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Summary. Dual response surface optimization of the Sasol–Lurgi fixed bed dry bottom gas-
ification process was carried out by performing response surface modelling and robustness
studies on the process variables of interest from a specially equipped full-scale test gasifier.
Coal particle size distribution and coal composition are considered as hard-to-control variables
during normal operation.The paper discusses the application of statistical robustness studies as
a method for determining the optimal settings of process variables that might be hard to control
during normal operation. Several dual response surface strategies are evaluated for determining
the optimal process variable conditions. It is shown that a narrower particle size distribution is
optimal for maximizing gasification performance which is robust against the variability in coal
composition.
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1. Introduction

Sasol, South Africa, gasifies approximately 30 million tons of bituminous coal per year to syn-
thesis gas, which is converted to fuels and chemicals via the Fischer–Tropsch process. A total
of 80 Sasol–Lurgi fixed bed dry bottom gasifiers have a combined production of approximately
4:6×106 m3 n (normal) h−1 dry raw gas (RG), which is equivalent to approximately 3:2 ×106

m3 n h−1 pure synthesis gas. The Secunda plant is the largest syngas production facility of its
kind in the world.

Fixed bed coal gasification reactors are countercurrent devices in which a coal bed moves
downwards by gravity flow through an upward flowing gas stream (Electric Power Research
Institute, 1983). Steam and oxygen are fed at the bottom to provide the reactants for the com-
bustion and gasification reactions. The composition and temperature of the product gas and the
amount of unburnt carbon in the ash largely determine the thermal efficiency of the process. The
product gas composition and temperature depend on the properties of the coal being processed
and on operating parameters such as feed rates, feed temperature and reactor pressure. Since
the Secunda coal-to-liquids facility delivers nearly 29% of the fuel requirements in South Africa,
the continuous improvement of the gasification plant is of critical importance to the company.
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To optimize product yields further and to increase throughput, a thorough understanding is
required of those process parameters that govern gasifier performance. Therefore, in 1998 Sasol
decided to isolate one Sasol–Lurgi mark IV gasifier at the Secunda site as a test gasifier. This
gasifier was equipped with additional instrumentation, which included a more sophisticated
RG measurement and a dedicated coal feeding system.

17 comprehensive tests were conducted on the test gasifier. 10 of these tests were conducted
according to a full 23 factorial design with two centre points in coal top size, coal bottom size
and stone content (defined as the material that sinks at a relative density of 1.9), using only one
coal source. Seven tests were performed with a blend of six coal sources. Additional process vari-
ables investigated were the gasifier oxygen load (oxygen feed rate (km3 n h−1)) and the carbon
dioxide (CO2) in RG concentration (volume percentage). During each of the tests, loads were
varied from low to medium to high, and at each load the CO2 in RG concentration was adjusted
between a high and a low value. It will be explained that the coal particle size distribution (PSD)
is not uniquely determined by the planned top and bottom sizes. Therefore, three size fractions
were selected to define the coal PSD, and, for the purposes of this paper, will be referred to
as the coarse, medium and fine fractions. For the factorial design, Coetzer and Keyser (2003)
developed statistical response surface models and evaluated the effect of the process parameters
on gasifier performance in terms of carbon utilization and utility consumption.

However, the development of the models in Coetzer and Keyser (2003) was based on the
assumption that all the test parameters are equally well controllable during normal operation.
In practice the run-of-mine coal can be highly variable in certain coal seams, such as the stone or
ash content in the coal. Controlling coal composition can result in significant capital investments
for the coal-to-gas facility. Manipulation and control of the coal PSD, i.e. coal top and bot-
tom sizes, can be accomplished at a marginal cost by effective screening of the run-of-mine coal
before feeding to the gasification process (Coetzer and Keyser, 2003). Furthermore, operational
conditions of varying PSD can occur under certain circumstances of coal types and prepara-
tion. Therefore, it is important to consider the PSD of the coal feed and the coal composition
as hard-to-control variables during normal operation.

The response surface modelling approach to robustness analysis has been advocated by Myers
(1991), Myers et al. (1992), Myers and Montgomery (1995) and Montgomery (1999). Recently,
Robinson and Wulff (2005) gave a detailed overview of response surface approaches to robust-
ness analysis. In the response surface modelling approach a mean and variance function are
constructed for each response variable. The dual response surface (DRS) approach, and corres-
pondingly DRS optimization, has received considerable attention in the literature as a meth-
odology to determine the optimum operating conditions for an industrial process or product
(Vining and Myers, 1990; Del Castillo and Montgomery, 1993; Ding et al., 2004; Tang and Xu,
2002). The DRS approach is applied to problems where the researcher can identify a primary
response or quality characteristic, such as the pure gas yield production from the gasifier, which
is to be optimized subject to some specified value of a secondary response or quality characteris-
tic, such as the transmitted variance in pure gas yield from the variability in the hard-to-control
variables.

In this paper we provide a case-study of the DRS approach applied to a full-scale gasification
process. We derive optimum conditions for the process parameters that govern gasification per-
formance as measured by sustainable production and stable gasifier operation. We concentrate
on the pure gas yield as the performance measure alone. We consider the PSD of the coal as well
as the coal properties as hard-to-control variables during normal operation. Since both these
process parameters are mixture variables, which are both subject to fundamental constraints,
the paper introduces a unique application to DRS optimization. We present confidence regions
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for the optimum mixture formulations by using the bootstrap. This is important for practical
implementation since the coalmines can neither deliver a specified coal composition nor a speci-
fied coal PSD because of obvious blending, operational and mining difficulties. Furthermore, to
ensure the implementation of the solutions on the gasification plant it is necessary to evaluate,
for example, the feasibility of the optimum coal PSD in terms of the screen aperture sizes, and
the feasibility of the optimum coal composition in terms of fundamental chemical constraints.

The paper is organized as follows. First the methodology of process robustness studies is
discussed. Thereafter, the various dual response optimization formulations are presented for
evaluation. The robustness analysis and results are then presented with detailed discussions.
Finally, consequences for practical implementation are discussed together with future research
opportunities.

2. The methodology of process robustness studies

Montgomery (1999) visualized a process as a combination of components, materials, people,
equipment, processes and other resources that function collectively to transform a set of inputs
into outputs that are described by one or more response variables. Montgomery (1999) argued
that statistical experimental designs and modelling may be deployed to address specific objec-
tives of the process, such as to determine which variables have the largest influence on the
responses, to determine where to set the influential controllable variables so that the responses
are almost always near their desired target values or to determine where to set the influential
controllable variables so that the effects of the hard-to-control variables on the responses are
small.

Gasification is such a process of transforming a set of inputs to outputs, such as pure gas yield
and carbon utilization. Coal top size, coal bottom size, oxygen load, CO2 in RG concentration
and coal composition were investigated as the variables that can potentially influence the pro-
cess. There are of course many other variables that might influence the gasification process but
considerable effort was made to control those variables during the test runs. The experimental
conditions of the process variables that were investigated were deliberately changed according
to a planned experimental programme (Coetzer and Keyser, 2003).

Although statistical response surface models were developed previously in Coetzer and Keyser
(2003, 2004) to study specific objectives of optimization and robustness, they did not consider
the effect of the coal composition, and the variability thereof, on sustainable gasifier perfor-
mance. The aim of this paper is to demonstrate the effect of the process variables on gasifier
performance when the assumption of fully controllable variables cannot be made. We consider
the PSD of the coal as well as the coal properties as hard-to-control variables during normal
operation. Hard-to-control variables are sometimes also referred to as noise or environmental
variables.

Myers (1991), Myers et al. (1992), Montgomery (1999) and Lucas (1994) discussed the devel-
opment of robust processes through the use of statistically designed experiments and response
surface methodology as opposed to the use of the methods of Taguchi (1986). They explained
that the response surface approach involves designing an experiment with the hard-to-control
variables and the controllable variables in a combined array. The experimental design should
at least allow the estimation of two-order interactions between the controllable and hard-to-con-
trol variables. A response surface model is then constructed, containing one or more two-order
interaction terms between the controllable and hard-to-control variables, for the performance
variable of interest. The variance function is then calculated by taking the conditional variance
operator across the first-order Taylor series expansion of the model over the prior distribution
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of the hard-to-control variables. Therefore, dual responses, i.e. a mean and variance function,
are constructed for each response variable. In this paper, we perform robustness studies for
mixture and normal process variables.

A response surface model in mixture and process variables was given by Cornell (1981):

Y.x, z, w/=f.x, z, w/+ "

=h.x/+
s∑

l=1
h.x/zl +

v∑
t=1

h.x/wt +
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l +
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where z1, . . . , zs and w1, . . . , wv are normal process variables. The distinction between the pro-
cess variables is important for the application of robustness studies to gasification performance
evaluation (see Section 3.2). In model (1),

h.x/=
q∑

i=1
γixi +

∑ q∑
i<k

γikxixk .2/

is the model in x1, . . . , xq mixture variables. Model (1) can be expanded to the full response
surface model f.x, z, w/ in mixture and process variables. Cornell (1981) explained that mixture
models do not contain an intercept γ0 and squared terms γiix

2
i because of the constraint that the

xis sum to 1 and models containing such terms can always be reduced to those given in model
(2). Model (1) can be written succinctly as

Y.x, z, w/=aTβ + " .3/

where a is the vector containing all the terms in the response surface model and β is the vector
containing all the parameters in the model. Furthermore, " is assumed to be normally distrib-
uted with mean 0 and constant variance σ2. Model (3) can be fitted to the data to produce the
least squares estimates of βu, namely bu, u=1, 2, . . . , p.

Let the mean and variance–covariance matrix of the mixture variables x during normal oper-
ation be equal to μx and Sx respectively, with E.xi/=μxi and var.xi/=σ2

xi
, cov.xi, xj/=σxixj , i �=

j = 1, . . . , q. Note that we are considering the covariance structure of the composition and do
not assume independent variables, which is an assumption that is commonly used in the robust-
ness literature. The response surface model for the process mean is then obtained by taking the
expectation of the predicted model, Ŷ .x, z, w/ from model (1), over the prior distribution of the
hard-to-control variables, i.e. Ex{Ŷ .x, z, w/}= Ŷμ|x.x, z, w/. The response model for the process
variance is approximated by applying the conditional variance operator to the first-order Taylor
series expansion of model (1), i.e.
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where Ix.x, z, w/ is the vector of derivatives of the model to the hard-to-control variables, and
σ̂2 is the estimated residual mean square of the model fit. All the derivatives are evaluated at
bu =βu. Model (4) describes the variability in the response as transmitted from the variability
in the hard-to-control variables. Because of the interactions between the controllable and
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hard-to-control variables the response surface of process variance changes according to changes
in the controllable variables. It is therefore possible to determine settings on the controllable
variables that reduce or minimize the variability that is transmitted to the responses.

DRS optimization can now be performed to obtain specific engineering objectives. For exam-
ple, Montgomery (1999) demonstrated that the objective of minimizing the process variability
around a target can be achieved through the following optimization formulation:

min
.x,z,w/

{Ŷσ|x.x, z, w/2} subject to Ŷμ|x.x, z, w/=T .5/

where T is a desired target value for the mean response. The optimization scheme in problem
(5) was first proposed by Vining and Myers (1990) as a methodology to determine the optimum
operating conditions for simultaneously optimizing the process mean and variance. Since then
many alternatives to problem (5) have been proposed (Del Castillo and Montgomery, 1993;
Ding et al., 2004; Tang and Xu, 2002; Kim and Lin, 1998, 2006). In particular, Lin and Tu
(1995) proposed the use of the mean-square error criterion for simultaneously optimizing the
mean and variance response surface models. In Section 4 we present different dual response
surface optimization strategies which are evaluated in this paper.

Myers and Montgomery (1995) provided a confidence region for the variable conditions
which minimizes the process variance (4). Let c0 = .x0, z0, w0/ denote the optimum conditions
for minimum process variance. Let I.c0/= I0, the vector of derivatives of the model to the hard-
to-control variables at c0. Assuming normally distributed errors around the response surface
model (1) then all the conditions of .x, z, w/ which satisfy the inequality

.Ix − I0/T var.Ix/−1.Ix − I0/� rxFα,rx,dfe .6/

provides a 100.1−α/% confidence region for the optimum variable conditions c0, where var.Ix/

is the variance–covariance matrix of Ix and dfe are the error degrees of freedom for the estimate
of the mean-square error MSE of the model fit. Here, rx is the number of hard-to-control vari-
ables that interact with control variables, and Fα,rx,dfe is the upper percentage point of Frx,dfe .
Applying inequality (6) resulted in some difficulties for the current application.

Firstly, mixture variables are subject to multiple constraints, i.e. Σi xi = 1, and Li � xi � Ui,
where Li and Ui are the lower and upper bounds of the ith component. Therefore, if the optimal
solution lies on the edge of the constraint region, as for the pure gas yield variance, then I0
will contain elements which are not equal to 0 for those variables which enforce the constraint.
However, this is true in general for optimizing response surface models where the variables are
subject to an experimental range, specifically when the ranges are narrow.

Secondly, the form of the response surface model that is discussed in this paper included inter-
action terms between the mixture and process variables, as well as interaction terms between the
mixture variables and quadratic terms for the process variables. Therefore, the vector Ix.x, z, w/

in model (4) contains quadratic terms and the variance model is a fourth-degree polynomial
in the mixture and process variables, which makes it a very difficult computational problem to
solve for the roots of 11 variables simultaneously. Therefore, condition (6) was not suitable for
the current application.

Instead, we generated confidence regions of the optimum conditions by using the bootstrap.
Efron and Tibshirani (1993), chapter 13, pointed out that the bootstrap is a computational
technique for obtaining good approximations to the standard errors and confidence regions
of statistics. Furthermore, the bootstrap is independent of the complexity of the estimation
procedure. This is particularly important in the current application because there are no anal-
ytical expressions for the confidence region for the optimum conditions minimizing the DRS
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optimization formulations as will be discussed in Section 4. We shall therefore generate confi-
dence regions of the optimum conditions minimizing the DRS optimization formulations by
using the bootstrap.

3. The hard-to-control variables

3.1. Particle size distribution as a hard-to-control variable
The crusher opening determined the coal top size and the screen aperture size determined the coal
bottom size. Between the top and bottom size, the PSD follows a typical Rosin–Rammler dis-
tribution (Rosin and Rammler, 1933). For each combination of top and bottom sizes prepared,
the actual PSD of the coal was obtained through a full sieve analysis. Sieve analyses were done
according to the American Society for Testing and Materials (ASTM) aperture sizes, and com-
prised 13 screen sizes from 0.5 mm to 75 mm. Therefore, the PSD of the coal is not uniquely
determined by the planned top and bottom sizes. Instead, three aperture sizes from the ASTM
sieve analysis were selected to define the coal PSD and, for purposes of this paper, will be referred
to as the coarse, medium and fine fractions, and were denoted x1, x2 and x3 respectively. Since
the three size fractions have to add up to 100% of the coal feed, the three variables describing
coal PSD can be regarded as mixture variables (Cornell, 1981). The source data are proprietary
and confidential to the operator and are thus not reported. Notwithstanding the confidentiality
obligations, the exact values and ranges of the coarse, medium and fine fractions are of lesser
importance to this paper, since the data are only applicable to the particular South African coal
that was tested. Optimum size distributions are likely to differ for different coal sources.

Manipulation and control of the coal PSD, i.e. coal top and bottom sizes, can be achieved to
some extent at a marginal cost by effective screening of the run-of-mine coal before feeding to
the gasification process (Coetzer and Keyser, 2003). However, operational conditions of vary-
ing PSD can occur under certain circumstances, e.g. if coal is mined which has a high tendency
of break-up during handling and if the coal screening plant is overloaded or experiences oper-
ational upsets. The mechanical operations of crushing and screening also introduce variability
into the final prepared PSD. Therefore, it is important to consider the PSD of the coal feed as
a hard-to-control variable during normal operation and the other variables as controllable. We
perform robustness studies to evaluate conditions of coal composition, oxygen load and CO2 in
RG concentration, as well as the PSD fractions that reduce or minimize the effect of variability
or instability of the PSD fractions on gasifier performance.

The measured values were recorded during each test run for all the gasification process vari-
ables and were used in the statistical modelling and robustness studies. This is because the top
and bottom size fractions of the coal PSD were replaced by three size fractions from the sieve
analysis, the coal composition was analysed for its properties, and the oxygen load and CO2 in
RG levels varied slightly from the planned conditions. Table 1 depicts the summary statistics for
the process variables. The coal PSD is a constrained region in mixture variables and, in partic-
ular, the range of the fine fraction is very small, i.e. 0.195. Note that the values for the oxygen
loads and the CO2 in RG levels are given in coded design units, i.e. .x − x̄/={ 1

2 .xmax − xmin/}
where x is the process variable.

For purposes of the robustness studies, the variance–covariance matrix needs to be defined
for the PSD fractions. The first 10 tests were performed according to a full 23 factorial design
with a duplicated centre point. Therefore, the measured values at the middle point were used
for the variance–covariance matrix of the PSD fractions. It is assumed that the variability at
the middle point is representative of the variability at all the other test conditions. Montgomery
(1999) and Myers and Montgomery (1995) also recommended that known or measured
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Table 1. Summary statistics for the gasification process variables

Variable Units Minimum Mean Maximum Standard Range
deviation

Oxygen load Coded −1.00 −0.07 1.00
CO2 in RG Coded −1.00 −0.21 1.00
PSD
Coarse coal Fraction 0.106 0.287 0.540 0.094 0.434
Medium coal Fraction 0.393 0.646 0.882 0.100 0.489
Fine coal Fraction 0.011 0.067 0.206 0.046 0.195

Coal properties (air-dried basis)
Water† % 2.800 4.316 5.700 0.594 2.900
Ash % 18.900 23.285 30.900 2.943 12.000
Carbon % 50.350 58.121 62.850 2.864 12.500
Hydrogen % 1.090 2.958 3.550 0.625 2.460
Nitrogen % 1.303 1.538 1.730 0.096 0.428
Sulphur % 0.510 0.997 1.610 0.218 1.100
Oxygen % 7.180 8.784 11.230 0.829 4.050

†Inherent moisture.

variability of the hard-to-control variables should be used in the modelling of the process var-
iance. The variance–covariance matrix that was used in the robustness studies in equation (4)
for the three PSD fractions in Table 1 is

Sx =
( 8:40×10−4 −6:44×10−4 −1:97×10−4

−6:44×10−4 5:53×10−4 9:09×10−5

−1:97×10−4 9:09×10−5 1:06×10−4

)
: .7/

3.2. Coal properties as hard-to-control variables
In practice the run-of-mine coal can be highly variable in certain coal seams, e.g. the stone con-
tent or the ash content in the coal, and in such cases it can be controlled by removing part or all
of the stone in a beneficiation plant, which adds additional cost to the feedstock preparation and
should therefore preferably be avoided. Furthermore, coal composition is subject to the type of
coal that is mined, the source of coal and efficiency of the blending plant as well as sampling
analysis errors. Controlling coal composition can result in significant capital investments for
the coal-to-gas facility. It is therefore important to evaluate the effect of coal composition as a
hard-to-control variable during normal operation.

Table 1 depicts the summary of the seven coal properties from the ultimate analysis of the
coal on an air-dried basis. The coal properties are mixture variables which constitute the coal
composition. The properties are denoted by z1, z2, z3, z4, z5, z6 and z7. However, since the PSD
fractions are also mixture variables, and it had been shown previously to be the most important
predictors of gasifier performance (Coetzer and Keyser, 2003, 2004), it was decided to treat
the coal properties as process variables and to use only six of them in the statistical model for
pure gas yield. Furthermore, this was necessary to reduce the number of terms in the statistical
model, which contains mixture and normal process variables. After rigorous evaluations, it was
decided to omit sulphur content from the model. As for the PSD fractions, the variability of
the coal properties at the middle point was considered to be representative of the variability at
all the other test conditions. The variance–covariance matrix that was used in the robustness
studies for the six coal properties is



574 R. L. J. Coetzer, R. F. Rossouw and D. K. J. Lin

Sz =

⎛
⎜⎜⎜⎜⎜⎝

0:330 0:046 −0:267 0:013 −0:017 −0:128
0:046 0:422 −0:438 −0:003 −0:019 −0:047

−0:267 −0:438 0:635 −0:008 0:025 0:109
0:013 −0:003 −0:008 0:002 −0:001 −0:005

−0:017 −0:019 0:025 −0:001 0:007 0:008
−0:128 −0:047 0:109 −0:005 0:008 0:079

⎞
⎟⎟⎟⎟⎟⎠: .8/

4. Dual response optimization formulations

The DRS approach requires an overall optimization, i.e. a simultaneous satisfaction in terms of
two performance characteristics. In this case the performance characteristics are the mean and
standard deviation of the performance variable. Since the simultaneous optimization of gasifier
throughput and variance is a function of mixture components, which are subject to fundamental
constraints, it introduces a unique application to DRS optimization.

Lin and Tu (1995) proposed the use of the mean-square error criterion for simultaneously
optimizing the mean and standard deviation response surface models. To improve on this, Ding
et al. (2004) proposed the following weighted mean-square error optimization scheme. Two
functions, i.e. Ŷσ|x.x, z, w/ and Ŷμ|x.x, z, w/, can be simultaneously optimized by combining
them into a single objective function by taking the convex combination of them:

min
.x,z,w/

.WMSE/=λ{Ŷμ|x.x, z, w/−T}2 + .1−λ/ Ŷσ|x.x, z, w/2

subject to .x, z, w/∈ .Ωx, Ωz, Ωw/ with λ∈ [0, 1] .9/

where Ωx is the experimental range for the coal PSD, Ωz is the experimental range for the coal
properties and Ωw the experimental range for the other two process variables, i.e. oxygen load
and CO2 in the RG concentration. The experimental ranges Ωx and Ωz are constrained mixture
spaces, which introduce a significant number of constraints into the optimization algorithm.
For example, in addition to the general mixture constraints Σi xi = 1, and Li � xi � Ui, where
Li and Ui are the lower and upper bounds of the ith component, it was also necessary to intro-
duce binary constraints on the components, i.e. Lij � xi + xj � Uij, ∀i �= j. For the coal PSD,
these type of constraints were required to conform to the PSD distribution between the top and
bottom sizes. For the coal composition, the additional constraints were required to capture the
fundamental relationships between the coal properties.

In the weighted mean-square error optimization scheme a weight λ is assigned for the squared
deviation of the mean response from the target value T and a weight 1 −λ for the variance of
the performance variable. Using scheme (9) one can choose different values for the weight λ
according to the relative importance of the two responses. When λ=0 or λ=1, marginal opti-
mizations are obtained. The dual optimum solutions for the mean and standard deviation from
the marginal optimizations, i.e. Ŷ

o
μ|x and Ŷ

o
σ|x respectively, are referred to as the ideal solution.

However, this solution is not generally achievable in industry. The optimal solution .xÅ, zÅ, wÅ/

is a function of the weight λ. For a specified λ, one can plot the value Ŷμ|x.xÅ, zÅ, wÅ/ against
Ŷσ|x.xÅ, zÅ, wÅ/, which is called an efficient point. If λ is varied from 0 to 1 then a plot of the
optimum solutions .Ŷμ|x.xÅ, zÅ, wÅ/, Ŷσ|x.xÅ, zÅ, wÅ// is referred to as the efficiency curve in the
optimization literature. The point on the efficiency curve which is closest to the ideal solution
is the optimal solution for scheme (9). Ding et al. (2004) demonstrated that this is a data-driven
method which provides a balance between two quality characteristics, i.e. the mean and stand-
ard deviation of the performance variable. However, all the solutions on the efficiency curve
with different weights are considered to be equally feasible in some sense. For example, the
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decision maker may decide to put more weight on the squared deviation from the target value
than on minimizing the variance. Coetzer et al. (2006) also developed a weighted criterion for
estimation of the start of accelerated auto-ignition of fuels in spark ignition engines.

Derringer and Suich (1980) introduced the transformation of the response or quality char-
acteristic to one aggregate measure of performance known as a desirability function. In the
current problem, the target T = Ŷ

max
μ|x , since we are interested in maximizing the pure gas yield of

the gasifier. This is known as the larger-the-better problem (Montgomery, 1999). The desirabil-
ity function approach is probably one of the most frequently used multiresponse optimization
techniques. Kim and Lin (1998) introduced a non-linear membership function as an alternative
to the Derringer and Suich (1980) method. The degree of satisfaction of the experimenter with
respect to the mean response is maximized when Ŷμ|x = T and decreases as Ŷμ|x moves away
from T. The experimenter does not accept any solution for which Ŷμ|x � Ŷ

min
μ|x . Thus the satis-

faction level with respect to the mean response can be modelled by a function which increases
monotonically from 0, at Ŷμ|x = Ŷ

min
μ|x , to 1, at Ŷμ|x =T . The membership function value of the

mean response, which is denoted as m.Ŷμ|x/, is interpreted as the degree to which Ŷμ|x satisfies
the target on the mean and is a value between 0 and 1.

If the marginal rate of change of membership values of the response is not constant, a non-
linear membership function should be employed. Kim and Lin (1998) proposed the following
exponential membership function:

m.g/=
{

exp.d/− exp.d|g|/
exp.d/−1 if d �=0,

1−|g| if d =0
.10/

where d is a constant and (−∞�d �∞), called the exponential constant, and g is a standard-
ized parameter representing the distance of the response from its target in units of the maximum
allowable deviation. Note that, when d = 0, m.g/ is a linear function. For the larger-the-better
case,

gμ|x = Ŷ
max
μ|x − Ŷμ|x

Ŷ
max
μ|x − Ŷ

min
μ|x

.11/

for Ŷ
min
μ|x � Ŷμ|x � Ŷ

max
μ|x . Similarly, for the standard deviation, which is the smaller-the-better case,

gσ|x = Ŷσ|x − Ŷ
min
σ|x

Ŷ
max
σ|x − Ŷ

min
σ|x

: .12/

Both gμ|x and gσ|x range between 0 and 1. In both cases the membership function attains its
maximum value of 1 when g=0, i.e. when Ŷμ|x = Ŷ

max
μ|x and Ŷσ|x = Ŷ

min
σ|x . Kim and Lin (1998) dem-

onstrated that the function m.g/ can have many different shapes by adjustment of its parameters.
Specifically, the degree of satisfaction changes faster as Ŷ moves away from the target when d<0,
and changes slower when d>0. Therefore, the membership function is flexible to the preferences
of the experimenter.

Using expression (10), we evaluate the following weighted optimization problem:

max
.x,z,w/

{W.g/}=λ m.gμ|x/+ .1−λ/ m.gσ|x/

subject to .x, z, w/∈ .Ωx, Ωz, Ωw/ with λ∈ [0, 1]: .13/

As for the WMSE-optimization (9), the optimal solution for the weighted membership function
(13) can be found as the point on the efficiency curve which is closest to the ideal solution,
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i.e. .m.go
μ|x/, m.go

σ|x//. The formulation (13) finds the optimum conditions .xÅ, zÅ, wÅ/ which
simultaneously maximize the degree of satisfaction on both the mean and the standard devi-
ation criteria. Formulation (13) achieves an optimal balance between the mean and standard
deviation of the performance variable. In addition to specifying the rate of satisfaction by adjust-
ing the parameter d for the mean and standard deviation separately, the experimenter also has
control over the relative importance of the mean to the standard deviation by specifying the
weight λ in problem (13). Kim and Lin (2006) also evaluated formulation (13) for multiresponse
optimization but did not utilize the efficiency curve.

Kim and Lin (1998) introduced a ‘maximin’ operator for aggregating the two objectives, i.e.

max
.x,z,w/

.ξ/ subject to m.gμ|x/� ξ, m.gσ|x/� ξ, .x, z, w/∈ .Ωx, Ωz, Ωw/: .14/

This formulation aims to maximize the minimum degree of satisfaction, ξ, with respect to the
two membership functions, i.e. to maximize the minimum of m.gμ|x/ and m.gσ|x/, for .x, z, w/∈
.Ωx, Ωz, Ωw/. Formulation (14) achieves a good balance in the sense that the contributions of
both the mean and the variance are reflected in the optimization. In addition, scheme (14)
ensures that the solution is not dominated by one of the objectives, which might happen with
the weighted approach of formulations (9) and (13). Formulation (14) also provides a basis for a
meaningful comparison between different design points. For example, a design point .x1, z1, w1/

is preferred to a different point .x2, z2, w2/ if ξ.x1, z1, w1/> ξ.x2, z2, w2/.
Kim and Lin (2006) also pointed out that approach (14) has some possible disadvantages.

Specifically, the above approach is only concerned with the lowest degree of satisfaction. There-
fore, it would not be known whether the degree of satisfaction for the other objective could
be improved. To avoid this outcome, Kim and Lin (2006) proposed the introduction of slack
parameters as follows:

max
.x,z,w/

{ξ +α.ξμ + ξσ/} subject to m.gμ|x/− ξμ = ξ, m.gσ|x/− ξσ = ξ,

.x, z, w/∈ .Ωx, Ωz, Ωw/ .15/

where ξμ and ξσ are positive slack parameters that are associated with the two sets of original
constraints in scheme (14), and α is a positive scaling constant. If α=0, formulation (15) reduces
to scheme (14). As the value of α increases, formulation (15) places more weight on the sum of
the slack parameters, and therefore tends to maximize the total sum of individual degrees of
satisfaction as opposed to the ‘maximin’ approach of scheme (14). Kim and Lin (2006) noted
that there is no fixed rule for choosing the value of α. Therefore, we evaluated formulation (15)
for values of α from 0 to 1 with increments of 0.1.

Finally, we investigate the formulation of Derringer and Suich (1980):

max
.x,z,w/

{D.g/}={m.gμ|x/ m.gσ|x/}1=2 subject to .x, z, w/∈ .Ωx, Ωz, Ωw/: .16/

Formulation (16) aims to maximize the overall desirability of the degree of satisfaction in terms
of the product of the individual degrees of satisfaction. If one of the objectives is not met with
associated degree of satisfaction equal to 0, then the overall desirability is zero. Formulation
(16) is probably one of the most frequently used multiresponse optimization techniques and is
commonly available in software packages, such as Design-Expert (Stat-Ease, 2002).

5. Robustness studies on gasifier performance variables: particle size distributions
as hard-to-control variables

The aim is to determine the optimum mixture and process conditions which maximize the pure
gas yield production (m3 n ton−1 dry ash-free coal, which is the volume of pure gas produced
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per mass of dry ash-free coal), and simultaneously minimize its variance due to the variability
that is transmitted through the coal PSD size fractions. A response surface model of the form
(1) was constructed in the mixture and process variables for pure gas yield. The form of the
predicted model was obtained as

Ŷ .x, z, w/=b1x1 +b2x2 +b3x3 +b12x1x2 +b1w1x1w1 +b3w1x3w1 +b1w2x1w2 +b2w2x2w2

+b3w11x3w2
1 +b1w22x1w2

2 +b2w22x2w2
2 +b2z1x2z1 +b3z1x3z1 +b1z2x1z2

+b3z2x3z2 +b1z3x1z3 +b3z3x3z3 +b1z4x1z4 +b2z4x2z4 +b3z4x3z4

+b2z5x2z5 +b2z6x2z6 +b3z6x3z6 .17/

where x1 is the coarse fraction, x2 is the medium fraction and x3 is the fine fraction of the PSD,
w1 is the oxygen load (km3 n h−1), w2 is the CO2 in RG concentration (volume per cent), z1 is
the percentage water, z2 is the percentage ash, z3 is the percentage carbon, z4 is the percentage
hydrogen, z5 is the percentage nitrogen and z6 is the percentage oxygen in the coal. Note that
water refers to inherent moisture. The parameter values b are obtained from least squares esti-
mation. An adjusted R2-value of 0.8 was obtained for the model. The response surface model
(17) yielded the same trends in the PSD, loads and CO2 in RG that were reported previously
(Coetzer and Keyser, 2003, 2004).

The model for the process variance is calculated from model (4) where Ix.x, z, w/ is a vec-
tor consisting of the derivatives of model (17) to the three PSD size fractions, x1, x2 and
x3. The variance–covariance matrix Sx is given in equation (7). The residual standard error
of the model was obtained as σ̂ = 18:95. From model (17), Ŷμ|x.x, z, w/ can be calculated for
given process conditions, such as for PSD size fractions according to specific ASTM sieve
sizes. Correspondingly, the process variance Ŷσ|x.x, z, w/ can be calculated from model (17)
by using model (4). Note that Ŷσ|x.x, z, w/ is a function of all the variables in the model.
Therefore, it is possible to determine conditions of the PSD, the coal properties and the loads
and CO2 in RG that achieve maximum pure gas yield and minimum process variance
simultaneously.

Table 2 depicts the solutions that were obtained with the squared deviation of the mean
response from the target (.Ŷμ|x −T/2), variance Ŷ

2
σ|x and mean-square error criteria (9) respec-

tively. The second column in Table 2 provides the optimum conditions for minimizing the vari-
ance in pure gas yield alone. The minimum variance was achieved as indicated by the standard
deviation row Ŷσ|x, which is equal to the residual standard error of the model. The criterion
value row indicates the value of the objective function, i.e. Ŷσ|x. The optimum coal PSD is
obtained as 0.493, 0.497 and 0.011 for the coarse, medium and fine fractions respectively. This
PSD is similar to the average size fractions of a 100 × 6 mm PSD, which is the current base
case for gasification performance evaluation. Although the transmitted variance is minimized
the pure gas yield is very low, which is indicated by the absolute deviation from the target, i.e.
|Ŷμ|x −T |, where T =1630.

The third column gives the optimum conditions for minimizing the squared deviation from
the target alone. In this case the target has been achieved and the deviation is zero. The standard
deviation of pure gas yield is higher compared with the variance criterion alone. The optimum
coal PSD is obtained as 0.106, 0.882 and 0.012 for the coarse, medium and fine fractions respec-
tively. This PSD is significantly different from that for the variance criterion, and it is similar
to the average size fractions of a 35 × 4 mm PSD. This is a narrower size fraction and entails
maximizing the middle fraction and minimizing the fine fraction, within their respective exper-
imental ranges.
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Table 2. Comparison of optimum results for the squared deviation from
the target, variance and mean-square error criteria (9)

Variable Results for the following criteria:

Ŷ
2
σ|x (Ŷμ|x −T )2 MSE WMSE

Weight (λ) 0 1 0.500 0.254
Coarse coal 0.493 0.106 0.107 0.107
Medium coal 0.497 0.882 0.882 0.882
Fine coal 0.011 0.012 0.011 0.011
Load (coded) 0.609 −0.115 −0.999 −0.999
CO2 in RG (coded) 1.00 −1.00 −1.00 −1.00
Water (%) 4.273 4.700 4.873 5.073
Ash (%) 27.425 27.700 27.700 27.700
Carbon (%) 53.123 53.550 53.550 53.550
Hydrogen (%) 1.848 3.550 3.377 3.177
Nitrogen (%) 1.730 1.303 1.303 1.303
Oxygen (%) 10.602 8.198 8.198 8.198
Ŷμ|x (m3 n ton−1) 1313.541 1630.000 1626.777 1621.309
Ŷσ|x (m3 n ton−1) 18.950 26.388 24.802 24.111
|Ŷμ|x −T | 316.459 0.000 3.223 8.691√

MSE 25.011 25.629
Criterion value 359.104 0.000 312.764 452.862

The oxygen load changes from a relatively high load to a medium load, and CO2 in RG
changes from a high level to a low level, for the squared deviation criterion compared with the
variance criterion. The percentage ash is slightly higher, which indicates that more ash can be
tolerated in the gasifier for a finer PSD. The percentage carbon is also higher, which is sensible
because the finer fraction with a higher middle fraction releases more carbon, which can be
converted to RG and as a consequence improves the pure gas yield. Contributions from the
other properties are very small.

For the MSE-criterion (9), where the squared deviation from the target and variance have
the same weight, i.e. they are equally important, the optimal coal PSD is the same as for the
squared deviation criterion. However, the optimal pure gas yield is very close to the target value,
which indicates that the squared deviation is minimized more easily than the variance. For the
WMSE-criterion (9), the optimal weight is obtained as 0.254 from the efficiency curve. Again,
since more weight is assigned to the variance criterion it indicates that the squared deviation is
minimized more easily. However, the root-mean-square error is greater compared with the equal
importance case owing to a larger deviation of the mean response from the target. The optimal
PSD is also the same as for the previous criteria. This shows that the PSD shifts from a broad
PSD, for minimizing the variance alone, to a narrower PSD for minimizing the squared devia-
tion from the target and mean-square error criteria. Since PSD can only be prepared according
to ASTM sieve sizes it is recommended that the narrower size fraction is optimal for maximizing
the pure gas yield and minimizing the variance simultaneously.

Although optimum results were obtained with the criteria that are presented in Table 2, it
is an additional objective of this paper to evaluate various DRS optimization strategies for
application to sustainable gasifier performance. Table 3 depicts the optimum solutions for the
linear membership function type criteria (13)–(16), i.e. for dμ and dσ in expression (10) both
equal to 0. The optimal PSD for all the solutions are similar to the average size fractions of a
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Table 3. Comparison of optimum results for the linear membership function type criteria (16), (13), (14) and
(15), i.e. for dμ and dσ in expression (10) both equal to 0

Variable D(g) (16) W(g) (13) Maximin (14) Maximin (15) for the following
values of α:

0.500 0.800 1.000

Weight (λ) 0.574
Coarse coal 0.201 0.107 0.107 0.214 0.253 0.493
Medium coal 0.789 0.882 0.882 0.775 0.737 0.497
Fine coal 0.011 0.011 0.011 0.011 0.011 0.011
Load (coded) −0.031 −0.999 −0.999 −0.762 −0.179 0.609
CO2 (coded) −1.000 −1.000 −1.000 −1.000 −1.000 1.000
Water (%) 4.659 5.128 5.128 5.128 5.128 4.273
Ash (%) 28.087 28.128 28.128 28.128 28.128 27.425
Carbon (%) 53.937 53.978 53.978 53.978 53.978 53.123
Hydrogen (%) 1.556 2.346 2.476 2.207 1.937 1.848
Nitrogen (%) 1.343 1.303 1.303 1.303 1.303 1.730
Oxygen (%) 9.417 8.119 7.989 8.258 8.528 10.602
Ŷμ|x (m3 n ton−1) 1480.622 1557.465 1565.137 1523.552 1508.603 1313.541
Ŷσ|x (m3 n ton−1) 18.969 20.387 20.676 19.319 19.044 18.950
|Ŷμ|x −T | 149.378 72.535 64.863 106.448 121.397 316.459√

MSE 150.578 75.345 68.079 108.187 122.882 317.025
m.gμ|x/ 0.547 0.780 0.803 0.677 0.632 0.041
m.gσ|x/ 0.998 0.836 0.803 0.958 0.989 1.000
Criterion value 0.739 0.804 0.803 0.818 0.918 1.000

35×4 mm PSD, except for the maximin criterion (14) where the slack parameter is equal to 1. In
this case the desirability for the variance becomes the slack parameter because of the assigned
importance and forces the variance to be minimized while sacrificing the deviation from the
target, and as a consequence results in a broader PSD as being optimal.

Among all the solutions the weighted membership function criterion (13) and the maximin
criterion (14) gave the best overall results with high desirability for both the deviation from the
target and the variance. The optimal weight is equal to 0.574 for the W.g/ criterion obtained from
the efficiency curve. The efficiency curve for the W.g/ criterion is depicted in Fig. 1, indicating
the ideal solution and the optimal solution at λ=0:574. The weighted membership function pro-
vides a smooth curve of possible solutions depending on the relative importance of the squared
deviation from the target and the variance. The optimal solution for the W.g/ criterion in Table 3
is a much better solution compared with that of the WMSE criterion in Table 2. The optimal
solution from the W.g/ criterion provides small variance and squared deviation, together with
a slightly higher percentage ash, which is closer to the current operating conditions of the plant.

Table 4 depicts the solutions of the W.g/ criterion for various values of the exponential param-
eters dμ and dσ, i.e. for the non-linear membership function. Although the optimum weights,
which were obtained with the efficiency curve, differ slightly from that of the linear membership
function, the optimum solutions are very similar. Note that the desirability for both the deviation
from the target and the variance, as well as for the overall desirability, increases with an increase
in the exponential parameters because the desirability function becomes increasingly concave
(Kim and Lin, 1998). Fig. 2 depicts the efficiency curve for dμ =5 and dσ =5, which shows that
the optimal solution is much closer to the ideal solution compared with the solution for the
linear membership function in Fig. 1. However, the best solution is obtained for dμ = 2:5 and
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Fig. 1. Efficiency curve for the W.g/ criterion with (dμ, dσ/D .0, 0/ and λD0:574 (�, ideal solution; 4, optimal
solution)

dσ =5 among all the membership functions, giving the smallest root-mean-squared error. This
corresponds to our earlier findings that more weight should be placed on the variance criterion,
or that the criterion should be relaxed, for obtaining higher pure gas yield at sustainable rates.

PSD size fractions can only be prepared according to the ASTM aperture sizes for specifying
the top and bottom sizes of the coal feed. Therefore, the optimum solutions for the PSD that are
provided in Tables 1–4 cannot be prepared precisely for the gasification plant. Furthermore, it
is desired to determine confidence regions for the optimum PSD solutions. This is necessary to
determine whether any size fraction is captured in the confidence region for the optimal PSD.
It is also desired to discriminate between different size fractions, such as a broad versus a nar-
row size PSD. For this we employed the bootstrap for generating the confidence region of the
optimum process conditions (Efron and Tibshirani, 1993). The bootstrap is especially useful in
the current study because there are no analytical expressions for the confidence region for the
optimum conditions from the weighted mean-square error and membership type criteria.

We generated bootstrap least squares estimates for β in equation (3) by randomly selecting a
sample of size n from the estimated residuals "̂=Y.x, z, w/−aTb, where b is the vector of least
squares estimates from the original data (Efron and Tibshirani, 1993). Denote the random sam-
ple by "Å; then the bootstrap responses are generated from YÅ.x, z, w/=aTb+"Å. The bootstrap
least squares estimates bÅ are obtained by minimizing the residual squared error:

n∑
i=1

{YÅ
i .x, z, w/−aT

i bÅ}2: .18/

The bootstrap estimates are then used to specify the bootstrap mean response model Ŷ
Å
μ|x

and the bootstrap variance response model Ŷ
Å2
σ|x. These bootstrap estimates of the mean and
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Table 4. Comparison of optimum results for the non-linear weighted
membership function criterion (13) for various values of dμ and dσ in
expression (10)

Variable W(g) for the following values of (dμ, dσ):

(2.5, 2.5) (2.5, 5) (5, 2.5) (5, 5)

Weight (λ) 0.560 0.525 0.639 0.554
Coarse coal 0.107 0.107 0.192 0.107
Medium coal 0.882 0.882 0.797 0.882
Fine coal 0.011 0.011 0.011 0.011
Load (coded) −0.999 −0.999 −0.867 −0.999
CO2 (coded) −1.000 −1.000 −1.000 −1.000
Water (%) 5.128 5.128 5.128 5.128
Ash (%) 28.128 28.128 28.128 28.128
Carbon (%) 53.978 53.978 53.978 53.978
Hydrogen (%) 2.391 2.906 2.230 2.415
Nitrogen (%) 1.303 1.303 1.303 1.303
Oxygen (%) 8.074 7.559 8.235 8.050
Ŷμ|x (m3 n ton−1) 1560.133 1590.689 1528.657 1561.517
Ŷσ|x (m3 n ton−1) 20.484 21.832 19.460 20.536
|Ŷμ|x −T | 69.867 39.311 101.343 68.483√

MSE 72.808 44.966 103.194 71.496
m.gμ|x/ 0.938 0.969 0.975 0.988
m.gσ|x/ 0.951 0.972 0.986 0.990
Criterion value 0.944 0.970 0.979 0.989
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Fig. 2. Efficiency curve for the W.g/ criterion with (dμ, dσ/D .5, 5/ and λD 0.554 (�, ideal solution; 4, optimal
solution)
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variance response models are used in the DRS optimization criteria to obtain bootstrap esti-
mates of the optimum conditions minimizing the criterion. 1000 bootstrap replicates were per-
formed. The percentile method was used to specify the 90% confidence interval for the criterion,
i.e. the confidence interval was obtained as the values falling in the interval [CÅ

0:05B, CÅ
0:95B], where

CÅ
v is the vth smallest value on the criterion distribution from B bootstrap replicates. The 90%

confidence region for the optimum conditions was specified as those solutions corresponding
to the 90% confidence interval of the criterion.

Fig. 3 depicts the 90% confidence region for the optimal coal PSD in Table 3 for the W.g/

criterion with .dμ, dσ/= .0, 0/. In comparison, Fig. 4 depicts the 90% confidence region for the
optimal coal PSD in Table 4 for the W.g/ criterion with .dμ, dσ/ = .5, 5/ and optimal weight
λ= 0:554. The confidence region for the linear membership function is wider compared with
that for the larger exponential parameter because the linear membership function is more strict
in satisfying the target and therefore more variability is introduced. For both criteria, the confi-
dence region specifies a range for the coarse and medium fractions but restricts the fine fraction
to its minimum value. Furthermore, the confidence region confirms the importance of maxi-
mizing the middle fraction of the PSD that was reported earlier (Coetzer and Keyser, 2004).
Therefore, the 35×4 mm PSD is contained in the 90% confidence region for maximizing pure
gas yield and minimizing its variance simultaneously, confirming the narrower fraction to be
the optimal PSD for the coal feed. Note that the broader 70 ×4 mm PSD is very remote from
the 90% confidence region, indicating its suboptimality according to the criterion.
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Fig. 3. Confidence region in the coal PSD for the W.g/ criterion with (dμ, dσ/D .0, 0/ and λD0:574 (�, 90%
confidence region; �, 35�4 mm PSD; �, 70�4 mm PSD; ı, 50�5 mm PSD)
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Fig. 4. Confidence region in the coal PSD for the W.g/ criterion with (dμ, dσ/D .5, 5/ and λD0:554 (�, 90%
confidence region; �, 35�4 mm PSD; �, 70�4 mm PSD; ı, 50�5 mm PSD)

6. Robustness studies on gasifier performance variables: coal properties
as hard-to-control variables

In Section 5 we discussed the results for maximizing gasifier performance given the variabil-
ity or uncertainty in the coal PSD. The results in Tables 2–4 indicate that there are very little
differences between the optimum solutions for the coal properties. In other words, the coal
composition does not vary much under different DRS optimizations and it should be possible
to recommend an optimal coal composition. However, seven coalmines service the factory, and
because of mining, operational and coal preparation difficulties it is impossible to blend coal
from seven sources according to an exact coal composition. Consequently, variability is evident
in any prepared coal composition. Therefore, since the coal composition is hard to control or
impossible to control during normal operation, it is very important to conduct robustness stud-
ies to evaluate the effect of the variability in the coal properties on gasifier performance. The
aim here is to determine the optimum conditions which maximize the pure gas yield production
and simultaneously minimize its variance due to the variability that is transmitted through the
coal properties.

The model for the process variance is calculated from model (4) where Iz.x, z, w/ is a vector
consisting of the derivatives of model (17) to the six coal properties, zi, i=1, . . . , 6. The variance–
covariance matrix Sz is given in equation (8). From model (17), Ŷμ|z.x, z, w/ can be calculated for
given process conditions, such as the composition from a specific coal source. Correspondingly,
the process variance Ŷσ|z.x, z, w/ can be calculated from model (17) by using model (4). Note
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that Ŷσ|z.x, z, w/ is a function of the PSD size fractions alone since model (17) does not contain
interactions between the coal properties and the loads and CO2 in RG. Therefore, it is possible
to determine conditions of the coal PSD that yield maximum pure gas yield production and
minimum process variance simultaneously, given the variability in the coal properties.

Since it was shown in Section 5 that the weighted membership function gave the best results
with high desirability for both the variance and the deviation from the target, we shall discuss
only criterion (13) in this section. Table 5 depicts the results for the weighted membership func-
tion criterion (13) for various values of dμ and dσ in expression (10), using the variance of the
coal properties. The optimum weights were determined from the efficiency curve. The optimal
standard deviation of the pure gas yield Ŷσ|x is much higher compared with those in Section 4
because of the much higher variance of the coal properties. However, the optimal pure gas yield
is also much lower than those in Table 4. Therefore, the desirability for the various criteria is
much lower compared with those in Table 4, indicating that it is much more difficult to satisfy
the targets for the pure gas yield and its variance.

The optimal coal PSD in Table 5 is also very different from the results in Table 4 for all the
exponential parameters of the membership function. In this case, the optimal PSD is typical of
a 50×5 mm PSD. This is again a narrow PSD with an approximate ratio of 10:1 for top:bottom
size, but with a slightly higher bottom size and top size compared with the 35 × 4 mm PSD.
This is a very important result for the factory because it specifies the optimal PSD for obtaining
high pure gas yield which is robust against the variability in the coal composition. However, it
must be noted that the optimal pure gas yield is lower for the 50 × 5 mm PSD compared with
the finer 35×4 mm PSD.

Table 5. Comparison of optimum results for the weighted membership function
criterion (13) for various values of dμ and dσ in expression (10), using the variance
of the coal properties

Variable W(g) for the following values of (dμ, dσ):

(0, 0) (2.5, 2.5) (2.5, 5) (5, 2.5) (5, 5)

Weight (λ) 0.582 0.678 0.745 0.43 0.607
Coarse coal 0.298 0.302 0.321 0.287 0.297
Medium coal 0.638 0.635 0.618 0.648 0.639
Fine coal 0.064 0.063 0.061 0.064 0.064
Load (coded) −0.362 −0.393 −0.487 0.064 −0.342
CO2 (coded) −1.000 −1.000 −1.000 −1.000 −1.000
Water (%) 5.128 5.128 5.128 5.128 5.128
Ash (%) 28.128 28.128 28.128 28.128 28.128
Carbon (%) 53.978 53.978 53.978 53.978 53.978
Hydrogen (%) 1.193 1.193 1.193 3.123 1.193
Nitrogen (%) 1.303 1.303 1.303 1.303 1.303
Oxygen (%) 9.273 9.273 9.273 7.343 9.273
Ŷμ|x (m3 n ton−1) 1499.460 1500.367 1505.963 1493.618 1499.047
Ŷσ|x (m3 n ton−1) 29.793 29.899 31.112 29.541 29.753
|Ŷμ|x −T | 130.540 129.633 124.037 136.382 130.953√

MSE 133.896 133.037 127.879 139.545 134.291
m.gμ|x/ 0.604 0.851 0.861 0.953 0.957
m.gσ|x/ 0.551 0.812 0.923 0.822 0.943
Criterion value 0.582 0.838 0.876 0.878 0.952
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Fig. 5. Confidence region in the coal PSD for the W.g/ criterion with (dμ, dσ/ D .0, 0/ and λD 0:582, using
the variance of the coal properties (�, 90% confidence region; �, 35 � 4 mm PSD; �, 70 � 4 mm PSD; ı,
50�5 mm PSD)

Fig. 5 depicts the 90% confidence region for the coal PSD for the W.g/ criterion with .dμ, dσ/=
.0, 0/ and λ=0:582, obtained from 1000 bootstrap replications. The shift in the optimal PSD is
clearly demonstrated compared with Fig. 3. The average 50×5 mm PSD is also indicated in Fig. 5
and is contained in the 90% confidence region, which confirms that it is the optimal PSD for
high pure gas yield which is robust against the variability in coal composition. For the coal PSD
as the hard-to-control variables, the 50×5 mm PSD is remote from the 90% confidence region
in Figs 3 and 4. Fig. 6 depicts the 90% confidence region for the coal PSD for the W.g/ criterion
with .dμ, dσ/= .5, 5/ and λ=0:607. The 90% confidence region is basically the same as in Table 5.

7. Conclusions

DRS optimization was performed to determine the optimum operating conditions for maximiz-
ing gasifier performance. Gasification performance was studied in terms of the pure gas yield
and its variance. The response surface method was employed to construct a response surface
model for the pure gas yield and to calculate its variance propagated through the model due
to the variability in the hard-to-control variables. Two types of evaluations were performed, i.e.
coal PSD was considered as hard to control and coal composition as controllable, and coal
composition as hard to control and PSD as controllable. Several DRS strategies were evaluated
for determining the optimum coal PSD, coal composition, oxygen load and CO2 in RG levels
which maximize the pure gas yield and simultaneously minimize its variance.
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Fig. 6. Confidence region in the coal PSD for the W.g/ criterion with (dμ, dσ/ D .5, 5/ and λD 0:607, using
the variance of the coal properties (�, 90% confidence region; �, 35 � 4 mm PSD; �, 70 � 4 mm PSD; ı,
50�5 mm PSD)

For the PSD as hard-to-control variables, it was shown that a 35 × 4 mm PSD is optimal
for maximizing gasifier performance. This is in agreement with previous reports (Coetzer and
Keyser, 2004; Keyser et al., 2005). Keyser et al. (2005) claimed that a 2.5–3% increase in pure
gas yield is expected from running the Sasol–Lurgi fixed bed dry bottom gasification process on
split feed sizes, i.e. the maximum number of gasifiers on a 35×4 mm PSD and the remainder on
a 70×35 mm PSD. Controlling the PSD can be accomplished at a marginal cost with efficient
screening of the run-of-mine coal. However, controlling coal composition and accurate blending
from seven coal sources are very difficult and can only be achieved marginally at considerable
costs to the business. For coal composition as hard-to-control variables, it was shown that a
50 × 5 mm PSD is optimal for maximizing the pure gas yield and simultaneously minimizing
its variance. Therefore, controlling the PSD with a 50×5 mm fraction predicts maximum gasi-
fication throughput which is robust against the variability in coal composition. Therefore, the
feasibility and performance of the 50×5 mm PSD will be tested on commercial scale.

It was shown that the weighted membership function approach, where the optimal weight
is determined from the efficiency curve, gives the best overall results with high desirability
for both the pure gas yield and its variance. This study emphasizes the importance of statistical
experimental design and response surface modelling on a full-scale production plant for process
and product improvement and optimization. The methods and results that are presented in this
paper provide practical evidence that the DRS approach is a powerful method for performing
robustness studies.
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Future work includes the evaluation and optimization of the Sasol–Lurgi fixed bed dry bot-
tom gasification process in terms of additional performance indicators, such as utilities and RG
composition. Specifically, the gasification process must be optimized to be robust against the
variability in coal composition for all the performance indicators.
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