inherent
attributes of the data objects and existence of potential
linkages among data objects.
Prior work on link prediction has been primarily

formulated based on a static network setup, where a
partial network structure is known and the objective
is to predict the hidden links. In such a static network,
link occurrence is typically modeled as a one-time
event and the primary interest is on the existence
of the link. For example, one may be interested to
know whether a customer will purchase a product in
the future or whether an author will ever collaborate
with another author in the future. In many applica-
tion settings that involve dynamic evolving networks,
however, the link occurrence is preferably modeled
as a sequence of binary states or occurrence frequen-
cies, rather than a single binary state regarding its
presence. For example, in the surveillance context,
the time-series frequency patterns of the communi-
cation linkages among a group of monitored targets
are much more informative than merely the commu-
nication network structure, which represents for each
pair of monitored targets whether a communication
ever occurred or not. Much richer information could
be extracted from the frequency time series of the link
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occurrences, such as the periodic patterns and tempo-
ral trends of the communication intensities. Generally,
link prediction methods based on the static graph
representation fall short when the repeated occur-
rences of the links are of central interest and tempo-
ral patterns are the primary feature of the application
domain. To the best of our knowledge, no prior work
in the literature deals with link prediction taking as
input the link occurrence frequency time series. In this
paper, we formally introduce the time-series link predic-
tion problem and give example applications in which
such a formulation may be superior to the existing
static graph formulation.
Taking the link occurrence time series of a dynamic

network as input, one may naturally attempt to treat
the occurrence of each possible link as a stochastic
process and adopt the multivariate time-series analy-
sis framework. However, the large number of poten-
tial links poses serious challenges on the applicability
of the standard time-series analysis techniques. Most
importantly, the special graph-based structural depen-
dencies among the links need to be incorporated into
a time-series link analysis framework. The link pre-
diction literature is largely based on this fundamen-
tal assumption that the network structure itself has
predictive information regarding the hidden or future
links. Theoretically, an ideal time-series link analy-
sis framework would need to integrate temporal and
structural link dependencies simultaneously.
In this study, we propose a hybrid link prediction

approach us both the intralink time-series patterns
and interlink dependencies, which represents the first
step toward the ultimate goal of the integrated time-
series link prediction framework. We focus our study
on unipartite graphs in which links may represent
communication events between a pair of entities
(nodes), typically with repeated occurrences. We first
investigated a time-series model for link prediction,
in which the occurrence of each link is modeled as
an independent time series. Specifically, for each link,
we built an autoregressive integrated moving average
(ARIMA) model based on its past occurrence series.
Such a model ignores any interlink correlation infor-
mation, which is the main data pattern employed by
the existing static graph link prediction methods (e.g.,
paths and cluster patterns). Under this model, the
future occurrence of a particular link is entirely condi-
tioned on its past occurrences. Despite the simplicity
of this univariate link time-series model, we found
that this algorithm achieved performance comparable
with as existing link prediction methods under the
static graph representation in our experiments with
e-mail and coauthorship data. We then investigated
hybrid link prediction methods that combine the
power of the time-series model in predicting repeated
link occurrences and the ability of static graph link

prediction methods to identify new link occurrences.
Our experiments showed that such hybrid methods
achieved significantly better performance than the
time-series model and static graph methods alone.
Our findings present strong evidence for the potential
value of time-series information of link occurrences
in applications such as communication surveillances.
The fact that us a simple univariate link time-series
model can already lead to significantly improved link
prediction performance provides important justifi-
cation for further investigation into multivariate link
time-series models that incorporate the temporal and
structure link dependencies.
The rest of the paper is organized as follows.

Section 2 reviews the relevant literature on link pre-
diction and time-series analysis. Section 3 introduces
the time-series link prediction problem and discusses
example applications. Section 4 presents the use of
existing static graph link prediction methods for this
problem. Section 5 introduces a time-series link pre-
diction algorithm based on univariate link ARIMA
models and the hybrid approaches combining the
time series and existing static graph link prediction
methods. Section 6 presents the experimental study
on predicting e-mail and coauthorship links. Section 7
summarizes the main conclusions and discusses the
future directions of our research.

2. Literature Review
In this section, we review relevant research in link
prediction and provide a brief overview of time-series
analysis.

2.1. Link Prediction
In many contexts, the link structure itself is the criti-
cal data pattern exploited for prediction. A wide range
of problems can be viewed as prediction of links
based on the observed link structure, including in-
formation retrieval (Salton 1989) (predicting query-
document links based on a document-word network),
collaborative filtering (CF) recommendation (Resnick
et al. 1994) (predicting user-item links based on a
user-item interaction matrix), record linkage prob-
lem (Winkler 1994) (predicting links among records
with the same identity), and protein/genetic inter-
action modeling (Goldberg and Roth 2003) (predi-
cting underlying protein/genetic interactions based
on interaction networks observed from experiments).
Many algorithms developed for these problems also
work for the generic link prediction problem. On the
other hand, advances in the link prediction prob-
lem will have potential implications in these different
application domains.
Recently, the link prediction problem has been for-

mulated as a generic data mining task within the
field of relational learning. Various relational learning
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methods were proposed for link prediction, typi-
cally exploiting both the link structure itself and rich
descriptive attributes of data objects. Examples of
relational learning link prediction algorithms include
probabilistic relational models (Getoor and Sahami
1999, Getoor et al. 2002), relational Markov networks
(Domingos and Richardson 2001), structural logistic
regression models (Popescul and Ungar 2003), and
stochastic relational models (Yu et al. 2006). These
models can be directly applied to abstract graphs (net-
works with no vertex and edge attributes), where link
structure is the only source of predictive data pat-
terns. However, these models are typically unable to
capture the complex graph-based data patterns such
as paths, cycles, and clusters.
The link prediction problem on abstract graphs is

the focus of our study. Liben-Nowell and Kleinberg
(2003) studied the abstract graph link prediction prob-
lem for social networks of coauthorship networks.
Many algorithms developed in fields that deal with
problems with an implicit abstract graph representa-
tion are also suitable for abstract graph link predic-
tion. CF recommendation algorithms are a prominent
example of such implicit link prediction algorithms.
A variety of CF algorithms have been proposed
in the literature, including standard user-based and
item-based neighborhood algorithms (Resnick et al.
1994), cluster and generative models (Hofmann 2004),
advanced matrix analysis approaches (Sarwar et al.
2000), and graph-based algorithms (Huang et al.
2004a, b; 2002). These algorithms specifically deal
with link prediction in user-item bipartite graphs.
They can be directly applied to any bipartite graph
link prediction and be applied to unipartite graphs
with minor adaptation.

2.2. Time-Series Analysis
Almost all of the entire literature on link prediction
has been formulated based on a static network setup,
where a partial network structure is known and the
objective is to predict the hidden links of the underly-
ing complete network. In such a static network, link
occurrence is modeled as a one-time event, and the
primary interest is on the existence of the linkages
rather than the timing of the occurrence or frequency
of occurrences. However, in many application settings
that involve dynamic evolving networks/graphs, link
occurrence is preferably modeled as a sequence of
binary states or occurrence frequencies. In this sce-
nario, if we represent the occurrence of a link at a par-
ticular time using a random variable (binary or real
valued, depending on whether binary occurrences or
occurrences are modeled), we are dealing with mul-
tivariate time-series data with an exceptionally large
number of variables.

Time-series analysis is a well-established field in
statistics that provides systematic approaches to mod-
eling of data with time correlations. In this paper,
we focus on the time-domain approach because it
is typically more appropriate for dealing with possi-
bly nonstationary, shorter time-series with a focus on
forecasting future values (Shumway and Stofer 2000),
as is the case for our time-series link prediction prob-
lem. We specifically focus on the multiplicative mod-
els, represented by a systematic class called ARIMA
models (Box and Jenkins 1970). These models assume
that the observed data result from products of factors
involving differential or difference equation operators
responding to white noise input. The ARIMA model
includes the commonly used autoregressive and mov-
ing average models as special cases and is the most
widely used model with many applications such as
statistical process control (Alwan and Roberts 1988),
financial forecasting (Porter-Hudak 1990), biomedical
dynamics modeling, and Web traffic modeling and
forecasting (Bolot and Hoschka 1996). In this study,
we focus on using the standard ARIMA model for
time-series link prediction.

2.3. Relevant Literature to Time-Series
Link Prediction

The limitation of the static view of the network data
has been generally recognized. There have been many
recent studies on dynamic or evolving networks that
consider temporal connectivity data. Most of these
studies convert the temporal connectivity data into
a sequence of nonoverlapping network snapshots by
aggregating links within each discrete unit of time into
a graph. The majority of such studies extend from the
main body of network science literature to character-
ize the time-varying structure of the graph series, such
as density and diameter (Leskovec et al. 2007), sub-
graph and cycle structures (Vazquez et al. 2005), and
cluster-formation patterns (Holme et al. 2007), based
on empirical temporal network data. One recent study
(Berger-Wolf and Saia 2006) also proposed algorithms
for deriving information about the evolution of local
group formation structures within a temporal graph
series.
Most previous studies using temporal network data

focus on the characterization of the structural change
over time. As previously mentioned, to the best of
our knowledge, no prior studies have used the fre-
quency time-series of link occurrences as input for
link prediction. We have only identified three stud-
ies specifically relevant to link prediction using tem-
poral information. O’Madadhain et al. (2005) predict
that links occur in a particular time period by cre-
ating features from a static graph, constructed based
on events that occurred in a certain number of time
periods before the target time period. Although no
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sufficient technical details were provided in the paper,
it seemed that the temporal information was not
exploited in a principled manner because it was only
used for static graph construction. Sarkar and Moore
(2005) proposed an algorithm for temporal link pre-
diction that extends the latent space (or generative
model) algorithm for static graph link prediction to
consider temporal correlation of latent locations of
nodes but imposing a Markov assumption that the
latent location of a node within the state space at
time t + 1 is independent of all previous locations
given its latent location at time t. A recent working
paper (Potgieter et al. 2009) proposed using a tempo-
ral extension of the static graph metrics, such as the
percent change of the number of common neighbors
over a period of time for link prediction. Although
these are interesting ideas for exploiting the tempo-
ral information to enhance link prediction, no prior
study has used time-series analysis for link prediction
by treating the temporal graph data as a collection of
a link occurrence frequency series as proposed in this
study.

3. The Time-Series Link
Prediction Problem

3.1. Problem Formulation
The time-series link prediction problem is formally
introduced as follows. In this paper, we focus exclu-
sively on undirected unipartite graphs and adopt
the discrete-graph series representation of the tem-
poral network data. Let V be the list of vertices,
V = �1�2� � � � �N �. Because we are interested in deal-
ing with weighted graphs, we adopt the adjacency
matrix representation. A graph series is a list of
graphs (G1� � � � �GT ) corresponding to a list of sym-
metric adjacency matrices (M1� � � � �MT ). EachMt is an
N × N matrix with nonzero elements Mt�i� j� corre-
sponding to edges in E�Gt�: �i� j� ∈ E�Gt�. The value
of Mt�i� j� is the frequency of occurrences of the undi-
rected edge (i� j) during the time period t, which can
also be viewed as an integer number label of the edge
in Gt . Given such a weighted graph series, the time-
series link prediction problem is aimed at predicting
the occurrence probabilities of edges at time T + 1. In
many situations, more attention is placed on the rank-
ing of the occurrence probabilities of edges instead of
the exact occurrence probability of each edge. In this
paper, the output of the link prediction problem will
be specified as an N × N score matrix S with each
element S�i� j� being a link occurrence score that is
proportional to the predicted occurrence probability
of edge (i� j). This setup would encompass nonprob-
abilistic link prediction methods, as well as the prob-
abilistic methods that directly output link occurrence
probabilities.

The prominent feature of the above formulation
is the availability of the time-series link occurrence
frequency. The extant literature on link prediction
exclusively used a static network setup, where the
partial structure of the network is used to predict
the potential presence of other links. For example,
Liben-Nowell and Kleinberg (2003) studied the link
prediction problem for social networks, where the
goal is to predict future collaborations based on the
collaboration history of authors in a research field. In
their study, a binary undirected graph is used to rep-
resent the collaboration history, where the presence
of a collaboration edge between two author vertices
represents at least one paper coauthored by the two.
Under this formulation, the frequency information of
the link occurrences and the time dimension are both
ignored, because multiple coauthored papers over a
long period of time are simply represented as a sin-
gle binary link in the graph. Corresponding to this
representation, the predictive objective is exclusively
on the occurrence probability of new collaborations,
whereas the repeated old collaborations are generally
not studied.
Using a static network representation makes sense

for certain application domains. For example, if we
are interested in predicting consumer–movie links
using a consumer–movie network constructed using
past records of movie-seeing activities, it is reasonable
to take a static representation and focus on predicting
whether a consumer will ever see a particular movie
that he or she has not seen before (i.e., predicting the
occurrence probability of a binary consumer–movie
link). However, in many other cases, this static net-
work representation may not serve the modeling pur-
pose. In the next subsection, we discuss the example
application domain for communication surveillance,
with which the time-series link prediction formula-
tion is critical.

3.2. Example Applications
Time-series link prediction can find important
applications in communication network monitor-
ing and surveillance contexts, mainly because of
repeated occurrences of communication links and
time-sensitive analyses of link occurrences. The link
occurrence probability predictions within a communi-
cation network can be used in two general ways: (1)
identifying links that are not observable or links that
will occur in the future, and (2) identifying anomalous
links.
The recent surge of academic research in social

network modeling has been largely motivated by
the task of analyzing and monitoring terrorist net-
works. One major objective in analyzing terrorist
networks is to conjecture that particular individuals
are working together (or communicating with each
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other) even though their current interactions can-
not be observed. This is intuitively a link prediction
problem. For a fixed set of monitored targets with
repeated interactions over a long period of time, we
are not only interested in whether two individuals
ever had interactions, but also whether they are inter-
acting with each other at the present time or in the
near future, regardless of whether or not they have
interacted previously. Here, the temporal pattern of
the two individuals’ past interactions may provide
crucial information for building an accurate link pre-
diction model. Adopting a static network representa-
tion and only focusing on the all-time existence of the
link between two individuals could be misleading. In
other surveillance or criminal investigation contexts,
we can find similar situations, where the ability to
uncover the unobserved links at the present time or
in the near future is desired.
Anomalous link detection, on the other hand,

focuses only on the observed links (Rattigan and
Jensen 2005). The idea is similar to outlier detection
in statistics. The time-series link prediction models
give the probability of the event of a link occurring
at a particular time. The small-probability event is
regarded as anomalous, corresponding to certain spe-
cial events that rarely occur under normal situations.
For computer network traffic monitoring, one can use
the predicted probability of communication between
two IP addresses based on the network traffic time-
series in the past. From these predicted probabilities,
the highly anomalous (unlikely) communications can
be identified, which could lead to identification of net-
work abuses or malicious intrusions. Similarly, e-mail
or other forms of communications between individu-
als in an organizational context or any kind of group
or community can be analyzed to identify anomalous
communications. These unusual communications can
lead to further investigations. This anomaly detection
capability is particularly important for communica-
tion channels through which voluminous information
is exchanged on the real-time basis.

4. Static Graph Algorithm Approaches
In this section, we briefly discuss commonly used link
prediction algorithms under a static graph represen-
tation (or static graph link prediction algorithms) and
the use of these algorithms in the time-series link
prediction context. These algorithms ignore the time
dimension and frequency of link occurrences.
To predict links that would have occurred at

time T + 1, under a static graph approach, each
of the weighted graph Gt in the graph series
(G1� � � � �GT ) is first reduced to a single-weighted
graph G1∼T with the corresponding adjacency matrix
M1∼T , where M1∼T �i� j� = ∑T

t=1Mt�i� j�. The graph

G1∼T is further reduced to a binary graph G∗
1∼T with

a binary adjacency matrix M∗
1∼T , where M∗

1∼T �i� j�= 1
if M1∼T �i� j� > 1, and 0 otherwise. Taking G∗

1∼T as
input, static graph link prediction algorithms pro-
duce the score matrix S. Most if not all literature
adopts such a static graph representation. In this
section, we briefly introduce six commonly used
static graph link prediction algorithms. Among these,
four algorithms, common neighbors, preferential attach-
ment, Adamic/Adar, and Katz, were included in Liben-
Nowell and Kleinberg (2003) for social network link
prediction. Common neighbors, Adamic/Adar, and
Katz were selected since the study showed that
these three algorithms had consistent superior perfor-
mances compared with a large number of other algo-
rithms, including graph distance, SimRank, PageRank,
and others. We also included the worst-performing
algorithm, preferential attachment, in that study. In
addition, we also include two commonly used algo-
rithms for link prediciton, generative model and spread-
ing activation algorithms, which were not included in
Liben-Nowell and Kleinberg (2003).
Common Neighbors. In graph G∗

1∼T , two nodes,
i and j , are neighbors of each other if edge �i� j� ∈
E�G∗

1∼T �. The common neighbors (CN) algorithm sim-
ply uses the number of common neighbors of a pair
of nodes as the score in the score matrix: S�i� j� =
��k ∈ V � �i� k� ∈ E�G∗

1∼T �� �j� k� ∈ E�G∗
1∼T �� k 	= i� j��.

Under the matrix representation, S = M∗
1∼T · M∗

1∼T .
The CN algorithm captures the basic notion of link
transitivity. Intuitively, a direct tie between i and j is
considered to be more likely to form when more tran-
sitive ties between nodes i and j in the form of i−k− j
are observed. Such a notion has been extensively stud-
ied in social science regarding the fundamental bal-
ance theory of social interactions (Heider 1946).
Preferential Attachment. In graph G∗

1∼T , the degree
d�i� of node i is defined as the number of edges inci-
dent on node i: d�i� = ��j ∈ V � �i� j� ∈ E�G∗

1∼T ���. The
preferential attachment (PA) algorithm is motivated
by the preferential attachment phenomena (Barabasi
and Albert 1999) discovered in a variety of real-
world complex systems. Under this algorithm, the
link occurrence score is set to be the product of the
degrees of the involved nodes: S�i� j� = d�i� × d�j�.
The basic intuition is that links between highly con-
nected nodes are more likely. One can also interpret
the PA algorithm as an independence model on link
occurrence of nodes:

Pr(a link occurs between i and j�

= Pr(a link that occurs on i�

×Pr(a link that occurs on j��

Adamic/Adar. Adamic and Adar (2003) proposed
a measure of similarity between two home pages x
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and y as
∑

z� features shared by x�y �1/ log�frequency�z���.
Adapting this for link prediction, we can set the
link occurrence score between i and j to be S�i� j� =∑

k∈V � �i� k�∈E�G∗
1∼T �� �j� k�∈E�G∗

1∼T � �1/ log�d�k���. It is clear that
this measure extends from the CN algorithm by
assigning a weight for each common neighbor that
is inversely related to its log degree (or occurrences
in links). One should note that this type of simi-
larity measure has been well studied in the infor-
mation retrieval literature, where the inverse doc-
ument frequency is used as the weight for each
word for “common-word”-based document similarity
computation.
Katz. The Katz (KZ) algorithm (Katz 1953) differs

from the CN and Adamic/Adar (AA) algorithms in
that it goes beyond paths of length 2 between the tar-
get node pair. The Katz algorithm sums over all paths
of varying lengths, exponentially damped by length
to give short paths higher weights. In our context,
S�i� j� =∑�

l=1�
l · �paths
l�i� j�, where paths
l�x�y represents

the set of paths between i and j of length l, and � con-
trols the exponential damping. It was shown in Liben-
Nowell and Kleinberg (2003) that the score matrix can
be derived as (I −�M∗

1∼T �
−1− I .

Generative Model. Under this approach, latent
class variables are introduced to explain the link
occurrence patterns (Hofmann 2004, Ungar and Foster
1998). Typically, one can use one latent class vari-
able to represent the unknown cause that governs
the link occurrence process. The graph G∗

1∼T is con-
sidered to be generated from the following three
probabilistic process: (1) select a node i with proba-
bility P�i�; (2) choose a latent class with probability
P�z � i�; and (3) generate link (i� j) (i.e., adding (i� j)
to E�G∗

1∼T �� with probability P�j � z�. Thus the prob-
ability of observing a link between i and j is given
by P�i� j� = ∑

z P�i�P�z � i�P�j � z�. The prior and con-
ditional probabilities, P�i�, P�z � i�, and P�j � z�, are
estimated using the expectation maximization algorithm
(Dempster et al. 1977) to maximize the log-likelihood
function of observed links L =∑

�i� j�∈E logP�i� j�. The
link occurrence score matrix is set using the estimated
probabilities: S�i� j�= Pr(i� j).
Spreading Activation. The spreading activation

(SA) algorithm explores the ensemble of paths con-
necting the vertex pair of all lengths and heuristically
relates a larger number of paths of different lengths
with higher link probability, similar to the KZ algo-
rithm. A Hopfield network-based implementation of the
SA algorithm has been shown to have competitive
performance in previous studies (Huang et al. 2004a).
In this approach, each node in the graph is assigned
an activation level, �j� j = 1� � � � �N . To compute the
connectedness score between the node i and all other
nodes in the graph, node i is set to have activation
level 1 (�i = 1), and the activation levels of all other

nodes are set to 0. After initialization, the algorithm
repeatedly performs the following activation proce-
dure: �j�t+ 1� = fs!

∑n−1
i=0 tij�i�t�#, where fs is the con-

tinuous SIGMOID transformation function or other
normalization function; tij = $ (0< $ < 1) if (i� j) is in
the edge set of the graph. The algorithm stops when
activation levels of all nodes converge. The final acti-
vation levels �js (j 	= i) give the connectedness scores
between i and other nodes.
The six static graph link prediction methods intro-

duced above use an unweighted static graph repre-
sentation in which only the binary link occurrences
information is used. Between this simplest repre-
sentation and the original weighted graph time-
series representation in our proposed time-series link
prediction problem, one can have an intermediate
representation of weighted static graphs that pre-
serve the cumulated frequencies of link occurrences
but ignore the temporal pattern of the frequencies.
The standard unweighted static graph link predic-
tion algorithms introduced can be adapted straight-
forwardly to exploit the link occurrences frequency
information. For the CN algorithm, the score matrix
can be computed from the matrices correspond-
ing to the weighted static graph: S = M1∼T · M1∼T .
The PA algorithm can be adapted by redefining the
degree of a node i in the weighted graph con-
text as d�i� = ∑

j M1∼T �i� j�. The AA algorithm can
be adapted similarly by using the degree defini-
tion for the weighted graph. The KZ algorithm can
simply use M1∼T in deriving the score matrix as
(I −�M1∼T �

−1 − I . The generative model (GM) algo-
rithm can be adapted by incorporating the number of
occurrences of each link into the likelihood function
L=∑

�i� j�∈E M1∼T �i� j� logP�i� j� as in Hofmann (1999).
The SA algorithm can be adapted by defining tij : tij =
$1/M1∼T �i� j� (0< $ < 1). These adapted algorithms still
mainly rely on interlink dependencies to predict links
but take the total number of link occurrences into
consideration.

5. Time-Series Link Prediction
Approaches

In this section, we first introduce the time-series
model that exploits the time-series information for
link prediction. We then explore hybrid prediction
methods integrating the time-series predictions and
existing static graph model predictions.

5.1. Link Occurrence Time-Series Model
For each link (i� j), (M1�i� j�� � � � �MT �i� j�) gives the
time-series of its occurrence frequency. To use the
time-series frequency information of link occurrences,
we use the popular ARIMA model (Box and Jenkins
1970) to fit a time-series model for each link occur-
rence series. For ease of illustration we denoteMt�i� j�
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as xijt in this section. Viewing the occurrence fre-
quency series xijt as a process, it is said to be
ARIMA(p�d� q) if (�B��1−B�dxijt = *+ +�B�wt , where
B is the backshift operator: Blxijt = xijt−l, (�B� and +�B�
are polynomial functions of the backshift operator:
(�B�= 1−(1B−(2B

2−· · ·−(pB
p and +�B�= 1++1B+

+2B
2 + · · · + +qB

q , *, (1� � � � �(p, +1� � � � � +q , d are con-
stants, and wt is a white noise series with mean zero
and variance -2w. The ARIMA formulation general-
izes from several commonly used time-series models
including autoregressive and moving average mod-
els. For example, ARIMA(0�1�1) corresponds to the
exponentially weighted moving averages (EWMA).
For model selection, we set the search space by

allowing p = 0�1�2�3�d = 0�1, and q = 0�1�2�3. We
adopted the commonly used AIC measure (Akaike
1974) to assess the quality of the model, which can be
derived as

ln
(∑T

t=max�p� q�+1�xijt − x̂ijt�
2

T −max�p� q�
)
+ 2�p+ q + 2�

T −max�p� q� �

The model with the smallest AIC score was chosen
as the final model which was then used to provide the
predicted link occurrence frequency at T + 1, x̂ijT+1,
and its prediction error sd�x̂ijT+1�. The link occurrence
score for the link (i� j) is set to be the predicted prob-
ability for the link occurrence frequency at T +1 to be
greater than 1: S�i� j�= Pr(x̂ijT+1 > 1).
Modeling the weighted graph series as a set of

independent link occurrence series gives the simplest
time-series model for link occurrences. The straight-
forward extension would be to consider the temporal
correlations among the links. Theoretically the com-
plete model should consider the correlations among
all links simultaneously using multivariate time-series
analysis frameworks such as vector autoregression
and state-space models (Gilbert 1995). However, the
large number of links makes such models intractable.
In this paper we focus on the independent link occur-
rence time-series model and assess whether such
a minimum model can produce useful predictions
regarding future link occurrences. We leave more
advanced multivariate time-series analysis for future
research. As will be seen later, our approach demon-
strates strong predictive power on future link occur-
rences. It clearly justifies further investigation into
more advanced multivariate time-series models for
further performance improvement.

5.2. Hybrid Approach to Time-Series
Link Prediction

A common feature of existing link prediction appro-
aches under the static graph representation is that the
link occurrence probability of the link (i� j) is deter-
mined by other links related to it. The CN and AA
algorithms rely on the number of occurrences of link

pairs of the form ((i� k), (k� j)). The PA algorithm relies
on the degrees of node i and node j (total numbers
of links associated with node i and node j). For a
densely connected graph, the link (i� j) itself only con-
tributes one degree to each node; therefore the pref-
erential attachment score does not really reflect the
information from the link (i� j). The GM algorithm
estimates the conditional probabilities associated with
each node and the latent-class variable P�z � i� and
P�j � z� and relies on them to derive the joint proba-
bility of observing the link (i� j). Again, the link (i� j)
itself, as one instance of the data used to fit the condi-
tional probabilities, has only a minor effect on the con-
ditional probability estimates, especially when nodes i
and j are linked to many other nodes, because the
conditional probability estimates are derived from all
links incident on nodes i and j . The KZ and SA algo-
rithms consider all possible paths connecting node i
and node j . These paths can be considered as the
reachable links from the link (i� j). Although the link
(i� j) gets the highest weight among all paths connect-
ing nodes i and j , within a densely connected graph,
that single link again only represents a small fraction
of the total connectedness score. In summary, these
link prediction algorithms under the static graph rep-
resentation rely heavily on the interlink dependencies
to make predictions.
The univariate time-series link prediction model, on

the other hand, relies entirely on the temporal depen-
dencies of the individual links themselves and ignores
any interlink dependencies. In fact, our time-series
algorithm can only give predictions on the links that
have occurred in the background graph series. It can
be argued that our proposed univariate time-series
link prediction model exploits data patterns that are
almost conceptually orthogonal to those captured by
the static graph link prediction algorithms. It makes
intuitive sense to combine the two approaches to
achieve improved link prediction performance. Ulti-
mately the graph-based interlink dependencies (e.g.,
paths and neighbors) should be extended to capture
time-series information and be tightly integrated into
a time-series link prediction model. We have lim-
ited our investigation to simple combination meth-
ods such as average and product in this paper and
leave more advanced hybrid algorithms for future
research.
Figure 1 summarizes the hybrid time-series link

prediction algorithm, which takes as input an adja-
cency matrix series (M1� � � � �MT ) and a static link
prediction algorithm and produces a link occurrence
probability score matrix for time T + 1. Figure 1 illus-
trates the algorithm using unweighted static graph
representation for static link prediction and uses
product to combine the static link and time-series pre-
diction scores. We can also use weighted static graph
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Hybrid Time-Series Link Prediction Algorithm
Input: Adjacency matrix series (M1� � � � �MT ), where Mt�i� j�

gives the occurrence frequency of edge (i� j) during time t, i� j =
1�2� � � � �N ; static graph link prediction algorithm g: M →Z, where
M is an adjacency matrix corresponding to a graph and Z is a link
occurrence probability score matrix.

Output: S, S�i� j� gives the probability score of edge (i� j)
at time T + 1.

Algorithm:
1. Reduce the adjacency matrix series to a single adjacency
matrix corresponding to a static graph representation
1.1 Compute M1∼T : M1∼T �i� j�=

∑T
t=1Mt�i� j�

1.2 Compute M∗
1∼T : M

∗
1∼T �i� j�= 1 if M1∼T �i� j� > 1,

0 otherwise
2. Compute static graph link predictions: SS = g�M∗

1∼T �
3. Estimate univariate time-series link prediction model
3.1 Construct a zero N ×N matrix ST

3.1 Repeat for each edge (i� j)
3.2 Construct the link occurrence frequency series {xijt},

where xijt =Mt�i� j�
3.3 Repeat for p= 0�1�2�3
3.4 Repeat for d = 0�1
3.5 Repeat for q = 0�1�2�3
3.6 Estimate model ARIMA�p�d� q� and

obtain the AIC score
3.7 Identify the model with best AIC score and

obtain x̂ijT+1 and sd�x̂ijT+1�
3.8 ST �i� j�= Pr(x̂ijT+1 > 1).

4. Combine static graph and time-series prediction
to obtain S:
4.1 Normalize the score matrices: SS = SS/sum(SS),

ST = ST/sum(ST )
4.2 Identify minimum nonzero scores in SS and

ST : mS and mT

4.3 Repeat for i= 1 to N
4.4 Repeat for j = 1 to N
4.5 S�i� j�= �SS�i� j�+mS/*�× �ST �i� j�+mT /*�, * > 1.

Figure 1 Hybrid Time-Series Link Prediction Algorithm

representation and use the adapted static graph link
prediction algorithms described in §4 by skipping
Step 1.2 in the algorithm and producing the link prob-
ability score matrix SS directly from M1∼T . In Step 4 of
the algorithm, adding a fraction of the minimum score
(dividing by the parameter * > 1) to the link proba-
bility scores is to prevent loss of predictive informa-
tion when one of the two scores to be combined is
zero. This design is based on the understanding of
the complementary nature of the two link prediction
approaches. Because only the ranks of the predicted
scores matter but not the exact scores, any value of *
should generally work as long as it is greater than 1.
Setting the value larger for *� we essentially give a
heavier penalty for the predicted occurrence probabil-
ity of the link if one of the two approaches generates
a zero score.

6. Experimental Study
6.1. Data
We used two data sets to evaluate our proposed
approach to link prediction given a series of link

occurrence frequencies. We focus in this paper on
presenting the results of the Enron e-mail data set
because the capability to predict the likelihood of
link (e-mail) occurrences in this context has the direct
practical relevance for surveillances purpose. For
example, being able to detect the anomalous e-mail
communication among a group of surveillance tar-
gets may allow the analysts to identify important
leads for critical events. We also report the experi-
mental results on the coauthorship links within the
field of high-energy particle physics. Here, a coau-
thored paper represents the extensive communica-
tions among the coauthors. We use this data set
mainly as a validation data set to understand the
behavior of the time-series and hybrid link prediction
algorithms in different domains. Meanwhile, the pre-
dicted link likelihood among the authors may provide
an interesting approach to detect innovative ground-
breaking papers in the field, as shown in Rattigan and
Jensen (2005).

6.1.1. Enron E-mail Data Set. We used a prepro-
cessed version of the Enron e-mail data set provided
by Shetty and Adibi (2005) (available at ftp://ftp.isi.
edu/sims/philpot/data/enron-mysqldump.sql.gz).
This data set contains 252,759 e-mails from Enron
employees, mainly senior managers. In our study,
we have focused on e-mails sent from and to these
151 people. The final e-mail collection contained
21,254 e-mails during the period from May 11, 1999
to June 21, 2002. We performed the link prediction
analysis mainly on the monthly e-mail graphs. In
this study, an e-mail graph at month t, Gt , is an
undirected graph with edges connecting senders
and recipients of e-mails during that month. An
edge (i� j) represents that there has been at least
one e-mail communication between i and j (either i
sending at least one e-mail with recipients includ-
ing j , or j sending at least one e-mail with recipients
including i). The number of e-mails between i and j
in month t gives the link occurrence frequency or
the weight of the link Mt�i� j�. In total, there were
1,526 unique e-mail links with a total number of link
occurrences of 47,088. Figure 2 shows the number
of e-mail links and link occurrences across the 38
months in our data set marked with major Enron
events. The peak level e-mail communication in
these data occurred around October 2001, with 531
distinct e-mail links totaling 8,143 link occurrences.
The peak month corresponded to Enron’s filing $618
million in losses, transferred from “special purpose
entities” as net losses and the start of the SEC
inquiry. The Enron e-mail communication context
is particularly appropriate for the time-series link
prediction setup, because we are interested in the
communications among a stable set of individuals
with repeated communications—not only whether a
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Figure 2 Number of Links and Link Occurrences over Time with Enron Events

pair of individuals has ever communicated or not,
but also in who communicated with each other at a
particular time.

6.1.2. High-Energy Particle Physics Coauthor-
ship Data Set. The high-energy particle physics coau-
thorship data set is based on data from the arXiv
archive and the Stanford Linear Accelerator Center
SPIRES-HEP database provided for the 2003 KDD
Cup competition on citation prediction with addi-
tional preparation performed by the Knowledge Dis-
covery Laboratory, University of Massachusetts at
Amherst (available at http://kdl.cs.umass.edu/data/
hepth/hepth-info.html). This data set has been widely
used in many studies on modeling of social networks
and relational learning in general and on link pre-
diction in particular, including the coauthorship link
prediction study (Liben-Nowell and Kleinberg 2003).
The complete data set contains 29,555 papers by 9,200
authors with 87,794 coauthorship relationships during
the period from 1992 to 2003. Similar to our treatment
of the Enron e-mail data set, we decided to focus on
the top 102 most productive authors who authored
more than 80 papers in this data set. We only included
the coauthorship links among these 102 authors in our
experiment.
The final data set used for the experiment contained

1,172 papers authored by at least two of the top 102
authors. In the end, 95 authors were included in the
experiment data. There are seven top authors who did
not coauthor with other top authors. Because some

papers had multiple submissions to the database,
we used the latest submission time as the times-
tamp for each paper. The 1,172 papers were submitted
between January 1992 and May 2003. We performed
the link prediction analysis on the quarterly coauthor-
ship graphs. A coauthorship graph at quarter t, Gt , is
an undirected graph with edges connecting coauthors
of papers submitted during that quarter. An edge (i� j)
in such a graph represents that there has been at
least one paper coauthored by i and j . The number of
papers containing i and j in the author list in quar-
ter t gives the link occurrence frequency Mt�i� j�. In
total, there were 280 unique coauthorship links with
1,796 link occurrences. Compared to the e-mail data
set, the coauthorship data set contains sparser com-
munication graphs with fewer link occurrences and
more stable link occurrences over time.

6.2. Experimental Setup and
Implementation Details

In our experiments, we adopted a moving-window
approach to evaluate the performance of time-series
link prediction algorithms. Given a specified window
size T , for each time period t (t > T ), we use graphs
of T previous periods (Gt−T � � � � �Gt−1) to predict links
that occur in the current period (Gt). We refer to
(Gt−T � � � � �Gt−1) as the background graph series for Gt .
Generally, with longer background graph series our
proposed approach is able to capture the poten-
tial within-link occurrence dependency patterns to
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complement the typical methods based on cross-link
dependency patterns. On the other hand, one may
argue that the most recent graph Gt−1 may contain
the most critical temporal dependency information
for predicting Gt . While the ARIMA model should be
able to detect this pattern by arriving at a short-length
autocorrelation model in theory, we also included
in our experiment a simple algorithm by using the
occurrence counts in Gt−1 as the link occurrence scores
for Gt , which we refer to as the T − 1 algorithm. As
we will see later in the experimental results, the pro-
posed ARIMA model consistently significantly out-
performed the T −1 algorithm. For nodes that are not
linked to any other nodes in the background graph
series, no link prediction algorithm is able to give any
informative predictions. Therefore, in this study, we
focus on predicting links between nodes that have
appeared in the background graph series.
To evaluate the link prediction performance, we

construct a receiver operating characteristics (ROC)
curve (Bradley 1997) with the x-axis being the per-
centage of links not occurring in Gt (negative links) that
are in the selected links (the number of negative links
predicted to be positive divided by the total num-
ber of negative links) and the y-axis being the per-
centage of actually occurring links (positive links) that
are in the selected links (the number of positive links
predicted to be positive divided by the total num-
ber of positive links). As we move along the x-axis,
the larger percentage of links are selected (by low-
ering the link occurrence score threshold), and the
percentage of actually occurring links that are in the
selected links monotonically increases. When all links
are selected the percentage of the selected links will
be 1. Therefore the ROC curve always starts at (0�0)
and ends at (1�1). The ROC curve associated with
prediction by randomly selecting links to include will
result in a 45-degree line. A perfect link prediction
algorithm should assign higher link occurrence scores
to those links actually occurring in Gt than all other
links, which will result in a ROC curve formed by
two line segments, �0�0�–�0�1� and �0�1�–�1�1�. The
standard measure to assess the quality of the ROC
curve is the area under the curve (AUC) measure. The
AUC measure is strictly bounded between 0 and 1.
The perfect algorithm has an AUC measure of 1 and
the random algorithm has an AUC measure of 0.5.
We consider the AUC measure to be the preferred

measure of the quality of link prediction over other
measures such as precision and recall because one
needs to set (often arbitrarily) the number of links
to include in the set of predicted links to derive the
percentage of links in this set to be actual links (the
precision measure) and the percentage of actual links
appearing in this set (the recall measure). When we

construct the ROC curve, we have a complete charac-
terization of all sizes of the set of predicted links. The
AUC measure gives a summary metric for the algo-
rithm’s overall performance with different prediction
set sizes, while a detailed look into the shape of the
ROC curve reveals the performance of the algorithm
at each prediction set size.
For each time period t (t > T ) we first prepared

the background graph series containing T graphs.
We then reduced these background graph series to
a single background graph and applied static graph
link prediction algorithms. For standard link predic-
tion algorithms, the background graph is unweighted,
only representing the binary occurrences of the links
in previous T periods. Because our proposed time-
series link prediction algorithm utilizes the frequency
information, to have a close comparison, we also cre-
ated a frequency background graph by setting the
frequency of a link as the sum of frequencies of
that link in the background graph series and applied
the frequency-based modification of the standard
link prediction algorithms described in §4. We then
applied the proposed time-series link prediction algo-
rithm using the original background graph series and
compared it with the two sets of performance mea-
sures for static graph link prediction algorithms. Last,
we investigate the performance of hybrid methods
combining the static graph link prediction algorithms
and the proposed time-series algorithm. Because our
experimental results showed no substantial difference
between the performances of the static graph algo-
rithms with the binary and frequency background
graph, the static graph algorithm without frequency
modification was used to combine with the time-
series algorithm.

6.3. Experimental Results

6.3.1. Enron E-mail Data Set Results. Because
our data cover 38 months from May 1999 to June 2002,
with the moving-window size set to 13 months, we
generated predictions for 25 months from June 2000
to June 2002. Table 1 shows the link prediction perfor-
mances of the static graph link prediction algorithms,
the proposed time-series algorithm (TS), and the T −1
algorithm measured by AUC when T is set to 13. The
static graph algorithms include the common neigh-
bors (CN), preferred attachment (PA), Adamic/Adar
(AA), Katz (KZ), generative model (GM), and spread-
ing activation (SA) algorithms. Two sets of results are
reported for these algorithms under the binary and
weighted static graph representations. In Table 1, the
boldface measures indicate the best-performing algo-
rithm for that month. The last three months had an
extremely small number of links. We exclude these
three months in our comparison of algorithms but
still present the results for the sake of completeness.
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Table 1 AUC Measures of the Static Graph and Time-Series Algorithms––Enron E-mail Data

Binary static graph Weighted static graph
Year- No. of target
month links CN AA PA GM SA KZ CN AA PA GM SA KZ TS T − 1

200006 61 0�7704 0�7792 0�7740 0�8301 0�7844 0�8751 0�7744 0�7752 0�7774 0�8402 0�8292 0�8843 0�8488 0�7839
200007 84 0�7836 0�7952 0�7575 0�8636 0�7914 0�9112 0�8006 0�8112 0�7780 0�8231 0�8586 0�9173 0�8175 0�7591
200008 134 0�7698 0�7805 0�7081 0�8095 0�7564 0�8294 0�7724 0�7716 0�6998 0�7883 0�7730 0�8340 0�7653 0�7266
200009 121 0�8492 0�8522 0�7840 0�8844 0�8461 0�9267 0�8467 0�8469 0�7682 0�8781 0�8457 0�9274 0�8837 0�8161
200010 142 0�8716 0�8814 0�7578 0�8925 0�8437 0�9232 0�8705 0�8721 0�7342 0�8461 0�8226 0�9251 0�8861 0�7933
200011 190 0�8332 0�8393 0�6992 0�8188 0�7924 0�9093 0�8317 0�8313 0�6693 0�7916 0�7629 0�9027 0�8253 0�7652
200012 183 0�8781 0�8967 0�7215 0�8864 0�8389 0�9310 0�8828 0�8786 0�6981 0�8431 0�8065 0�9283 0�8947 0�8409
200101 162 0�8759 0�8818 0�7271 0�8564 0�8388 0�9157 0�8689 0�8669 0�6763 0�8555 0�8034 0�9025 0�8235 0�7565
200102 190 0�9014 0�8990 0�7534 0�8849 0�8812 0�9380 0�8952 0�8797 0�6994 0�8465 0�8301 0�9218 0�8912 0�7997
200103 199 0�9153 0�9172 0�7782 0�8904 0�8986 0�9452 0�9118 0�9042 0�7516 0�8738 0�8504 0�9376 0�9155 0�8384
200104 229 0�9002 0�9053 0�7254 0�8830 0�8887 0�9322 0�9034 0�8944 0�7196 0�8374 0�8152 0�9209 0�8585 0�7911
200105 246 0�8100 0�8180 0�6728 0�8170 0�7864 0�8424 0�8134 0�7975 0�6366 0�7955 0�7319 0�8289 0�7803 0�7300
200106 192 0�8410 0�8485 0�6427 0�8450 0�7908 0�8742 0�8404 0�8334 0�6490 0�7964 0�7102 0�2178 0�7831 0�7369
200107 228 0�8110 0�8279 0�6570 0�8386 0�7925 0�8639 0�8181 0�8116 0�6402 0�8063 0�6976 0�1987 0�7982 0�7208
200108 368 0�8363 0�8504 0�6504 0�8321 0�7945 0�8670 0�8377 0�8261 0�6923 0�8068 0�7070 0�8762 0�7594 0�6908
200109 342 0�8619 0�8735 0�6716 0�8640 0�8043 0�9010 0�8523 0�8307 0�6485 0�8468 0�7076 0�8727 0�8697 0�7775
200110 530 0�8653 0�8699 0�6568 0�8473 0�7933 0�8876 0�8514 0�8275 0�6303 0�8317 0�6987 0�8449 0�7986 0�7466
200111 432 0�8864 0�8952 0�6651 0�8559 0�8140 0�9055 0�8496 0�8207 0�6398 0�8539 0�6577 0�8422 0�8374 0�7745
200112 303 0�8999 0�9059 0�6909 0�8920 0�8371 0�9187 0�8725 0�8502 0�6950 0�8653 0�6469 0�8575 0�8982 0�8342
200201 293 0�8757 0�8817 0�6625 0�8664 0�8143 0�9024 0�8598 0�8347 0�6578 0�8539 0�6453 0�8243 0�8415 0�7362
200202 264 0�8401 0�8422 0�6810 0�8241 0�8065 0�8606 0�8114 0�7918 0�7027 0�8153 0�5950 0�7911 0�8059 0�7240
200203 75 0�9198 0�9336 0�5740 0�9470 0�8525 0�9422 0�8392 0�7815 0�5437 0�9031 0�5477 0�0429 0�9338 0�7920
200204 2 0�4100 0�5218 0�5064 0�7080 0�3977 0�8819 0�4049 0�4607 0�4152 0�8233 0�3055 0�0853 0�9997 0�9998
200205 10 0�6908 0�7397 0�5263 0�7226 0�6222 0�7814 0�6581 0�6986 0�6711 0�6774 0�6718 0�1178 0�7630 0�7632
200206 9 0�7502 0�7733 0�6003 0�8221 0�6263 0�8279 0�6644 0�6900 0�6342 0�7490 0�7738 0�0815 0�8971 0�9217

Average 0�8259 0�8404 0�6818 0�8473 0�7877 0�8917 0�8133 0�8075 0�6731 0�8259 0�7238 0�6994 0�8470 0�7848
Average excluding 0�8544 0�8625 0�7005 0�8604 0�8203 0�9001 0�8456 0�8335 0�6867 0�8363 0�7429 0�7818 0�8416 0�7697

last 3 months

For 21 of the 22 months, the KZ algorithm with
the weighted or unweighted graph had the best per-
formance and therefore had the best overall perfor-
mance. In the 22nd month, the GM algorithm with
the unweighted graph had the best performance. On
average the KZ algorithm achieved the AUC measure
of 0.9001, significantly better than the second-best-
performing algorithm (AA) with a paired two-sample
t-test p-value smaller than 0.0001. Generally, the stan-
dard link prediction algorithms performed better with
the binary graph than the weighted graph. In our
later analysis we will focus on analyzing the stan-
dard static graph link prediction algorithms under the
binary setting.
Our proposed time-series link prediction algorithm

was able to achieve an average AUC measure of
0.8416, significantly better than the PA (0.7005) and
SA (0.8203) algorithms and not significantly different
from the CN (0.8544) and AA (0.8652) algorithms at
the 0.01 significance level with the paired two-sample
t-tests. Given that our time-series algorithm does not
consider interlink correlations at all and only relies
on the time correlations of occurrence frequencies
of the individual links, its competitive performance
relative to the existing static graph link prediction

algorithms is fairly surprising. It shows that the tem-
poral distribution of the occurrence frequencies of
a link contains valuable information for predicting
its future occurrence. This relatively straightforward
data pattern actually has greater predictive power
than several graph-based interlink dependency pat-
terns used by the static graph link prediction algo-
rithms in our study. The performance of the T − 1
algorithm makes this message even stronger. By sim-
ply using the link occurrence frequency in Gt−1 as
the link occurrence score, we achieved the average
AUC measure of 0.7697, significantly better than the
PA algorithm.
The comparison between our proposed time-series

algorithm and the T − 1 algorithm reveals that the
ARIMA model adds additional predictive power by
looking into longer time series of link occurrences.
The T − 1 algorithm uses the most recent link occur-
rence information for link prediction directly. One
may wonder how static graph algorithms will per-
form taking the most recent background graph Gt−1 as
input—in other words, setting T = 1. Furthermore, we
are also interested in the performance of these algo-
rithms and the time-series algorithm as we vary the
value of T . Table 2 presents the average AUC mea-
sures of the static graph and time-series link predic-
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Table 2 Average AUC Measures of Different Values of T—Enron E-mail Data

Average AUC of 35− T months Average AUC of 15 months

T CN AA PA GM SA KZ TS CN AA PA GM SA KZ TS

1 0�7857 0�7893 0�6995 0�8087 0�7970 0�8635 — 0�8059 0�7558 0�6562 0�7696 0�7565 0�8312 —
3 0�8357 0�8424 0�7240 0�8575 0�8185 0�8935 — 0�8602 0�8342 0�7017 0�8543 0�7801 0�8864 —
5 0�8483 0�8557 0�7171 0�8598 0�8221 0�8995 — 0�8696 0�8487 0�7058 0�8530 0�7882 0�8989 —
8 0�8483 0�8542 0�7185 0�8583 0�8182 0�9002 0�8428 0�8695 0�8578 0�7134 0�8622 0�8199 0�9019 0�8523
13 0�8544 0�8625 0�7005 0�8604 0�8203 0�9001 0�8416 0�8693 0�8767 0�6806 0�8629 0�8262 0�8998 0�8396
15 0�8609 0�8687 0�6916 0�8635 0�8215 0�9001 0�8424 0�8675 0�8752 0�6777 0�8668 0�8242 0�8989 0�8393
20 0�8676 0�8744 0�6729 0�8690 0�8213 0�8977 0�8403 0�8676 0�8744 0�6729 0�8690 0�8213 0�8977 0�8403

tion algorithms by setting the values of T to 1, 3, 5,
8, 13, 15, and 20. We did not include the performance
number for the time-series algorithm when T ≤ 5
because the time-series would be too short to fit a
meaningful ARIMA model. As we vary the value
of T , predictions change accordingly. Excluding the
last three months of data, we obtain predictions for
35−T months. We present the average AUC measure
over all possible prediction months for each value
of T as well as the average AUC measure over the
15 (35 − 20) common months prior to April 2002 to
have a direct comparison of the effect of T on the pre-
diction performance. We observe that the static graph
algorithms achieved similar performance as long as
at least three previous months of data were used to
form the static background graph. This is expected
because for the static graph representation many link
occurrences only provide redundant information. The
only exception is the PA algorithm, which achieved
the best performances when T was between three and
eight. The time-series algorithm performed similarly
when we varied T from 8 to 20.
Note that the proposed time-series link prediction

only applies to the situation where abundant time-
series link occurrence information is available. In gen-
eral, the background graph series needs to contain
at least eight graphs for the proposed approach to
be effective. Therefore with each graph in the series
constructed using communications occurring in one
day, one week, or one month, we would need eight
days, two months, or eight months of historical data,
respectively, to apply the proposed approach. The
decision on the length of time to form each graph in
the background graph series is domain and applica-
tion dependent. For example, using monthly data to
form coauthorship graphs would most likely result
in very sparse graphs, losing the cross-link depen-
dency information. On the other hand, the general
frequency of link occurrence also determines the pre-
diction target correspondingly. For example, predict-
ing the coauthorship link within a quarter or a year
would probably make more sense than predicting
coauthorship links within a particular month. For the
Enron e-mail data set, we do have sufficiently fre-
quent link occurrences to form weekly e-mail graphs.

Table 3 shows the average AUC measures of the static
graph, time-series, and hybrid algorithms with T set
to be 13 over the period of 118 weeks excluding the
beginning and ending quiet weeks. It is observed
that the performances of the algorithms were gen-
erally consistent with the monthly graph analyses.
The time-series link prediction algorithm achieved the
second-best average AUC measure, following the KZ
algorithm. By incorporating the time-series predic-
tions, all static graph algorithms achieved significant
improvements according to the paired two-sample
t-test with a p-value smaller than 0.0001, ranging from
0.37% for the KZ algorithm to 15.81% for the PA
algorithm.
Figure 3 shows the numbers of links for which

each ARIMA model was chosen as the best model
based on the background graph series for October
2001. The first four ARIMA models (0�1�1), (0�0�1),
(0�1�0), and (1�1�0) accounted for more than 80%
of the links. The distribution for background graph
series of other months also generally followed a simi-
lar pattern. These patterns show that the model space
can be drastically reduced for an ARIMA model fit-
ting without significantly reducing the model fit and
prediction performance. Figure 4 shows four exam-
ple link occurrence series that contain the background
series of 13 months and the actual link occurrence
frequency in October 2001 (t = 14). We observe that
links 1 and 4 had qualitatively similar time-series pat-
terns, resulting in the same best-fitting ARIMA model
of (0�1�2). Comparing the predicted link occurrence
frequency with the actual values shown in Figure 4,
we can see that the ARIMA models successfully cap-
tured the temporal trend. In particular, the time series
for links 2 and 3 would be treated almost identi-
cally under the static graph approach. The ARIMA
model provided the predicted occurrence probability

Table 3 AUC Measures on Weekly Graphs––Enron E-mail Data

CN AA PA GM SA KZ TS

Standalone 0�8578 0�8635 0�7762 0�8900 0�8505 0�9300 0�8900
Hybrid 0�9314 0�9321 0�9067 0�9266 0�9263 0�9335 —
Improvement (%) 8�58 7�95 16�81 4�11 8�91 0�37 —
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Figure 3 ARIMA Model Distribution—Enron E-mail Data (Oct. 2001)

for link 2 (which did not occur at t) as 0.397, smaller
than 0.5 and the other three links.
To better understand the differences among pre-

dictions of the algorithms evaluated, we studied the
correlation of link occurrence probability score matri-
ces. Because the time-series link prediction algorithm
can only make a prediction for links that have occur-
ring previously, we only included predicted scores
for these previously occurring links when computing
the correlation coefficients. We report the correlation
coefficients of the link occurrence probability score
matrices for October 2001 in Table 4. These correla-
tion coefficients significantly differ from zero, with
p-values smaller than 0.0001 due to the large number
of scores included for computation.
As expected, the CN and AA algorithms were

highly correlated with a correlation coefficient of
0.9914. The GM algorithm had relatively high corre-
lation with the CN algorithm (0.8316) and the AA
algorithm (0.8542). The other algorithm pairs had
relatively weak correlations. The correlation between

0
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16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1: (0, 1, 2)
2: (0, 1, 1)
3: (0, 0, 3)
4: (0, 1, 2)

Best ARIMA model

Figure 4 Example Link Occurrence Series and ARIMA Predictions
Note. Predicted frequency for t = 14: 1: 1.923, 2: 0.692, 3: 1.154, 4: 3.302;
predicted link occurrence probability for t = 14: 1: 0.693, 2: 0.387, 3: 0.534,
4: 0.714.

Table 4 Correlation of Link Occurrence Probability Scores––Enron
E-mail Data

CN AA PA GM SA KZ

AA 0�9914
PA 0�6075 0�6025
GM 0�8316 0�8542 0�5273
SA 0�7156 0�6791 0�5783 0�5687
KZ 0�6386 0�6561 0�3333 0�6313 0�4351
TS 0�5297 0�5449 0�2617 0�5117 0�3371 0�7409

the time-series algorithm and the static graph algo-
rithms ranged from 0.2617 (with the PA algorithm)
to 0.7409 (with the KZ algorithm). These observations
are generally consistent with our analysis that the pro-
posed time-series link prediction algorithm utilizes
the information set that compliments the ones used
by the static graph algorithms.
Figure 5 shows the ROC curves of the static graph

algorithms and the time-series algorithm for October
2001. It can be seen that the ROC curve of the time-
series algorithm shows a different shape from the
ones of the static graph algorithms. The ROC curves
for the static graph algorithms are generally smooth,
while there is clearly a turning point for the ROC
curve of the time-series algorithm when the percent-
age of positive links included reaches 70%. This turn-
ing point corresponds roughly to the percentage of
links in the October 2001 e-mail graph that occurred
previously in its background graph series. This result
shows that the time-series algorithm achieves bet-
ter performance on previously occurring links than
other algorithms, including the best-performing KZ
algorithm. The segment of the ROC curve for the
time-series algorithm after the turning point is close
to a straight line. This is fully expected because
the time-series algorithm assigns zero scores for the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

P
er

ce
n

ta
g

e 
o

f 
p

o
si

ti
ve

 li
n

ks
 in

cl
u

d
ed

TS

PA
CN

GM

SA

KZ
AA

Percentage of negative links included

Figure 5 ROC Curves for October 2001—Enron E-mail Data

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Huang and Lin: Time-Series Link Prediction Problem with Applications in Communication Surveillance
INFORMS Journal on Computing 21(2), pp. 286–303, © 2009 INFORMS 299

Table 5 Performance of Hybrid Link Prediction—Enron E-mail Data

No. of target
Year-month links TS CN CN ∗ TS AA AA ∗ TS PA PA ∗ TS GM GM ∗ TS SA SA ∗ TS KZ KZ ∗ TS
200006 61 0�8488 0�7704 0�8741 0�7752 0�8810 0�7740 0�8537 0�8301 0�8907 0�7844 0�8603 0�8751 0�8774
200007 84 0�8141 0�7836 0�8975 0�8112 0�8976 0�7575 0�8644 0�8636 0�8904 0�7914 0�8839 0�9112 0�9143
200008 134 0�7719 0�7698 0�8408 0�7716 0�8465 0�7081 0�7905 0�8095 0�8223 0�7564 0�8140 0�8294 0�8319
200009 121 0�8864 0�8492 0�9327 0�8469 0�9325 0�7840 0�8981 0�8844 0�9276 0�8461 0�9129 0�9267 0�9296
200010 142 0�8790 0�8716 0�9298 0�8721 0�9332 0�7578 0�8732 0�8925 0�9211 0�8437 0�9025 0�9232 0�9253
200011 190 0�8253 0�8332 0�9076 0�8313 0�9139 0�6992 0�8241 0�8188 0�8596 0�7924 0�8571 0�9093 0�9127
200012 183 0�8942 0�8781 0�9349 0�8786 0�9436 0�7215 0�8796 0�8864 0�9236 0�8389 0�9134 0�9310 0�9344
200101 162 0�8239 0�8759 0�9106 0�8669 0�9140 0�7271 0�8541 0�8564 0�8887 0�8388 0�8881 0�9157 0�9173
200102 190 0�8889 0�9014 0�9417 0�8797 0�9420 0�7534 0�8885 0�8849 0�9244 0�8812 0�9172 0�9380 0�9388
200103 199 0�9162 0�9153 0�9482 0�9042 0�9468 0�7782 0�9158 0�8904 0�9372 0�8986 0�9345 0�9452 0�9484
200104 229 0�8585 0�9002 0�9371 0�8944 0�9366 0�7254 0�8735 0�8830 0�9177 0�8887 0�9297 0�9322 0�9346
200105 246 0�7803 0�8100 0�8443 0�7975 0�8450 0�6728 0�8016 0�8170 0�8256 0�7864 0�8408 0�8424 0�8461
200106 192 0�7832 0�8410 0�8768 0�8334 0�8814 0�6427 0�7898 0�8450 0�8615 0�7908 0�8586 0�8742 0�8786
200107 228 0�7995 0�8110 0�8628 0�8116 0�8721 0�6570 0�8182 0�8386 0�8778 0�7925 0�8696 0�8639 0�8679
200108 368 0�7594 0�8363 0�8745 0�8261 0�8726 0�6504 0�7948 0�8321 0�8629 0�7945 0�8520 0�8670 0�8724
200109 342 0�8683 0�8619 0�9086 0�8307 0�9140 0�6716 0�8617 0�8640 0�9103 0�8043 0�8980 0�9010 0�9064
200110 530 0�8056 0�8653 0�8959 0�8275 0�8958 0�6568 0�8139 0�8473 0�8813 0�7933 0�8674 0�8876 0�8922
200111 432 0�8417 0�8864 0�9162 0�8207 0�9191 0�6651 0�8602 0�8559 0�9113 0�8140 0�8972 0�9055 0�9119
200112 303 0�8982 0�8999 0�9282 0�8502 0�9301 0�6909 0�8922 0�8920 0�9200 0�8371 0�9151 0�9187 0�9258
200201 293 0�8415 0�8757 0�9121 0�8347 0�9132 0�6625 0�8647 0�8664 0�9016 0�8143 0�9021 0�9024 0�9120
200202 264 0�8053 0�8401 0�8722 0�7918 0�8692 0�6810 0�8483 0�8241 0�8471 0�8065 0�8766 0�8606 0�8740
200203 75 0�9338 0�9198 0�9520 0�7815 0�9557 0�5740 0�9171 0�9470 0�9574 0�8525 0�9518 0�9422 0�9537
200204 2 0�9999 0�4100 0�9280 0�4607 0�9282 0�5064 0�9580 0�7080 0�9359 0�3977 0�9264 0�8819 0�9908
200205 10 0�7625 0�6908 0�8143 0�6986 0�8351 0�5263 0�8020 0�7226 0�8561 0�6222 0�8072 0�7814 0�8199
200206 9 0�8971 0�7502 0�8721 0�6900 0�8813 0�6003 0�8794 0�8221 0�8871 0�6263 0�8483 0�8279 0�8758

Average 0�8473 0�8259 0�9005 0�8075 0�9040 0�6818 0�8567 0�8473 0�8936 0�7877 0�8850 0�8917 0�9037
Average excluding 0�8420 0�8544 0�9045 0�8335 0�9071 0�7005 0�8535 0�8604 0�8936 0�8203 0�8883 0�9001 0�9048

last 3 months
Improvement (%) 5�86 8�82 21�85 3�86 8�29 0�52

remaining links that did not occur previously, essen-
tially picking all links at random to include.
Given the superior performance of the time-series

algorithm on predicting the occurrence of previously
occurring links and the fact that time-series predic-
tions and static graph predictions only weakly cor-
relate with each other, algorithms that combine the
two approaches hold the promise to achieve bet-
ter prediction performances. We next examine sim-
ple hybrid link prediction algorithms using product
of link occurrence probability scores produced by the
two approaches. Table 5 shows the performance of
the hybrid link prediction using score products. For
example, the column under CN ∗ TS shows the AUC
measure of the hybrid algorithm combining the time-
series algorithm and the CN algorithm. Two link
occurrence probability score matrices were produced
by each individual algorithm, STS and SCN. Follow-
ing the algorithm description in Figure 1, we first
normalized the two score matrices and then identi-
fied the smallest nonzero element mT and mS for the
two score matrices. The link prediction score matrix
was then updated by adding mT /* �mS/*� to each
element of the matrix. We then obtained the hybrid
score matrix STS∗CN by multiplying the TS and CN
scores: STS∗CN�i� j� = �STS�i� j� + mT /*� × �SCN�i� j� +

mS/*�. Table 5 shows the experimental results with
*= 2.
Within the 22 months of our data used in anal-

ysis, the best-performing algorithm was always a
hybrid algorithm. However, there was no single win-
ning hybrid algorithm. Even though the KZ algo-
rithm was clearly the best-performing algorithm in
Table 1, the KZ ∗TS algorithm only achieved the best
performance for 5 of the 22 months, with an aver-
age AUC measure of 0.9048. The AA ∗ TS algorithm
actually achieved the best performance in the great-
est number of months (10 out of 22 months) with
the highest average AUC measure of 0.9071. For all
six algorithms, the incorporation of time-series predic-
tion scores resulted in improvement in performance,
ranging from 0.52% with the KZ algorithm to 21.85%
with the PA algorithm. All improvements were statis-
tically significant according to the paired two-sample
t-test with p-values smaller than 0.0001. These results
are consistent with the analysis of the correlation
between the predictions generated by different algo-
rithms. With the highest correlation of 0.7409, the KZ
algorithm did not benefit much from the incorpora-
tion of the time-series prediction. On the other hand,
the worst-performing PA algorithm, with the smallest
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correlation of 0.2617, had the greatest improvement
by incorporating the time-series prediction.
Other values of * (from 2 to 100) were also tested,

and the results obtained were almost identical. We
also experimented with using the average instead of
the product to combine the static graph and time-
series link prediction scores and obtained similar
results as shown in Table 5.

6.3.2. Coauthorship Data Set Results. The coau-
thorship data set spanned over 46 quarters from 1992
to 2003. The window size of 13 produced 33 quar-
ters of prediction data from the second quarter of
1995 to the second quarter of 2003. Table 6 shows
the link prediction performances of the static graph
link prediction algorithms, the proposed time-series
algorithm, and the T − 1 algorithm measured by
AUC. We noticed that the last quarter had an unusu-
ally small number of target links, possibly because
of incomplete data collection. For analysis purposes,

Table 6 AUC Measures of the Static Graph and TS Algorithms—Coauthorship Data

Binary static graph Weighted static graph
No. of target

Year-quarter links CN AA PA GM SA KZ CN AA PA GM SA KZ TS T − 1

1995q2 21 0�7241 0�7059 0�6726 0�8562 0�8547 0�8755 0�7242 0�7205 0�7177 0�7789 0�8614 0�8809 0�8315 0�6753
1995q3 14 0�6734 0�6552 0�5395 0�8172 0�7859 0�8483 0�6878 0�6874 0�5422 0�7746 0�8051 0�8611 0�7966 0�539
1995q4 42 0�7757 0�7831 0�6747 0�7898 0�8659 0�9305 0�7788 0�779 0�7015 0�8041 0�8708 0�9368 0�8363 0�6204
1996q1 34 0�8429 0�8232 0�7153 0�7859 0�8342 0�8758 0�8185 0�8418 0�705 0�8271 0�8368 0�8727 0�8921 0�8564
1996q2 39 0�8231 0�8427 0�6785 0�8337 0�8156 0�9025 0�8377 0�8188 0�6827 0�82 0�8361 0�9062 0�8753 0�7308
1996q3 28 0�6696 0�6873 0�5788 0�7739 0�7637 0�8985 0�6671 0�6839 0�5885 0�75 0�7678 0�899 0�8656 0�6722
1996q4 43 0�7706 0�7662 0�6932 0�7797 0�8142 0�8865 0�7585 0�7654 0�6807 0�7487 0�8178 0�8927 0�9114 0�8326
1997q1 34 0�7287 0�7396 0�5355 0�7711 0�7325 0�8857 0�7317 0�7425 0�5401 0�786 0�7323 0�8872 0�8102 0�6687
1997q2 36 0�8141 0�8204 0�6596 0�8262 0�8423 0�9459 0�8144 0�8231 0�6501 0�7895 0�8532 0�9445 0�9091 0�769
1997q3 38 0�8453 0�852 0�7009 0�8567 0�8327 0�9473 0�8428 0�8469 0�687 0�8416 0�8497 0�9456 0�9327 0�7112
1997q4 37 0�8198 0�8402 0�6271 0�791 0�7886 0�9311 0�8221 0�8395 0�6397 0�8157 0�7997 0�9336 0�8838 0�7403
1998q1 39 0�8287 0�8416 0�6364 0�8124 0�7968 0�9563 0�8337 0�836 0�634 0�84 0�8177 0�9571 0�9389 0�7756
1998q2 53 0�8512 0�8623 0�7173 0�8039 0�8386 0�9439 0�8595 0�8616 0�7317 0�8371 0�8641 0�9461 0�8857 0�8096
1998q3 27 0�8244 0�8352 0�7734 0�8361 0�8613 0�9371 0�8168 0�8009 0�7746 0�8433 0�8883 0�9369 0�8862 0�8094
1998q4 30 0�7639 0�7701 0�611 0�8185 0�772 0�937 0�7549 0�7668 0�6313 0�7699 0�7904 0�9403 0�9388 0�6951
1999q1 31 0�7693 0�778 0�6439 0�8126 0�7651 0�916 0�7855 0�7858 0�6704 0�8741 0�7713 0�9247 0�8972 0�628
1999q2 37 0�8061 0�8182 0�6278 0�7966 0�7864 0�9284 0�8124 0�8198 0�6282 0�7989 0�8263 0�93 0�8523 0�6884
1999q3 23 0�7809 0�7974 0�6326 0�8798 0�8408 0�9782 0�7931 0�8011 0�6541 0�8701 0�8553 0�9824 0�9876 0�8051
1999q4 41 0�8018 0�8164 0�644 0�8568 0�801 0�9569 0�8038 0�8152 0�6357 0�857 0�8058 0�9582 0�9464 0�7272
2000q1 35 0�8582 0�8691 0�6863 0�859 0�834 0�9575 0�8656 0�8731 0�7002 0�8485 0�8448 0�9649 0�8707 0�7751
2000q2 35 0�8277 0�8355 0�6801 0�8067 0�8145 0�9391 0�8296 0�8362 0�6824 0�8282 0�8305 0�9425 0�9352 0�8074
2000q3 19 0�796 0�7961 0�6317 0�7915 0�8295 0�9348 0�7976 0�8008 0�679 0�8701 0�8491 0�9372 0�8891 0�7209
2000q4 39 0�8353 0�851 0�6763 0�861 0�8195 0�9637 0�8396 0�8484 0�6968 0�8735 0�8571 0�9679 0�9439 0�7035
2001q1 24 0�7894 0�8069 0�6931 0�8154 0�8292 0�964 0�8082 0�8085 0�6996 0�8395 0�8516 0�9677 0�9427 0�8157
2001q2 28 0�8564 0�865 0�7169 0�8674 0�8441 0�9759 0�858 0�8654 0�7262 0�8806 0�8533 0�9777 0�9596 0�7625
2001q3 21 0�8807 0�8849 0�7516 0�8763 0�8814 0�9793 0�8797 0�8844 0�7632 0�896 0�8957 0�9806 0�9165 0�7363
2001q4 22 0�7774 0�7823 0�7139 0�864 0�8552 0�9472 0�7805 0�7565 0�705 0�8603 0�8587 0�9496 0�9588 0�7343
2002q1 22 0�8485 0�8528 0�7721 0�8278 0�846 0�8922 0�8516 0�854 0�7949 0�872 0�8604 0�9198 0�9599 0�9204
2002q2 19 0�8233 0�8234 0�7496 0�8388 0�8619 0�9657 0�8192 0�821 0�7475 0�8573 0�8678 0�9681 0�9683 0�811
2002q3 30 0�787 0�7992 0�6348 0�8446 0�8053 0�9095 0�7875 0�7972 0�6242 0�7895 0�8095 0�8941 0�9348 0�6689
2002q4 23 0�6768 0�6699 0�5666 0�7429 0�7974 0�9216 0�6757 0�6801 0�5892 0�7791 0�8087 0�9273 0�8381 0�766
2003q1 18 0�7247 0�733 0�5651 0�8241 0�7815 0�881 0�7228 0�7249 0�624 0�7774 0�8227 0�8855 0�7968 0�7055
2003q2 6 0�748 0�7477 0�5678 0�8543 0�8521 0�9766 0�746 0�7465 0�5635 0�7777 0�8434 0�9794 0�9906 0�8204

Average 0�7922 0�7985 0�6596 0�8234 0�8195 0�9300 0�7941 0�7980 0�6694 0�8235 0�8334 0�9333 0�9025 0�7425
Average excluding 0�7936 0�8001 0�6625 0�8224 0�8185 0�9285 0�7956 0�7996 0�6727 0�8250 0�8331 0�9318 0�8998 0�7401

last quarter

we excluded the results of this quarter. Similar to
the e-mail data set results, the KZ algorithm was
generally the best-performing algorithm. The KZ
algorithm achieved the best performance for 23 of the
32 quarters with the weighted graph. It also achieved
the best performance for two quarters with the
unweighted graph. The time-series algorithm demon-
strated stronger relative performance than with the
e-mail data set. It achieved the best performance for
the test of the seven quarters. Overall, the KZ algo-
rithm achieved the highest average AUC measure
of 0.9318 with the weighted graph (0.9285 with the
unweighted graph), followed by the time-series algo-
rithm with an average AUC measure of 0.8998. Sim-
ilar to the e-mail data set results, the PA algorithm
had the worst performance, even compared with the
T − 1 algorithm. For the coauthorship data set, the
static graph link prediction algorithms had a slightly
better performance with the weighted graph.
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Table 7 Performance of Hybrid Link Prediction—Coauthorship Data Set

No. of target
Year-quarter links TS CN CN ∗ TS AA AA ∗ TS PA PA ∗ TS GM GM ∗ TS SA SA ∗ TS KZ KZ ∗ TS
1995q2 21 0�8315 0�724 0�8316 0�7059 0�8312 0�673 0�8495 0�856 0�85692 0�85469 0�88195 0�8755 0�8749
1995q3 14 0�7966 0�673 0�8609 0�6552 0�8629 0�54 0�841 0�817 0�8815 0�78586 0�85838 0�8483 0�861
1995q4 42 0�8363 0�776 0�8954 0�7831 0�8841 0�675 0�8911 0�79 0�91174 0�86587 0�90434 0�9305 0�9325
1996q1 34 0�8921 0�843 0�8881 0�8232 0�8697 0�715 0�8712 0�786 0�90835 0�83423 0�88803 0�8758 0�8796
1996q2 39 0�8753 0�823 0�8986 0�8427 0�8997 0�679 0�866 0�834 0�89452 0�81564 0�89193 0�9025 0�9039
1996q3 28 0�8656 0�67 0�8717 0�6873 0�8706 0�579 0�8805 0�774 0�9036 0�76366 0�88545 0�8985 0�9037
1996q4 43 0�9114 0�771 0�905 0�7662 0�8768 0�693 0�8678 0�78 0�8404 0�81422 0�88858 0�8865 0�8906
1997q1 34 0�8102 0�729 0�885 0�7396 0�8886 0�535 0�8164 0�771 0�87505 0�73249 0�87237 0�8857 0�8941
1997q2 36 0�9091 0�814 0�9261 0�8204 0�93 0�66 0�8884 0�826 0�89097 0�84228 0�95844 0�9459 0�9499
1997q3 38 0�9327 0�845 0�9584 0�852 0�9598 0�701 0�9373 0�857 0�94528 0�83265 0�94442 0�9473 0�9476
1997q4 37 0�8838 0�82 0�9144 0�8402 0�9109 0�627 0�8894 0�791 0�89967 0�78864 0�9245 0�9311 0�9349
1998q1 39 0�9389 0�829 0�9521 0�8416 0�9501 0�636 0�9319 0�812 0�94675 0�79678 0�95043 0�9563 0�9616
1998q2 53 0�8857 0�851 0�9332 0�8623 0�9276 0�717 0�9056 0�804 0�88915 0�83862 0�9416 0�9439 0�9461
1998q3 27 0�8862 0�824 0�9178 0�8352 0�9177 0�773 0�9248 0�836 0�86459 0�86129 0�95601 0�9371 0�9415
1998q4 30 0�9388 0�764 0�9376 0�7701 0�9376 0�611 0�927 0�819 0�89917 0�77197 0�94969 0�937 0�9455
1999q1 31 0�8972 0�769 0�9213 0�778 0�9262 0�644 0�901 0�813 0�91675 0�76509 0�90856 0�916 0�9212
1999q2 37 0�8523 0�806 0�934 0�8182 0�938 0�628 0�8558 0�797 0�88529 0�78643 0�9162 0�9284 0�9329
1999q3 23 0�9876 0�781 0�9858 0�7974 0�9862 0�633 0�9839 0�88 0�98128 0�84079 0�98749 0�9782 0�9875
1999q4 41 0�9464 0�802 0�9587 0�8164 0�9578 0�644 0�9514 0�857 0�95413 0�80097 0�95594 0�9569 0�9664
2000q1 35 0�8707 0�858 0�9546 0�8691 0�956 0�686 0�8977 0�859 0�93939 0�83397 0�94819 0�9575 0�9647
2000q2 35 0�9352 0�828 0�9594 0�8355 0�9534 0�68 0�9369 0�807 0�91835 0�81449 0�94197 0�9391 0�9465
2000q3 19 0�8891 0�796 0�9232 0�7961 0�916 0�632 0�9081 0�791 0�95879 0�82946 0�94489 0�9348 0�9405
2000q4 39 0�9439 0�835 0�9668 0�851 0�9655 0�676 0�9541 0�861 0�94693 0�8195 0�96316 0�9637 0�9685
2001q1 24 0�9427 0�789 0�9755 0�8069 0�973 0�693 0�9531 0�815 0�95398 0�82925 0�97759 0�964 0�9741
2001q2 28 0�9596 0�856 0�9847 0�865 0�9855 0�717 0�9731 0�867 0�97598 0�84406 0�98028 0�9759 0�984
2001q3 21 0�9165 0�881 0�9851 0�8849 0�9849 0�752 0�9602 0�876 0�95296 0�88143 0�97281 0�9793 0�9833
2001q4 22 0�9588 0�777 0�9564 0�7823 0�9564 0�714 0�9639 0�864 0�95642 0�85519 0�95867 0�9472 0�9557
2002q1 22 0�9599 0�849 0�9555 0�8528 0�9592 0�772 0�9804 0�828 0�92936 0�84601 0�93755 0�8922 0�9259
2002q2 19 0�9683 0�823 0�9834 0�8234 0�9791 0�75 0�9376 0�839 0�93173 0�86188 0�96119 0�9657 0�9715
2002q3 30 0�9348 0�787 0�9309 0�7992 0�931 0�635 0�9175 0�845 0�937 0�80529 0�9108 0�9095 0�9212
2002q4 23 0�8381 0�677 0�8569 0�6699 0�8598 0�567 0�8642 0�743 0�83997 0�79745 0�91482 0�9216 0�9284
2003q1 18 0�7968 0�725 0�8517 0�733 0�8542 0�565 0�8164 0�824 0�80373 0�78148 0�88426 0�881 0�8911
2003q2 6 0�9906 0�748 0�9858 0�7477 0�9849 0�568 0�9856 0�854 0�98633 0�85214 0�99003 0�9766 0�9904

Average 0�9025 0�7922 0�9287 0�7985 0�9268 0�6596 0�9100 0�8234 0�9144 0�8195 0�9318 0�9300 0�9370
Average excluding 0�8998 0�7936 0�9269 0�8001 0�9250 0�6625 0�9076 0�8224 0�9122 0�8185 0�9300 0�9285 0�9353

last quarter
Improvement (%) 16�80 15�61 36�99 10�91 13�63 0�73

Table 7 shows the performance of the hybrid
link prediction using score products. The results are
similar to the e-mail data set results. The KZ ∗ TS
algorithm had generally the best performance with an
average AUC measure of 0.9353 but did not consis-
tently outperform other hybrid algorithms across the
32 quarters. In fact, all six hybrid algorithms achieved
the best performance in at least two quarters. By
incorporating the time-series prediction, the six static
graph link prediction algorithms had improvements
ranging from 0.73% (the KZ algorithm) to 36.99%
(the PA algorithm). All improvements are signifi-
cant according to the paired two-sample t-test with
p-values smaller than 0.0001.

7. Conclusions and Future Directions
The time-series link prediction problem is formally
introduced in this paper. Our formulation extends

from existing link prediction studies to explicitly
modeling the time-series patterns of the link occur-
rence frequencies. Such a formulation can lead
to improved link prediction quality in application
domains where the repeated link occurrences are
of central interest, such as communication surveil-
lance. We proposed a univariate time-series model
to estimate ARIMA models for individual links
as a minimum model that can capture the time-
series frequency pattern of link occurrences. This
model produces predictions on future occurrences
of links based on the intralink dependencies over
time. The existing link prediction algorithms based
on a static graph representation can also be used
for a time-series link prediction problem by reduc-
ing the weighted graph series to a single static graph.
The static link prediction approach mainly relies on
interlink dependency patterns (such as paths and
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clusters) to perform link prediction. As the time-
series and static graph approaches employ concep-
tually orthogonal data patterns, we proposed hybrid
time-series link prediction combining the predictions
from both approaches for improved link prediction
performance.
We experimented with our proposed univariate TS

and hybrid algorithms on the monthly e-mail graphs
based on the Enron data set and quarterly coau-
thorship graphs based on the high-energy theoretical
physics literature. Our experimental results showed
that the univariate time-series model, despite being
the minimum model capturing the time-series infor-
mation, achieved comparable performance with the
best-performing ones of six commonly used static
graph link prediction algorithms: CN, AA, PA, KZ,
SA, and GM algorithms. Consistent with our anal-
ysis, the time-series and the static graph predic-
tions were shown to have only weak correlations,
indicating the possibility of prediction performance
improvement with hybrid approaches. The experi-
mental results showed that the hybrid TS algorithm
achieved significantly improved prediction perfor-
mance than the time-series approach or static graph
approach alone. Combining the time-series prediction
model with each of the six static graph algorithms
in our study had significantly better average perfor-
mances. The combination of the KZ and TS algo-
rithms had the overall best performance for both data
sets. However, there was no consistent winner among
the hybrid algorithm across all the time periods we
evaluated.
Our study represents an initial effort toward

building an integrated time-series link prediction
algorithm that can exploit the interlink dependencies
(network/graph structural patterns such as paths and
clusters) and intralink time dependencies simultane-
ously for improved link prediction performance in
application domains such as communication surveil-
lance. Our experiments of the univariate time-series
model presented strong evidence for the potential
of the predictive value of the time-series link occur-
rence patterns. In future research, we will explore
multivariate time-series models that can incorpo-
rate more complex covariance structures that have
been well studied in the time-series analysis lit-
erature. More importantly, we will explore covari-
ance structures motivated by the commonly used
network/graph-based interlink dependency struc-
tures to build truly integrated hybrid time-series link
prediction algorithms.
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