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Summary. Computer experiments have been widely used in various fields of indus-
try, system engineering, and others because many physical phenomena are difficult
or even impossible to study by conventional experimental methods. Design and mod-
eling of computer experiments have become a hot topic since late Seventies of the
Twentieth Century. Almost in the same time two different approaches are proposed
for design of computer experiments: Latin hypercube sampling (LHS) and uniform
design (UD). The former is a stochastic approach and the latter is a deterministic
one. A uniform design is a low-discrepancy set in the sense of the discrepancy, the
latter is a measure of uniformity. The uniform design can be used for computer ex-
periments and also for physical experiments when the underlying model is unknown.
In this paper we review some developments of the uniform design in the past years.
‘More precisely, review and discuss relationships of fractional factorial designs in-
cluding orthogonal arrays, supersaturated designs and uniform designs. Some basic
knowledge of the uniform design with a demonstration example will be given.
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1 Motivatidn

Computer experiments and/or computer simulations have been widely used
for studying physical phenomena in various fields of industry, system engi-
neering, and others because many physical processes/phenomena are difficult
or even impossible to study by conventional experimental methods. We de-
scribe the physical process by a mathematical model, implemented with code
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on a computer. Design and modeling of computer experiments have become
a hot topic since late Scventies of the Twentieth Century. Motivated by three
big projects in system engineering in 1978 Prof. Y. Wang and myself in [4, 36]
proposed the so-called the uniform experimental design or uniform design
(UD) for short. There were six or more input variables in one of the three
projects and the output  can be obtained by solving a system of differential
equations. It costed one day calculation from an input to the corresponding
- output. Clearly, the relationship between the input and output has no analytic
formula and is very complicated. The true model can be expressed as

y=flo1,... 2 = flx), zeT, (1.1)

where & = (z1,...,2s) is the input, y the output, T' the experimental domain
and function f is known and has no analytic expression. The engineers wanted
to find a simple and approximate model or called as a metamodel

v=yg(z1,...,z5) = g() (1.2)

such that the difference of | f(x) —g(x)| is small over the domain T in a certain

sense. The metamodel g should be much easy to compute, i.e., the computa-
tion complexity for g(x) is much less than one for f (). For searching a good
metamodel it is suggested to choose a set of points, y,...,z, in T and cal-
culate their corresponding outputs to form a data set {(x;,¥:), ¢ =1,...,n}.
Then applying some useful modeling techniques to find a good model to fit
the data. If the chosen model can predict the output at any point in T' well,
this model can be regarded as a metamodel. This created a new concept: de-
sign and modeling for computer experiments (DMCE) (or DACE, design and
analysis for computer experiments) in that era. Figure 1 shows the idea of
computer experiments.

Ty —

input : system > y = f(x) output
P
s RO

l____‘___;,. rﬁetamodel,' y = g(x)

Fig. 1. Computer Experiments

We may have several goals in computer experiments, such as a) to ex-
plore the relationships between the input and the output; b) To find max-
imum/minimum value of y and the corresponding input-combination; ¢) to
quantify the leverage of each input variable to the output; d) to determinate
variables for which the values are optimized to minimize the variability of
response variable, .
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Almost in the same time the author met many industrial experiments, the
related engineer did not know the underlying model well. We can express the
model for these experiments by

y=f(z1,...,25) +€ = f(x) +¢, zweT, - (1.3)

where f(z) is unknown, maybe nonlinear, the domain 7' may be large, and
£ is the random error. The experimenter wants to find a model

y=g(z)+e - (1.4)

- for estimation of the true model by an experimental data such that g(z) is very
close to f(zx) in a certain sense. Both of computer experiments and physical
“experiments with model unknown meet the same aspects:

A. Experimental Design: Note that the true model in many studies
may have the following complexities: 1) multi-factor: the number of factors
may be high; 2) non-linearity: the function f(z) is a non-linear function in x;
and 3) large domain: the experimental domain is large so that f(z) may have
more than one local minimum/maximum point. Due to the above complexities
we want to choose experimental points uniformly scattered in the domain so
that we can have a good estimation for the true model. This leads to the
terminology “uniform design”, or “space-filling design”.

B. Modeling: We wish to find a high quality metamodel that approxi-
mates the true model well over the domain. A good metamodel should have
less computation complexity and easy to explore relationship between the
input variables and the output.

Computer experiments have no random errors while physical experiments
have measurement errors, environment effects and so on. This fact leads to
much different between computer experlments and physical experlments with
model unknown. For example, three well-known principles for physical exper-
iments: replication, randomization and blocking are meaningless for computer
experiments. Various statistical methods can’t be directly used for analyzing
data from computer experiments. However, the idea of many statistical meth-
ods can still be applied for modeling computer experiments. We shall discuss
this issue late. '

There are many approaches to computer experiments. In this paper I focus
only on the uniform design for its theory, method and recent development. In
Section 2 an introduction to theory and methodology of the uniform design
is given, and a demonstration example shows implementation of the uniform
design to physical experiments with model unknown. Section 3 introduces

“some recent development of the uniform design. Some applications of the
nniform design will be given in Section 4.
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2 Theory and Methodology of The Uniform Design

2.1 Theory

Suppose that the purpose of experimental design is to find a metamodel g(z)
in (1.2) to approximate the true model f(x) in (1.1). How do we measure

the closeness of g(z) to f(x)? There are many criteria. A natural idea in
engincering requests the metamodel g(x) satisfying

&E(f, ) = 1f(@) — g(ax)| <6, =zeT, CAY

where 0 1s the given accuracy in the project. For simplicity, without loss of
any generality, the experimental region can be assumed to be a unit cube
C* = [0,1]°. Another criterion is

pii(f,9) = | 1f(s) - gl

(2.2)

where p > 0, more often choosing p = 1 or p = 2. The class of functions
f(x) can be considered the class of Lg-integrable continuous functions, de-
noted by Gy. It is not easy to find a unified way to construct metamodel g(z)
satisfying the criterion (2.1) or (2.2) for cach function in G,. Therefore, the
so-called overall mean model was suggested. Let P = {x1,...,z,} is a set of
experimental points on C*. Suppose the experimenter want@ to estimate the
overall mean

mean(y | C°) = f(x) dx
Jos
by the sample mean
, Lo
== flw). (2.3)
s .

We wish to find a design P such that diffmean = |mean(y|C?®) — §(P)|
as small as possible. The famous Koksma-Hlawka inequality in quasi-Monte
Carlo methods provides a upper bound of the difference

diff-mean = |mean(y | C*®) — g(P)| < V(f)D(P), (2.4)

where D(P) is the star discrepancy of P, a measure of uniformity of the set P

over the domain C° and does not depend on f, and V(f) is the total variation

of the function f in the sense of Hardy and Krause (see Niederreiter [30]).
Let Fp(x) be the empirical distribution function

a:<:c

Fp(x) = ZI (z

Q na

where @; < @ mcans each component of @; is less than or equals to the -
corresponding component of x, I(x|a; < ) is the indicate function such
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that it equals to 1 if ; < x, otherwise zero. The star discrepancy is defined
as -
Fp(x) — F(=z)], (2.5)

- D(P) = max

where F(z) is the uniform distribution function on C*®.

The Koksma-Hlawka inequality indicates:

a) The lower the star discrepancy, the better uniformity the set of points
has. This suggests to minimize the star discrepancy D(P) on all designs of
n runs on C%, i.e., to find a uniform design. Fang and Wang (Fang [4] and
Wang and Fang [36]) proposed the uniform design and provides a number of
uniform designs. When the number of runs, n increases, roughly speaking, one
can find design P, such that D(P,) decreases.

b) The uniform design is robust against the model specification. For
example, two models y = fi(z) and y = fa(x) have the same variation
V(f1) = V(f2), a uniform design may have the same level performance for
these two models. 4 4

¢) If the true model f(x) has a large variation, in general, we need more
runs to reach the same upper bound of diff-mean.

d) There are many versions of the Koksma-Hlawka inequality, where the
star discrepancy D(P) is replaced by another discrepancy and the total vari-
ation V(g) is defined according to the definition of the given discrepancy.
Hickernell [20] gave a comprehensive discussion and proposed some new mea-
sures of uniformity, among of which the centered Lo-discrepancy (CD) and
the wrap-around Le-discrepancy (WD) have good properties and satisfies the
Koksma-Hlawka inequality. The CD and WD have nice computational formu-
las

(CD(P))? .= Gg—) - % Z H (1 + %[.;:kj —0.5| - %|a:kj - 0.5|2>

k=1j=1 ,
TN Ny S T |
+ ZLH L+ Slak = 0.5+ S lzji = 0.5] = Slow — z5l|, (26)

k=1 j=11=1
and
4 5 1 n nos 3
(WD(P))* = <§> t > L H {5 — |z — 25| (1 — |zps — fcji[)J , (2.7)
k=1 3=11=1
respectively, where xj = (21, .., %ks) is the kth experimental point.

Obviously, the overall mean model is too simple and may not reach the
- task: estimation of the true model f(z). But, the overall mean model provides
a simple way to develop methodology and theory of the uniform design. It
is surprising that the uniform design has an excellent performance for both
computer experiments and physical experiments with model unknown. ‘
Wiens [37] concerned with designs for approximately linear regression
models and show that the uniform design measure (the uniform distribu-
tion on C®) is maximin in the sense of maximizing the minimum bias in the
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regression estimate of o2 and is also minimax in the sense of minimizing the

. . . . . 9 . \ 1 e o
maximum bias in the regression estimate of o?. Kie and Fang [41] pointed out
that the uniform measure is admissible and minimax under the model

y = f('l;-l', Ce ) e

where f is unknown, but belongs to some function family. chkunoll [21]
sidered robust regression models

y = f(z) + e = mean(y)+ h(x) +e¢,

where the function f(z) is decomposed into the overall mean value of f()
and mis-specification h(z). He proposed two models average mean-square-
error model and mazimum mean-square-error model. With a certain condition
he proved that the uniforin design is optimal under these models. His results
show that the uniform design is robust for model specification. Hickernell and
Liu [22] consider efficiency and robustness of experimental design. They said
“Although it is rare for a single design to be both maximally efficient and
robust, it is shown here that uniform designs limit the effects of aliasing to
yield reasonable efficiency and robustness together.”

2.2 Methodology

In this subsection we introduce how to apply the uniform design to real ex-
periments. A uniform design for an experiment of s factors with n runs on the
domain C*® is a set of n points such that this set has the minimum discrep-
-ancy, the latter can be centered Ly-discrepancy or others. If the domain T is
a rectangle in R®, a linear transformation can transfer n points on C*° into T

When there is only one factor on the range [a,b] in the expellmcnt with
n runs. The uniform design arranges n runs as {a—l—(b a) o 5, 0+ (b~ a)2 AR
at (b—a)t

For multi-factor experlments it is not tractable to find a set of n pomts
P ={xz1,...,x,} C C% such that it has the minimum discrepancy. Therefore,
many authors focus on lattice points and introduce the concept of U-type
designs. '

0

Definition 1. A U-type design denoted by U(n;q1 X - X ¢s) 18 an n X s
matrix with g; entries at the jth columns such that the g; entries appear
in this column equally often. When some ¢; are equal, we denote it by
Uln;gi* x -+ X gpm) with vy + -+ 4+ 7, = s. When all the number of g;
are equal to ¢, we write U(n;¢®) and the corresponding designs are called
symmetric, otherwise asymmetric or U-type design with mixed levels. Let
U(n;qp X -+ X gs) be the set of all U-type designs U(n;q1 X - -+ X gs). Similarly
we have notations U(n;¢i* X -+ x ¢ir) and U(n; ¢°). ‘

Very often we choose g entuu, in one column as {1,2,...,¢}. Sometimes,
2
q 1
q entries are chosen as {,,q, Bgr } Let U = (uy4) be a U-type design
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in U(n;qr X -+ X gs) with entries {1,...,¢;} at the jth column. Take the
transformation
u;; — 0.5 , o
T = Uq~m—’ i=1,...,n, 7=1,...,s. (2.8)
j

and denote X, = (z;;). Then X, is a U-type design with entries
{5211—;, 5%, e —2—%{51} at the jth column. The matrix X, is called the induced
matriz of U. The n rows of the matrix X, are n points on [0, 1]°. Most mea-
sures of uniformity are defined on [0, 1)° in the literature. Therefore, we define

uniformity of a U-type design U through its induced matrix by
DU) = D(X,). : (2.9)

Definition 2. A design U 6 Un;qr X -+ X qg) 18 called a uniform desigﬁ
under the pre-decided discrepancy D if

D(U) = i D(V
©) =, min PV,

and is denoted by U, (g1 X -+ X ¢s).

Under the CD in (2.6) Table 1 and Table 2 give two uniform designs
U12(12%) and Ug(32 x 2), respectively. Table 1 can arrange an experiment
having at most 4 12-level factors with 12 runs and Table 2 can apply to an ex-
periment of 6 runs and 3 factors where two have three levels and one has two
levels. Figure 2 gives scatter plots for any two columns of Uy, (12%). By a visu-
alization we can see that 12 points on any two marginal square are uniformly
scattered. How to construct uniform design tables is a challenging job. A com-
prehensive review on construction of uniform designs can refer to Fang and
Lin [11] and Fang, Li and Sudjianto [10]. A number of UD tables can be found
on the UD web site at http://www.math.hkbu.edu.hk/UniformDesign.

Table 1. U2(124) Table 2. Us(3? x 2)
No 1 2 3 4 No | 1 2 3
1 1 10 4 7 1 |1 1 1
2 | 2 5 11 3 2 12 1 2
313 1 7 9 3 13 2 1
4 14 6 1 °5 4 |1 2 2
5 15 11 10 11 5 12 3 1
6 | 6 9 8 1 6 |3 3 2
7|7 4 5 12
g | 8 2 3 2
9 19 7 12 8
10 |10 12 6 4
1|1 8 2 10
12112 3 9 6
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Fig. 2. Scatter plots of any two columns for Ui2(12%)

2.3 Demonstration example

For illustration applications of the uniform design consider a chemical exper-
iment that is conducted in order to find the best setup to increase the yield.
Four factors and 12 levels for each factor are chosen as follows:

z1, the amount of formaldehyde (mol/mol): 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4,
3.8, 4.2, 4.6, 5.0, 5.4 - I

s, the reaction temperature (hour): 5, 10, 15, 20, 25; 30, 35, 40, 45, 50, 55, 60

z3, the reaction time (hour): 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5 |

x4, the amount of potassium (ml): 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70

The response variable is designated as the yield (y). This experiment could
be arranged with a UD table of the form U, (12%), where 12 is a divisor of n.
Tt turns out that the experimenter chooses Ui2(12%) design. The 12 levels
marked by 1,2,...,12 are transformed into the real levels of the factors. It
results in a design listed in Table 3 where the values in the bracket in the
columns x1, Z2, 3 and x4 are from the table Uo(12%). Run 12 experiments
according to these 12 level-combinations and record the corresponding yield y
(see the last column of Table 3).

The experimenters wanted to find a good mctamodel such that they could
find a level-combination of the factors with a yield that is much higher than
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Table 3. Design and respdnse

No T3 T T3 T4 Y
1 1.0 (1) 50 (10) 2.5 (4) 45 (7) 0.0795
2 1.4 (2) 25 (5) 6.0 (11) 25 (3) | 0.0118
3 1 1.8(3) 5(1) . 4.0(7) 55 (9) 0.0109
4 | 22 (4) 30 (6) 1.0 (1) 35 (5) 0.0991
5 | 26(5)  55(11)  55(10) 65 (11) 0.1266
6 | 3.0(6) 45 (9) 4.5 (8) 15 (1) 0.0717
7 | 3.4 (7) 20 (4) 3.0 (5) 70 (12) 0.1319
8 | 3.8(8) 10 (2) 2.0 (3) 20 (2) 0.0900
9 | 42(9) 35 (7) 6.5 (12) 50 (8) 0.1739
10 | 4.6 (10) 60 (12) 3.5 (6) 30 (4) 0.1176
11 | 5.0 (11) 40 (8) 1.5 (2) 60 (10) | 0.1836*
12 | 54(12) 15 (3) 5.0 (9) 40 (6) 0.1424

the current one. We have mentioned that there are many ways to construct
a metamodel. In this example, they considered only linear and quadratic re-
gression models. ‘

Note that the task for the experimenter is to find the best level-combination
of the factors that can maximize the yield. The best result among the 12 re-
sponses is y11 = 18.36% at z1 = 5.0, 22 = 40, 3 = 1.5 and x4 = 60. This can
be served as a benchmark. Is there any level-combination to produce a larger
amount of yield? The simplest approximate model is the first-order regression
or its submodel:

E(y) = Bo + frz1 + Baxo + Pazs + Baza.

Unfortunately, we can’t find a satisfactory result under this model as well as
its submodel. Therefore, a more flexible second-order regression is considered
as below '

E(y) = fo + Zﬁzlz + Zﬂz’jl‘il‘j- (2.10)
i=1 <7 '
With a technique of model selection, we find a good submodel:
§ = 0.0446 4- 0.002925 — 0.0260z3 + 0.0071z1 23
+0.000036z224 — 0.0000542 , (2.11)

with R? = 97.43% and s? = 0.0001. In the literature, the centered quadratic
regression model

4 .

B(y) = o+ ) Bilzs —2:) + > Big(wi — 3:)(z; — &), (2.12)
' i=1 i<j

is also recommended, where Z; is the sample mean of z;. In this data sct,

Ty = 3.2, Ty = 32.5, T3 = 3.75 and T4 = 42.5. Once again, by using some

‘model selection technique, a metamodel is /
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§ = 0.1277 + 0.0281(zy — 3.2) + 0.000937 (22 — 32.5) + 0.0011d(z4 — 42.5)
+ 0.00058 (3 — 3.75) (24 — 42.5) — 0.000082(z2 — 32.5)° (2.13)

with 12 = 97.05% and s* = 0.0002. _

By an ANOVA analysis and statistical diagnostics both models (2.11)
and (2.13) are acceptable. Each can give an explanation for relationships
among the four factors and the yield, but these relationships may be con-
sistent or may be not consistent as the number of runs is small for such a four
factor experiment. The experimenter should be carefully to make his /her own
conclusion. The models (2.11) and (2.13) can be used to predict response at
‘any point of the experimental domain. It also can be used for searching the
‘bhest’ combination of the factor-value. We maximize y with respect to xj,
i =1,...,4 under models (2.11) or (2.13), respectively, over the domain, &,
that is to find «, ¢ = 1,...,4 such that

~

S * Lk * . . AL .
gzl xs, x5, xy) = I]’l{?\,Xy(.ﬂl,ﬂ,Q,lg, T4),

where §(z1, €2, T3, 74) is given by (2.11) or (2.13) respectively. By some op-
timization algorithm, it is easily found that under model (2.11), z7 = 5.4,
z} = 50.2, 25 = 1, x} = 70 and the corresponding response 4(5.4,50.2,1,70) =
19.3% is the maximum; and under model (2.13), z7 = 5.4, z3 = 43.9,
25 = 6.5, 2 = 70 and the corresponding response 7(5.4,43.9,6.5,70) =
96.5% is the maximum. As two optimal points =z} = (5.4,50.2,1;70) and .
z} = (5.4,43.9,6.5,70) do not appear in the plan (Table 3) some additional
experiments are necessary for judging which metamodel is closed to the real
one.

A simplest way is to implement m runs at these two optimal points @]
and x4 and to compare their mean yield. In this experiment the experimenter
implemented three runs at @} and % and find that the mean of y is 20.1%
at x3 and 26.3% at w3}, respectively. Thus we prefer (2.13), the centered
quadratic regression model, as our chosen metamodel. Note that both meta-
models recommend z; = 5.4 and z4 = 70. This fact implies that we should
consider increase upper bound of the experiméntal level for 1 and xz4. The
experimenter should consider a further investigate and arrange a consequent
experiment. ’

2.4 Modeling techniques

We have considered the quadratic regression model and the centered quadratic
regression model for the above example. It indicates that for an experiment we
may have many possible metamodels. Many metamodels can be represented
as a linear combination of a set of basis.functions: {By(z), Ba(x), ..., Bm(z)}
defined on the experimental domain. In this case a metamodel g has of the
form of Y77", B;B;(w) and
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m

y(e) =3 8;By(w) +ele), (2.14)

where « is a point in the domain, 3;’s are unknown coefficients to be estimated

and () is the random error. In fact, simply linear model, and both quadratic

regression model and centered quadratic regression model are special cases

of (2.14). For a univariate z-variable, the power spline basis has the following
| " m . i .

general form of 7%, B;B;(z) and

1z, 2% ..., 28, (z—w)l, oo, (@ —Rkr)Y, (2.15)

where k1, . .., kx are a set of selected knots, and a4 stands for the positive part
of a, ie., ay = al(a > 0). Multivariate spline basis may be constructed from
the univariate spline basis using the tensor product approach. The number of
basis functions is often large, various techniques of variable selection are very
useful for choosing a good submodel of (2.14) as a metamodel.

The Kriging model

m

y(@) =Y B;Bi(@) +=(x), weT (2.16)
i=1 |

has been widely used in modeling computer experiments, where Bj;(x) are
given and f; are unknown parameters; z(x) is a stochastic fields, mostly
choosing a stationary Gaussian field that has a zero mean function and a given
covariance structure with some unknown parameters to be estimated. As we
know that Kriging predictor interpolates its training data, this property is
much suitable for modeling data from computer experiments where there is
no random error, but it is not so good for the data from physical experiments.
Therefore, the so-called “empirical Kriging model” is suggested

m

y(z) = Zﬂij(fB) + 2(@) + e(), (2.17) .

where e(z) is a random error and is assumed to be uncorrelated with z(z).
A comprehensive study on Kriging model and empirical Kriging model can
refer to Sacks et al. [32], Santner et al. [33] and Stein [35]. Other modeling
techniques involve neural networks, radial basis function model, local polyno-
mial regression and Bayesian approach. The reader can refer to Fang et al. [10]
for the details.

The following points in modeling should he emphasized:

e There are many possible metamodels for an experiment. One should con-
sider the following aspects and then choose one for the further process:
1) the metamodel gives a good prediction, 2) the response estimator can
be easily calculated by the metamodel, 3) the metamodel can be easily
explore relationships between the input factors and the output.
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o Both computer experiments and physical experiments can share many
common modeling techuicues.

o The metamodel generated by some methods such as linear regression,
quadratic regression, and of the form (2.14) can be easily interpreted,
but the metamodel obtained by the neural networks, Kriging model and
empirical Kriging model is not easily to directly give a clear exploration.
For solving this difficulty the so-called sensitivity analysis (SA) has been
developed. -It studies how the variation in the output of a model can be
apportioned, quantitatively, to different sources of variation and how the
given model depends upon the information fed into it. The SA is used to
provide an understanding of how the model response variables respond to
changes in the inputs. A comprehensive study on SA can refer to Saltelli
et al. [34].

3 Some Recent Development of The Uniform Design

The uniform design was based on quasi—Monté Carlo methods and its original
theoretic proofs were mostly based on the number theory, not on statistics.
There are many essential difficulties in development of its own theory:

e The uniformity is a geometrical criterion, it needs some justification in
statistical sense;

o Initially, the uniform design theory is based on the quasi-Monte Carlo
methods. The useful tool is the number theory. Most statisticians are lack
of knowledge of the number theory;

The overall mean model is far from the request of modeling;
Construction of uniform design is a NP hard problem. It needs some pow-
erful algorithms in optimization. :

There was a rapid development in theory, methodology and applications
of the uniform design in the past years, especially in the past ten years. It
needs a very large space to review all the new results. Therefore, I mainly
focus on relationship among fractional factorial design, supersaturated design
and uniform design in this section. '

3.1 Fractional factorial designs and supersaturated designs

Let us review some basic knowledge on these designs.

Definition 3. For an experiment of n runs, s factors each having qi,...,4s
levels respectively. A factorial design is a set of n level-combinations. A design
where all the level-combinations of the factors appear equally often is called
a full factorial design or a full design.
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The number of runs in a full factorial design should be n = kH;Zl qj,
where g; is the number of levels of the factor 7 and £ is the number repli-
cations for all the level-combinations. When all the factors have the same
number of levels, ¢ say, n = kq¢®. In this case the number of runs of a full
factorial design increases exponentially as the number of factors increases.
Therefore, we consider to implement a subset of all the level-combinations
that have a good representation of the complete combinations, this subset is
called fractional factorial design (FFD for short). The most important and
popularly used FFD is the orthogonal array.

Definition 4. An orthogonal array (OA) of strength r with n runs and s fac-
tors each having q levels, denoted by OA(n, s, q,r), is a FFD where any subde-
sign of n runs and 7 factors is a full design. When r = 2, the notation L, (g*)
is often for OA(n, s,q,2) in the literature.

Strength two orthogonal arrays are extensively used for planning experi-
ments in various-fields and are often expressed as orthogonal design tables.
Table 4 presents two Lg(3%), where left one Lg(3%); can be found in most
textbook while the right one Lg(3%); was obtained by Fang and Winker [17].
Both can arrange an experiment of nine runs and at most four factors each
having 3 levels. Is is easy to check that these two designs are isomorphic (see
section 3.4 for the definition of the isomorphism). From the traditional view
these two designs are equivalent. However, it is easy to find that Lg(3%)s has
a smaller CD-value than Lg(3%); has. Fang and Ma (2000) found some differ-
ences in statistical inference between the two designs. This gives an important
message that uniformity of the design can provide additional information in
statistical ability of the design. The reader can refer Dey and Mukerjee [3]
and Hedayat, Sloane and Stufken [19] for the details.

‘Table 4. Two Lo(3%) Tables

No Lo (3%)1 Lg(3%)2

1 1 1 1 1 1 1 T2
2 12 2 2 1 2 3 1
3 13 3 3 1 3 2 3
4 2 1 2 3 2 1 3 3
5 2 2 3 1 2 2 2 2
6 2 3 1 2 2 3 1 1
7 3 1 3 2 3 1 2 1
8 3 2 1 3 3 2 1 3
9 3 3 2 1 3 3 3 2

The number of runs for orthogonal array OA(n, s, q,2) is at least ¢*. In
industrial and scientific experiments, especially in their preliminary stages,
very often there are a large number of factors to be studied and the run



118 Kai-Tai Fang and Dennis K. J. Lin

size is limited because of expensive costs. However, in many situations only
a few factors are believed to have significant effects. Under the effect sparsity
assumption, supersaturated designs have been suggested and can be effectively
used to identily the dominant factors. The reader can refer to Yamada and
Lin [43] and Lin [25] for a comprehensive introduction and recent developnient.

Definition 5. Supersaturated designs are fractional factorials in which the
number of estimated (main or interaction) effects is greater than the number
of runs. Consider a design of n runs and s factors each having q levels. The
design is called unsaturated if n —1 > s(q — 1); saturated if n — 1 = s(q — 1);
and supersaturated if n —1 < s(qg—1).

Note that there are some common aspects among the orthogonal array,
supersaturated design and uniform design:

® they are subset of level-combinations of the factors
e they are constructed based on U-type designs
o there are some criteria for comparing designs

Therefore, there should have some relationships among the three kinds of
designs. Fang et al. [13] found that many existing orthogonal arrays of strength
two are uniform design under CD. Therefore, they proposed a conjecture that
any orthogonal design is a uniform design under a certain discrepancy. Late,
under the CD Ma, Fang and Lin [28] proved this conjecture is true for a full
design ¢° if ¢ = 2 or ¢ is odd, or s = 1 or 2. In general, the conjecture is not
true. The study gives some relationship between orthogonality and uniformity.

3.2 Some criteria in experimental designs

Let us review some existing criteria and relationships among the criteria:

A. Minimum aberration and generalized minimum aberration:
There are many useful criteria for comparing factorial designs, such as res-
olution (Box, Hunter and Hunter [2]) and minimum aberration (Fries and
Hunter [18]). For given a regular factorial design D of s factors, its word-length
pattern, denoted by W(D) = (A;(D),..., As;(D)), gives rich information on
its statistical inference ability. A ¢°~* regular FI'D D is an (s —k)-dimensional
linear subspace of ¢°. The k-dimensional orthogonal subspace, denoted by D+,
of D is the defining contrasts subgroup of D. The elements of D1 are called
words. Let A;(D) be the number of distinct words of length 7 in the defining
relation of D. Then the sequence W(D) = {A41(D),...,As(D)} is called the
word length pattern of D. Ma and Fang [27] and Xu and Wu [42] indepen-
dently extended the word length pattern to non-regular FFD. We still use
W(D) = {A1(D),...,As(D)} for the generalized word length pattern. The
resolution of D is the smallest { with positive A;(D) in W (D). Let D; and
D3 be two designs. Let ¢ be the smallest integer such that 4,(Dy) # At(Dg)
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in their generalized word length patterns. Then D; is said to have less gen-
eralized aberration than Dy if A;(D1) < Ay(D3). A design D has minimum
generalized aberration (MGA) if no other g-level design has less generalized
aberration than it. The MA/GMA is the most popularly used criterion in
comparing FFDs.

B. E(s?) criterion: For a U-type design with two levels —1 and 1, let
X be the design matrix where each row stands for the level-combination of
a run and each column stands for a factor. Let s;; be the (4,7)-element of
X'X. The E(s?) criterion, proposed by Booth and Cox [1], is to minimize

- 24/ 6)

Obviously, E(s?) = 0 for any orthogonal array, otherwise E(s?) > 0. For any
non-orthogonal design its lower bound was obtained by Nguyen [31]. Namely,

n?(s —n+1)

E(s%) > : 3.1
() 2 G Tm =) (3:1)
C. ave x? criterion: For three-level supersaturated designs, Yamada and
Lin [44] defined a measure for dependency between two factors @; and x; by

3 (U) 2
nq[/u - n/g
X (zi, xj) = E /9 ) , (3.2)

where @; and z; are the ith and jth columns of X, n? is the number of
(u,v)-pairs in (x;,x;). Then they defined a criterion fol the whole design X

by . :
. — S
avex? = > XQ(m.i,:cj)/(z)
1<i<j<s
y . 2
avex? = 0 for any orthogonal array, otherwise avey” > 0. Yam ada and

Matsui [46] obtained a lower bound of ave x* as follows:

2n(2s —n+1)
n—-1D(s—=1)

More results can refer to Yamada et al. [45]

ave x> > (3.3)

D. E(fyop) criterion: For a U-type design U(n;qu X -+ X qs) define

i dj 2
f]i\jf‘()D L}_J(”gffv)“ ) ; | (3.4)

u=1v=1 qij
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where 7% is the number of (u,v)-pairs of factor ¢ and factor j and n/(q:q;)
stands for the average frequency of level-combinations in each pair of factors 1
and j. A criterion E(fyop) is defined as

E(fvon) =, [Nop / ()
1<i<j<s

Fang, Lin and Liu [12] found a lower bound for E{(fvop)

n(ZJ 11/ —m)z
m(m —1)(n —1)

E(fNOD) 2 +C(n)Q1,"'7qnz): | (35)

. _ 1 n ‘
where C(n, iy .. )(J‘m,) - Tng - m{m—1) (Zz—l T + Zl =1, ji qqu) de-
pends on the design only through n,q1,. .., gm.

E. Various discrepancies: We have introduced the star discrepancy de-
fined in (2.5), the CD in (2.6) and the WD in (2.7). Hickernell and Liu [22]
proposed the so-called the discrete discrepancy and Fang, Ge and Liu [6]
found a lower bound for this criterion. The discrete discrepancy has played

an important role for construction of uniform designs based on combinatorial- -

designs. A comprehensive studies can refer to Fang et al. 6, 7,8, 9.

3.3 Uniformity and word length pattern

The above criteria have been proposed by its own consideration and their
lower bounds were obtained by different authors. Are there any relationships
among these criteria? There are a lot of new development along this line.
An important finding was by Fang and Mukerjee [15], where they obtained
an analytic link between the CD and word-length pattern for any regular
two-level factorials 2°7P as follows: -

D) } (3.6)

ooao = (2) -2 (B) + (8) {1+ 2

Ma and Fang [26] extended the above result to the wrap-around Lo-discrepancy
and three-level designs. They found relationships between WD and word-

length pattern:
(/11\° < A(D) (11 [4Y° ,
— —t — 1 —=1|=z fg=2
(%) 2 "in +(3) (5), a2
‘ (3.7

L2 4jAD N7y
+ ;(ﬁ) j( ) —(§>7 Iqg=

The formulas (3.6) and (3.7) indicate that 1) the uniformity criterion is
essentially consistent with the resolution and minimum aberration criteria;

(WDa(D))* = |
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2) the uniformity can be applied to both regular and non-regular factorial de-
signs with any number of levels, but the resolution and minimum aberration
can be applied only to regular designs in the past and designs with lower num-
ber of levels (¢ = 2 or 3 in most studies). Those results show the usefulness
of the uniformity in factorial designs and some advantages of the uniformity.
However, the discrepancy criteria has some weakness. Comparing the resolu-
tion criterion the discrepancy do not have such a clear criterion to classify
designs into different levels. For overcoming this shortcoming Hickernell and
Liu [22] proposed the so-called projection discrepancy pattern that has a sim- .
ilar function like the resolution. They indicated that the uniform design limit
aliasing. Fang and Qin [16] proposed the uniformity pattern and related cri-
teria for two-level designs, here the uniformity pattern likes the generalized
word length pattern, but it is easy to computer.

3.4 Uniformity and isomorphism

Two U-type designs U(n,q°) are called isomorphic each other if one can be
obtained from the other by relabelling the factors, reordering the runs, or
switching the levels of one or more factors. For identifying two such designs
a complete search must be done to compare n!(g!)°s! designs. Therefore, to
identify the isomorphism of two d(n, ¢, s) designs is known to be an NP hard
problem when n and s increase. Ma, Fang and Lin [27] noted the fact that
two isomorphic U(n, ¢®) designs should have the same uniformity and the
same distribution of projection uniformity in all marginal subdiménsions and
proposed an efficient algorithm to detect non-isomorphism. Fang and Ge [5)
extended the above idea for detecting inequivalence of Hadamard matrices
and proposed a new algorithm. A Hadamard matrix, H say, of order n is an
n X n matrix with elements 1 or —1, which satisfies H'H = nl. Hadamard
matrices have been played important roles in experimental designs and code
theory. Two Hadamard matrices are called equivalent if one can be obtained
from the other by some sequence of row and column permutations and nega-
tions. They applyed the new algorithm to Hadamard matrices of order 36
and discovered that there are at least 382 pairwise inequivalent Hadamard
matrices of order 36. This was a new discovery. '

3.5 Majorization framework

Recently, Zhang et al. [47] found a unified approach to describe the above
- criteria and their lower bounds by the use of the majorization theory (Marshall
and Olkin [29]). ,

For two nonnegative vectors x,y € RI' with the same sum of its com-
ponents. We write & < y if Zle T 2 Z;:] Y £ = 1,2,...,m —1,
where z;1; < 2z < o < T(m) are ordered numbers of @, and yj; have
the same meaning. A real-valued function 1 on R7 is called Schur-convez if
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P(x) < (y) for every pair #, y € R} with @ 2 y. The summation/product
of several Schur-convex fllll(,tl()llb is stlll a Schur-convex function, especially,
an important class of Schur-convex functions are separable conver functions
of the form ¥(x) =Y - | ¥(z,) with " (x) > 0.

For a U-type design X of n runs and s factors. Let clH be the Hamming
distance between runs i and k. Let d(D) be rn—dnnenmonal pairwise distance
vector (PDV) of (/H for 1 <14 < k <n, where m = n(n—1)/2. For any design
U(n,q®), the sum of its pairwise distance vector is uniquely determined by

diotal = Z 1<i<k<n clfJI = @%—i) This fact gives possibility that we can apply
the IIl&JOTlZ&thIl theory to find a lower bound. Zhang et al. [47] found that the
criteria, like F(s?), ave x2, Aa, A3 in word length pattern, discrete discrepancy,
wrap-around Lg-discrepancy (g = 2, 3) and centered Lo-discrepancy (¢ = 2)
can be expressed as a separable Schur function of PDV.

Let d = diotar/m = ;gi ({g, and let d(D) be a m x 1 vector of d’s.

From the majorization theory we have d(D) < d(D). By this way we ob-
tain a lower bound m(d), when d is an integer and the criterion has of the
form W(z) = S, 9(x;). When d is not an integer, let d; and dy be the
integral part and fractional part of d, respectively. For any separable convex
function 377+ ¥(z;) it has a tight lower bound

m(1 — dg)p(d;) + mds((d;) + 1). (3.8)

Denote d(D) with the first m(1 — df) components of d’s and following md
components of 1 + d;’s. We have d(D) = d(D) =% d(D) by Lemma 5.2.1 of
Dey and Mukerjee [3]. This approach gives a unified approach to find a lower
bound for the criterion that can be expressed as a separable Schur function of
PDV of a U-type design. When d is not an integer, the lower bound of (3.8)
is new for all the criteria we have mentioned.

4 Applications of The Uniform Design

Since 1980 the uniform design has been widely used for various projects. For
example, Ling, Fang and Xu (2001) gave a comprehensive review on applica~
tions of UD in chemistry and chemical engineering. There is a large potential
applications of the uniform design for grammar of technology development,
especially, for grammar of high tech development. Those who can first to de-
velop a new high tech product and who will dominate the market, at least in
the first few years. From the literature you can find the following about UD:

o There are more than 500 hundreds case studies published in more than
one hundred journals.

e More than one hundred theoretic research papers have been published in
various journals.
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o Ford Motor Company has used UD for automobile development and
“Design for Six Sigma”.

e A nationwide society “The Uniform Design Association of China” was
established in 1994 and has organized many public lectures, short courses,
conferences and workshops.

- The users appreciate the UD in the following aspects:

(a) flexibility in design and modeling;

(b) easy to understand and use;

(c) good for nonlinear models;

(d) can be applied on complicated system; and

(e) can be used for several occasions: physical experiments with unknown
model, computer experiments, computer-based simulations .and experi-
ments with mixtures;

(f) computer aided software is available.

The Ford Motor Company has used the UD for developing new engines.
Agus Sudjianto, Engineering Manager in FORD invited the first author of
the paper to visit the FORD in 2002: His letter of invitation wrote: “In the
past few years, we have tremendous in using Uniform Design for computer
experiments. The technique has become a critical enabler for us to execute
‘design for Six Sigma’ to support new product development, in particular,
automotive engine design. Today, computer experiments using uniform design
have become standard practices at Ford Motor Company to support early
stage of product design before hardware is available.” It shows that there is
a big potential applications of the uniform design in Six Sigima development.
The monograph “Design and Modeling for Computer Experiment” by Fang,
Li and Sudjianto presents many experiments that were implemented in the
FORD. '
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