
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Computer Physics Communications 178 (2008) 401–408

www.elsevier.com/locate/cpc

Improving Random Number Generators in the Monte Carlo simulations
via twisting and combining

Lih-Yuan Deng a, Rui Guo b, Dennis K.J. Lin c, Fengshan Bai b,∗,1

a Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
b Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, PR China

c Department of Supply Chain and Information Systems, Pennsylvania State University, University Park, PA 16802, USA

Received 8 March 2007; received in revised form 21 September 2007; accepted 19 October 2007

Available online 24 October 2007

Abstract

Problems for various random number generators accompanying the Wolff algorithm [U. Wolff, Phys. Rev. Lett. 62 (1989) 361; U. Wolff, Phys.
Lett. B 228 (1989) 379] are discussed, including the hidden errors first reported in [A.M. Ferrenberg, D.P. Landau, Y.J. Wong, Phys. Rev. Lett. 69
(1992) 3382]. A general (though simple) method of twisting and combining for improving the performance of these generators is proposed. Some
recent generators motivated by such a twisting and combining method with extremely long period are discussed. The proposed method provides
a novel and simple way to improve RNGs in its performance.
© 2007 Elsevier B.V. All rights reserved.

PACS: 75.40.Mg; 05.70.Jk; 64.60.Fr

Keywords: DX generator; Hidden errors; LCG; LFG; MRG; RANLUX; SWC; Twisting and Combining (TAC); Wolff algorithm

1. Wolff algorithm and random number generators

1.1. Wolff algorithm

Monte Carlo simulations have become a standard practice
in many scientific research including the field of computational
physics. In particular, Wolff algorithm, proposed in [1,2], is an
efficient cluster-flipping algorithm for the Ising model. It has
been very popular in the area of statistical mechanics simula-
tions. The Wolff algorithm employs a random number generator
to decide whether or not to flip another spin. The probability of
flipping another spin is a fixed probability which is called the
transition probability. Clearly, the performance of the Wolff al-
gorithm depends on that of the random number generator used.
The existence of “hidden errors” is reported in [3]. This typi-
cally occurs when Wolff algorithm is companying several pop-
ular random number generators. Since then, there are many an-
alytical and empirical study on the possible deficiency of these

* Corresponding author.
E-mail address: fbai@math.tsinghua.edu.cn (F. Bai).

1 Supported partly by National Science Foundation of China 10501030.

classical generators [4–17]. Most of them were concentrated on
the mathematical analysis on the problem identifications of spe-
cific generators. Not much work has been done on the solution,
however. That is, how to avoid the hidden problem as in the
Wolff algorithm, or in computer simulation in general?

In what follows, we first give detailed description and then
identify the common features and problems of various gener-
ators. In addition, we discuss their connections with a gen-
eral class of generators, called Multiple Recursive Generators
(MRGs). Section 2 introduces a novel and simple method to
improve the performance of RNGs by “twisting and combin-
ing” (TAC) several generators. Next we discuss a special class
of MRG, called DX generators, which are portable and effi-
cient. Besides its high efficiency, DX generators also entertain
the nice theoretical properties of MRGs. The main motivation
behind DX generators is using the TAC method. Section 3 com-
pares the general performances of various generators through
simulations on the Wolff algorithm. In Section 4, these genera-
tors are evaluated through extensive statistical tests. It is shown
that the proposed TAC is an instructive, simple and efficient
method to improve the performance of existing RNGs. Sec-
tion 5 gives a brief summary and conclusion.

0010-4655/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2007.10.002

Author's personal copy

402 L.-Y. Deng et al. / Computer Physics Communications 178 (2008) 401–408

1.2. Linear Congruential Generator (LCG)

The linear congruential generator, proposed in [18], has been
the most commonly used pseudo-random number generator.
A sequence of random numbers is obtained by setting

xn = Bxn−1 mod m, n � 1,

where xn, B and m are non-negative integers and x0 is a
nonzero seed. The quality of the generator is determined
by the choice of multiplier B , and modulus m; denoted by
LCG(B;m). It is common to choose the modulus m as a large
prime number and the multiplier B to achieve the maximum pe-
riod of m− 1. Such multiplier B is a primitive root over a finite
field of m elements.

The most famous LCG is LCG(16807;231 − 1), with B =
16807 and m = 231 − 1. Noting that in [3], LCG(16807;
231 − 1) was called CONG. To improve the generating effi-
ciency, a special form for the multiplier was proposed in [19],
by taking

B = ±2p ± 2q

with the modulus m = 231 − 1.
LCG(B;m) with B = 215 − 210 = 31744 was suggested in

[19]. It results in a fast computation by using only shift and
addition operations. In terms of computing time required, op-
erations such as multiplication, division, or modulus are much
more expensive than the operations of addition, subtraction or
logical arithmetics. While this general class of generators is
efficient, it may not produce sufficient mixing among bits of
successive numbers generated. For example, it was pointed out
in [20] that the successive values in the output of LCGs show
strong dependence on corresponding Hamming weights.

1.3. GFSR

It was proposed in [21] that a more efficient method known
as the generalized feedback shift-register (GFSR) in which
numbers are formed by the same kth order recursive relation
via exclusive-or (⊕) operation. An efficient computer program
for faster initialization and GFSR’s was developed in [22]. Be-
cause of their generating efficiency, the following generators
become very popular in the field of computational physics:

R250: xn = xn−250 ⊕ xn−103; and

R1279: yn = yn−1279 ⊕ yn−1063.

Here, xn and yn are 32-bits integers that are computed itera-
tively form previous numbers generated. The number of initial
seeds required are 250 and 1279 for R250 and R1279, respec-
tively. It is common to produce the required seeds by other
random number generator such as LCG(16807;231 − 1).

The period lengths for R250 and R1279 are 2250 − 1
(≈ 1075.3) and 21279 − 1 (≈ 10385.1), respectively. While R250
and R1279 are efficient with a long period length, their empiri-
cal performances had some problems as reported by [3].

To consider a variation of GFSR, it is common to replace
exclusive-or (⊕) operation with simply a + or − operation and

modulus m operation. Therefore, we have a Lagged Fibonacci
Generator (LFG):

xn = (xn−q ± xn−p) mod m.

This generator is denoted as LFG(p,q;m). LFG is fast because
no multiplication operation is required. However, it has several
drawbacks: (1) it has a bad lattice structure because of its small
coefficients, (2) its empirical performance is generally poor, and
(3) it is hard to find p,q and m to maximize the period length
of the generator.

1.4. Marsaglia and Zaman’s generators

Another type of generators studied in [3] is based on
“subtract-with-borrow (carry)” (SWB/SWC) and “add-with-
carry” (AWC) methods which are proposed by [23–26]. They
are simple modifications of the Lagged Fibonacci Generator by
including a carry from previous subtraction or addition opera-
tion:

xn = xn−q − xn−p − cn mod m,

where c1 = 0, and cn = 0, if xn−q − xn−p − cn−1 < 0; cn = 1,
otherwise. Such generators are referred as SWB generators or
SWC generators. We will use the term SWC as in [3]. AWC
generators can be similarly defined, though they will not be fur-
ther discussed here.

The choice of p,q,m determines the period of the SWC
generators. As shown in [26], the period of SWC(p,q;m) gen-
erator is φ(mp −mq +1) (see also [27], Theorem 8.2.6, p. 367),
where φ(x) is the Euler “totient” function of x, which is the
number of integers between 1 and x that are relatively prime
to x. Hence, if M = mp − mq + 1 is a prime number, then the
generator has a maximum period of mp − mq .

Generally speaking, SWC generators can be very effi-
cient because no multiplication is required. In particular, the
SWC(43,22;232 − 5) generator, is called SWC in [3], and its
period is 10414.2. This kind of generator is slightly more com-
plicated than the LFG and it is almost as efficient. However,
similar problems of its empirical performance is also reported
in [3].

1.5. RANLUX (Luxury RNG)

Another SWC generator frequently studied is SWC(24,10;
224) which has a period length about 5.15 × 10171. Analyti-
cal study on improving SWC(24,10;224) is given in [10] and a
program provided by [11] to implement RANLUX generators
by dropping certain numbers. Using LUX = 0,1,2,3,4 to con-
trol different level of discarding of SWC(24,10;224), one can
choose 24 (out of p) random numbers then discarding p-24 ran-
dom numbers where p − 24 = 0 (LUX = 0), 24 (LUX = 1), 73
(LUX = 2), 199 (LUX = 3) and 365 (LUX = 4). RANLUX has
become very popular in the computational physics literature.
The major advantage of RANLUX is that it has some theoreti-
cal support to improve the performance of the SWC generator.
According to the empirical tests results reported in [12], RAN-
LUX performed very well. The original version of RANLUX

Author's personal copy

L.-Y. Deng et al. / Computer Physics Communications 178 (2008) 401–408 403

(with 24-bit precision) was not reported in [28] because some
of the tests used only are applicable to generators with 32-bit
(or higher) precision. Instead, [28] considered some decimation
method on RANLUX with a large luxury level. Specifically,
one can increase the bits of precision obtained from 24 to 48 by
adding two successive numbers (from a sequence produced by
RANLUX) modulo 1 as in

ui = (x2i/224 + x2i+1/248) mod 1, i = 0,1,2,

While the modified version of RANLUX has 48 bits of pre-
cision and very robust empirical performance, it is also slower.
For the remainder of this paper, we refer RANLUX(p) as the
“standard” 48-bit generators as described with p − 24 random
numbers discarded.

1.6. Multiple Recursive Generator (MRG)

MRG is an extension of LCG and it computes a linear com-
bination of the past k random numbers generated by

xn = (α1xn−1 + · · · + αkxn−k) mod m, n � k

with an initial non-zero vector (x0, . . . , xk−1), where m is usu-
ally a large prime number. Clearly, when k = 1, MRG is re-
duced to LCG. When m = 2, MRG is simply the Tausworthe
generator in [29].

Finding the coefficients αi so that it is efficient while achiev-
ing the maximum period of mk − 1 is an important and difficult
issue. See, for example, [30–33]. A maximum period MRG is
known to have the property of equidistribution up to k dimen-
sions: every t -tuple (1 � t � k) of integers between 0 and m−1
appears exactly the same number of times (mk−t) over its entire
period mk − 1, with the exception of the all-zero tuple which
appears one time less (mk−t − 1). For details, see [30], Theo-
rem 7.43.

LFG (see Section 1.3) is a special case of MRG and only two
nonzero terms whose values are ±1. Following the previous ex-
planations, small multipliers fail to give sufficient “twisting” on
the previous set of numbers. This can explain the poor empirical
performances for LFG and SWC. A necessary (but not suffi-
cient) condition for an MRG to have a good lattice structure
is that the sum of squares of coefficients,

∑k
i=1 α2

i , is large (see
[34]). Therefore, it is critical to find an MRG with a much larger
value of αi and/or to add more nonzero terms while maintaining
efficiency and portability.

In the next section, we first consider a general method to
improve the performance without losing too much of its gen-
erating efficiency. We then consider a special class of MRGs
which is motivated by this general method.

2. Twisting and Combining (TAC) methods

As previously discussed, most RNG’s are quite efficient with
some deficiencies in the empirical study. While we cannot make
them to become “perfect” generators, we can use a general
method, called Twisting and Combining (TAC) method, to im-
prove the generators. Specifically, let X1 and X2 be two random
variables corresponding to random number generators. We can

twist and combine these two random number generators by

Y = N1X1 + N2X2 mod 1,

where N1 and N2 are some constants. Usually N1 and N2 are
chosen as integer values unless the number of bits of precision
(e.g., 24-bit RANLUX) in X1 or X2 are small. In that case,
choosing a real constant with some decimal digits can increase
the number of bits of the precision. In fact, 48-bit decimation
version of RANLUX as considered in [28] belongs to this class
with N1 = 1 and N2 = 1/224. Here, v = w mod 1 means that
0 � v < 1 is the fractional part of w where w − v is an inte-
ger multiple of 1. In other words, v = w − �w�, and �w� is
the floor function which is the largest integer � w. There are
two basic operations of twisting and combining in the general
method: (1) the term “twisting” is referring to the operation of
multiplying some large constants N1,N2 to RNGs and (2) the
term “combining” is referring to the operation of adding two
RNGs. We next discuss these two operations in a greater detail.

2.1. Twisting

Let X be a random variable representing a random sequence
generated by a random number generator over the range (0,1).
Suppose that this random number generator can produce many
different random numbers that are “dense” over (0,1) so that it
is reasonable to be approximated by a continuous random vari-
able X. For example, the set of possible values of LCG(B;m)
is {1/m,2/m, . . . , (m − 1)/m}, if the multiplier m is a prime
and the multiplier B yield the maximum period (m − 1). The
gap between two closest numbers is 1/m which is decreasing,
as m increases. Consequently, we let X be a continuous random
variable over (0,1) and we can “twist” it by

Y = NX mod 1.

Theoretically, it can be proved that Y → U(0,1), as N → ∞,
for any continuous random variable X (for more general re-
sults, see [35]). Multiplying a random variate with N tends to
have the effect of twisting the bits of the random variate. Ob-
viously, we should not choose N = 2d which will only shift
the bits but lose binary digits. As a simple example, assume
that X represents the random sequence generated by a sim-
ple additive generator xn = xn−1 + 1 mod m, and un = xn/m.
The resulting sequence is 〈0/m,1/m,2/m, . . . , (m − 1)/m〉.
While its distribution is uniform, it is clearly not a random
sequence. For example, the successive pairs taken from the se-
quence forms a single straight line and it cannot cover the unit-
square [0,1] × [0,1]. However, twisting X as Y = NX mod 1
will yield a (slightly) better random sequence by re-shuffling
the numbers as 〈(i ∗ N/m) mod 1, i = 1,2, . . . ,m − 1〉, if
gcd(N,m) = 1. The successive pairs taken from the new se-
quence are now covered by several equal-distance parallel lines
and these pairs have a better coverage over the unit-square
[0,1] × [0,1]. In a sense, LCG(B;m) also uses this method
by twisting (with N = B) its previous number as

xn = Bxn−1 mod m, un = Bun−1 mod 1, and

un = xn/m.

Author's personal copy

404 L.-Y. Deng et al. / Computer Physics Communications 178 (2008) 401–408

Consequently, we have the sequence (with x0 as the initial seed
selected) as
〈
(x0 × Bi/m) mod 1, i = 1,2, . . . ,m − 1

〉
.

Following such an argument, we can see that a small B (corre-
sponding to a “small twisting”) in the LCG(B;m) is not a good
choice as a multiplier even if it can yield the maximum period.

In theory, twisting method can transform a bad generator
into a good RNG with a large multiplier N . However, we should
not choose N too large nor N = 2d which results significant
digits lost. As previously mentioned, the multiplier N can be
any real number as well.

2.2. Combining

Let X1 and X2 be two random variables representing two
“reasonably good” RNGs (e.g., R250/R1279). To improve gen-
erating efficiency, we can simply choose N1 = N2 = ±1 in the
TAC method. Therefore, we have

Y = X1 ± X2 mod 1.

The method of combining is not a new idea. As previously
mentioned, SWCW is combining SWC and Weyl’s additive
generator. A simple suggestion in [36] is to add three differ-
ent LCGs with different multipliers and then take the fractional
part. Through a simple example, they claimed that this proce-
dure “ironed out” the imperfections in the component variates.
Theoretical justification can be found in [37]. In particular, it
was shown that the distribution of Y will be much closer to the
U(0,1) distribution than those of X1 and X2. See [35,37,38]
for a further discussion. While the combined generator SWCW
performed better than generators mentioned in [3], SWCW had
some problems in the Swendsen–Wang algorithm as reported
in the same paper. One reason is that Weyl’s additive genera-
tor is a naive and bad generator as a second component of the
combined generator.

2.3. DX generator

DX generator, proposed by [32] and later extended by [33],
is a system of portable and efficient MRGs of modulus m and
order k. DX generators are efficient because all nonzero coef-
ficients αi of the recurrence are equal. DX generators includes
FMRG (Fast MRG), proposed by [39] as a special case. The
major advantage of a DX generator is that a single multipli-
cation is needed to compute the recurrence, so the generator
would run faster than the general case.

For k = 1597 and m = 231 − 1, several DX generators have
been found in [33], each with the maximum period of 1014903:

xn = B(xn−t + xn−533 + xn−1065 + xn−1597) mod m,

n � 1597.

To avoid the possibility of obtaining 0 or 1, it was recommended
that un = (xn +0.5)/m (see [32]). When t = 1, the multiplier B

achieving the maximum period found are (a) B = 1854 (small-
est), (b) B = 44875 (B <

√
m), (c) B = 512675 (B < 219),

and (d) B = 1073741362 = 29746 × 36097 (B < 230). See the
discussion in [33] for its usefulness and for a portable imple-
mentation for various B listed. DX generators can be more
efficient with a special form of B = 2p ± 2q as proposed by
[19] for LCG. When t = 3, two such generators found in [33]
are: (e) B = 229 + 28 = 536871168 and (f) B = 228 + 211 =
268437504. Here, we denote these generators as DX-1597-(a)
to DX-1597-(f). The main motivation behind DX generators is
the TAC method and DX shares all the nice properties of a max-
imum period MRG.

3. Empirical evaluation of generators used in Wolff
algorithm

Throughout this section, we perform computer simulations
on 16 × 16 Ising square lattices with periodic boundary condi-
tion, for which the exact solution is known theoretically [40].
The exact value of the average energy is −E = 1.4530648528
[16], using Kc = 1

2 ln(1+√
2). The program of Wolff algorithm

used is that from [41], and the program of RNG’s used is from
[42]. Errors in the simulation can be divided into two parts. One
is the error of the algorithm, and the other is the error from the
RNG’s, which is called the systematic error [40]. Thus, we use
σ—the standard deviation of the algorithm [2], to measure the
error between the exact value and the simulation result. When
the errors are beyond ± 3σ , the “hidden error” occurs.

We perform an extensive study which is directly compara-
ble to that in [3] in which all the parameters and procedures
are specified. We report the simulation results among different
RNGs to be specified for possible existence of the “hidden er-
rors”. In which case, it will be highlighted in boldface in the
table given.

3.1. Twisting and combining R250 and R1279

We start with two classical generators R250 and R1279. Let
un and vn be two random sequences generated from R250 and
R1279. Since R250/R1279 shows hidden errors in [3], we con-
sider the following

yn = N1un + N2vn mod 1,

where N1 and N2 are some integer values. With various selec-
tions of (N1,N2), we study the possibility of hidden error for
the Wolff algorithm. The results are reported in Table 1.

The first two entries of Table 1 are (N1,N2) = (1,0) and
(N1,N2) = (0,1), corresponding to R250 and R1279, respec-
tively. Indeed, there are hidden errors found for R250 and
R1279 which are about 43.04σ and 4.28σ . For other entries
in Table 1, there is no hidden error found even when for a small
case of (N1,N2) = (1,1). This empirical study shows that we
do not need “large twisting” and we need a simple “combining”
for generators like R250 and R1279.

3.2. Twisting and combining clearly bad generators

To demonstrate the effect of twisting, we consider the fol-
lowing “generator”:

Author's personal copy

L.-Y. Deng et al. / Computer Physics Communications 178 (2008) 401–408 405

Table 1
Simulation results for improving R250 and R1279

N1 N2 Errors σ Error/σ

1 0 0.0009495 0.0000220622 43.04
0 1 0.0000577 0.0000134936 4.28
1 1 0.0000164 0.0000151623 1.08
5 7 0.0000090 0.0000086642 1.04
9 168 0.0000165 0.0000101874 1.62

12 90 0.0000001 0.0000117046 0.01
38 144 0.0000200 0.0000119245 1.68
55 225 0.0000085 0.0000096546 0.89
56 91 −0.0000009 0.0000077624 −0.11
70 7 −0.0000010 0.0000085224 −0.11
75 167 −0.0000061 0.0000083362 −0.73
77 23 −0.0000030 0.0000108031 −0.27
95 180 0.0000042 0.0000141894 0.30

121 255 −0.0000045 0.0000087933 −0.51
122 255 0.0000010 0.0000077844 0.13
123 255 0.0000085 0.0000127722 0.67
124 255 −0.0000049 0.0000137875 −0.35
125 255 0.0000048 0.0000088784 0.55
126 255 0.0000077 0.0000092956 0.83
127 189 −0.0000151 0.0000136784 −1.10
127 250 −0.0000053 0.0000094129 −0.56
127 251 −0.0000019 0.0000098577 −0.19
127 252 −0.0000050 0.0000137193 −0.36
127 253 0.0000094 0.0000075659 1.25
127 254 −0.0000210 0.0000111683 −1.88
127 255 −0.0000067 0.0000104214 −0.64
173 138 0.0000111 0.0000072226 1.54
225 140 0.0000123 0.0000060813 2.03
243 236 −0.0000096 0.0000092321 −1.03
246 158 0.0000066 0.0000114686 0.58

yn = N1u
c1
n + N2v

c2
n mod 1,

where N1 and N2 are some integer values, un and vn are two
random sequences generated from R250 and R1279, and c1, c2
are some constants close to 1, say, c1 = 1.1, and c2 = 0.9.
Our empirical study is displayed in Table 2 with various val-
ues of (N1,N2). The first entry in Table 2 is corresponding to
a simple combining with (N1,N2) = (1,1) and it has a (large)
hidden error of −781.97σ . For the next two entries, it is cor-
responding to simple (moderate) “twisting” and no combining
with (N1,N2) = (97,0) and (0,101), respectively. We can still
observe the large hidden errors of 585.29σ and −465.36σ . For
the fourth entry, we have (N1,N2) = (11,13) the hidden error
of −10.13σ is smaller but it is still significant. For the remain-
ing entries, the empirical study shows that TAC is able to restore
two (clearly) bad RNGs into a good one, if N1 and N2 are large
enough.

3.3. Combining two classic efficient generators

As previously shown, a simple combining method can im-
prove two classical random number generators such as R250
and R1279. To demonstrate the effect of combining other clas-
sical efficient RNGs, one consider following generator:

yn = un ± vn mod 1,

where un and vn are two random sequences generated from two
RNGs.

Table 2
Simulation results for twisting and combining two bad generators

N1 N2 Errors σ Error/σ

1 1 −0.0120025 0.0000153491 −781.97
97 0 0.0095602 0.0000163341 585.29

0 101 −0.0068675 0.0000147573 −465.36
11 13 −0.0002195 0.0000216664 −10.13
10 248 −0.0000201 0.0000111348 −1.80
32 86 −0.0000225 0.0000128647 −1.75
47 53 −0.0000315 0.0000180521 −1.74
52 198 −0.0000152 0.0000094796 −1.60
76 132 −0.0000044 0.0000056220 −0.77
80 180 0.0000063 0.0000136589 0.46

129 60 −0.0000204 0.0000087492 −2.33
155 122 0.0000072 0.0000128321 0.56
157 23 −0.0000097 0.0000080797 −1.19
169 40 −0.0000068 0.0000120428 −0.56
188 126 −0.0000043 0.0000092370 −0.46
231 175 0.0000166 0.0000150885 1.10
243 208 −0.0000114 0.0000113940 −1.00
250 191 0.0000025 0.0000069747 0.37

Table 3
Simulation results for combining two classical generators

1st RNG 2nd RNG Errors σ Error/σ

R250 LCG-(a) −0.0000099 0.0000159007 −0.62
R250 LCG-(b) 0.0000011 0.0000133879 0.09
R250 SWC-(a) −0.0000142 0.0000177368 −0.80
R250 SWC-(b) 0.0000113 0.0000106058 1.07
R1279 LCG-(a) −0.0000099 0.0000159007 −0.62
R1279 LCG-(b) −0.0000021 0.0000211056 −0.10
R1279 SWC-(a) −0.0000086 0.0000248301 −0.34
R1279 SWC-(b) −0.0000200 0.0000242811 −0.82
SWC-(a) LCG-(a) −0.0000299 0.0000105757 −2.82
SWC-(a) LCG-(b) 0.0000064 0.0000223243 0.29
SWC-(a) SWC-(b) 0.0000394 0.0000222636 1.77
SWC-(b) LCG-(a) 0.0000005 0.0000132399 0.04
SWC-(b) LCG-(b) 0.0000178 0.0000130612 1.37

1. LCG: We consider the following two popular LCGs:
(a) LCG(16807;231 − 1), and
(b) LCG(215 − 210;231 − 1);

2. GFSR: We consider two most popular ones:
(a) R250, and
(b) R1279;

3. SWC: The following two SWC generators are popular
used:
(a) SWC(24,10;224), and
(b) SWC(43,22;232 − 5).

We refer the LCGs mentioned above as LCG-(a) for
LCG(16807;231 −1) and LCG-(b) for LCG(215 −210;231 −1).
Similarly, we refer the SWCs mentioned above as SWC-(a) for
SWC(24,10;224) and SWC-(b) for SWC(43,22;232 − 5). Our
empirical study is summarized in Table 3. We can see that a
simple combining without twisting will be able to restore two
efficient RNGs (with some defects of hidden errors) into a bet-
ter RNG.

Author's personal copy

406 L.-Y. Deng et al. / Computer Physics Communications 178 (2008) 401–408

Table 4
Simulation results for DX-1597 generators

DX-generator B Errors σ Error/σ

DX-1597-(a) 1854 −0.0000216 0.00001893219 −1.14
DX-1597-(b) 44875 0.0000381 0.00002565659 1.49
DX-1597-(c) 512675 −0.0000029 0.00001416327 −0.20
DX-1597-(d) 1073741362 −0.0000227 0.00002069314 −1.09
DX-1597-(e) 229 + 28 = 536871168 −0.0000131 0.00001716261 −0.76
DX-1597-(f) 228 + 211 = 268437504 −0.0000200 0.00001643956 −1.21

Table 5
Test results of big crush (160 p-values) and time to generate 108 random numbers

RNGs Time p-value

> 1 − 10−15 > 1 − 10−4 > 1 − 10−3 < 10−3 < 10−4 < 10−15

SWC(24,10,224) 1.71 s 8 8 9 71 71 66
SWC(43,22,232 − 5) 2.31 s 0 0 0 22 21 17
RANLUX(389) 51.98 s – – – – – –
LCG(16807,231 − 1) 3.72 s 14 18 18 45 44 41
LCG(215 − 210,231 − 1) 1.27 s – – – – – –
R250 1.49 s 2 3 3 15 15 11
R1279 1.50 s 2 2 2 3 3 3
TAC(127 ∗ R250) 4.25 s 1 1 1 5 5 5
TAC(1023 ∗ R250) 4.24 s 1 1 1 5 5 4
TAC(1023 ∗ R1279) 4.24 s 0 0 1 2 1 1
TAC(127 ∗ R250 + 1023 ∗ R1279) 5.95 s 0 0 0 0 0 0
TAC(R250 + R1279) 4.79 s 0 0 0 0 0 0
DX-1597-(a) 4.13 s 0 0 0 0 0 0
DX-1597-(b) 4.14 s 0 0 0 0 0 0
DX-1597-(c) 4.11 s 0 0 0 0 0 0
DX-1597-(d) 4.11 s 0 0 0 0 0 0
DX-1597-(e) (B = 229 + 28) 2.05 s 0 0 0 0 0 0
DX-1597-(f) (B = 228 + 211) 2.04 s 0 0 0 1 0 0

3.4. Using DX generators

Finally, we replace the existing RNG with some of the DX-
1597 generators discussed earlier for the Wolff algorithm. The
C-program implementation of the DX generator is given in
http://www.cs.memphis.edu/~dengl/dx-rng/. Table 4 is the em-
pirical results of Wolff’s algorithm where DX-1597 generators
are used. As we can see in Table 4, no hidden errors are found
in the empirical study when DX generators are used accompa-
nying the Wolff algorithm.

4. Statistical tests and timing comparison

In addition to test these RNGs used in the Wolff algorithm
simulations, we use the most extensive and popular RNG pack-
age, TestU01 [42], to perform statistical tests on these RNGs.
As suggested in the documentation of the above test package
[28], we first perform a Small Crush Test; and if necessary, we
next proceed to a more extensive Crush Test; and finally to the
most extensive Big Crush Test. For each RNG tested, there are
15, 144 and 160 p-values reported by Small Crush Test, Crush
Test, and Big Crush Test, respectively.

The test results are summarized in Table 5. The results of
tests using the Big Crush Test in TestU01 are tabulated by
counting the number of theses p-values which are either too
close to 0 or 1. For instance, numbers in the column “> 1 −

10−15” and “< 10−3” mean the number of p-values which are
in the interval (1 − 10−15, 1] and [0,10−3), respectively. A “–”
means the Big Crush Test did not apply because either the RNG
takes too long (more than one week) to test (like RANLUX) or
the RNG has already failed decisively in a Small Crush Test
(like LCG(215 − 210,231 − 1)). The column under the label
“Time” gives the time of RNG to generate 108 random num-
bers.

4.1. Timing comparison

In terms of the generating speed, as can be seen from the
“Time” column in Table 5, LCG(215 − 210,231 − 1) is most ef-
ficient, followed closely by R250, R1279, SWC, DX-1597(e)
and DX-1597(f) generators. The next group of generators are:
LCG(16807,231 − 1), general DX generators, and TAC gener-
ators. RANLUX is clearly several times slower than other gen-
erators studied. The timings for generating 108 RANLUX(p)
random numbers are: 9.95 seconds (p = 48), 16.09 seconds
(p = 97), 31.56 seconds (p = 223), and 51.98 seconds (p =
389). Using the LUX level recommended in [10], Table 5 shows
that the timing of RANLUX(389) is 40+ times of Wu’s LCG,
35 times of R250 and R1279, 20 to 30 times of SWC, 9 to 12
times of TAC, and 13 to 25 times of DX generators.

Note that the generating speed is highly hardware and soft-
ware dependent. The timing results given in Table 5 are meant

Author's personal copy

L.-Y. Deng et al. / Computer Physics Communications 178 (2008) 401–408 407

to serve as a reference guide. Also note that we use the built-
in program provided in the TestU01 package for a generating
speed comparison. We implement a special algorithm for some
specific multipliers of the form 2p ±2q for generators like Wu’s
LCG(215 − 210,231 − 1), DX-1597(e) and DX-1597(f) with
B = 229 + 28 and B = 228 + 211, respectively. As explained in
[19], one can use some fast logical operations to replace mul-
tiplication and modulus operations for multipliers of the form
2p ± 2q and modulus 231 − 1.

While the generating speed is important, there are many im-
portant factors should also be considered. One of such factor is
the empirical performance comparison which is discussed next.

4.2. Empirical performance comparison

The results in Table 5 also indicate the poor empirical perfor-
mances of classical generators such as LCG, SWC, R250, and
R1279. In particular, Wu’s LCG(215 −210,231 −1) did not pass
the simple Small Crush Test. On the other hand, TAC genera-
tors and DX generators have a much better performances than
these classical generators. In total, there are 6 × 160 = 960 p-
values produced for performing Big Crush Tests on 6 DX-1597
generators. Out of these 960 p-values, there is only one p-value
which is smaller than 10−3. Similarly, both TAC(127 ∗ R250 +
1023 ∗ R1279) and TAC(R250 + R1279) appear to pass the
big crush test. According to this study, “twisting” or “stretch-
ing” alone, e.g., TAC(127 ∗ R250), may not be sufficient to
greatly improve the classical generators. With the highest lux-
ury level for the 48-bit version of RANLUX as considered and
reported in [28] performs quite well. Hence, it does not require
additional twisting or combining. The empirical evaluation of
RANLUX has been reported in [28], and thus is omitted in Ta-
ble 5.

DX generators, motivated by the TAC method, preform
much better than any other RNGs listed in Table 5. Therefore,
DX generators are recommended because of their proven (ex-
treme) long period, their generating efficiency, and their great
empirical performance.

5. Summary and conclusion

Either using twisting and combining method on some classi-
cal efficient generators or using the DX generators, one can im-
prove the empirical performance of generators used in the Wolff
algorithm. No hidden errors are found in the empirical study
when “good” generators are used accompanying the Wolff al-
gorithm. From theoretical and practical considerations, we have
shown that the TAC method can indeed improve performance
of classical RNGs, including those with poor empirical perfor-
mances. Furthermore, this method give us a new and helpful
view of point to generate high quality random numbers rather
than to create new RNGs. In short, using TAC method can make
existing generators more reliable.

The application to the popular MT19937 can be used as a
demonstration of the proposed TAC method. MT19937 pro-
posed by [43] has a period of 219937 −1 ≈ 106001.6 and equidis-
tribution property up to 623 dimensions. Because of its long pe-

riod length, its generating efficiency, and its high-dimensional
equidistribution property, MT19937 has become quite popular.
However, it was first reported in [28] that MT19937 and its re-
lated family of generators failed linear complexity tests, with p-
values larger than 1 − 10−15. Using the TAC method discussed
in this paper, one can consider combining with other RNG to
improve the empirical performance of MT19937. A simple and
efficient method, due to [44], to improve the U(0,1) sequence
xi , generated by MT19937 can be obtained:

ui = x2i + x2i+1 mod 1, i = 0,1,2,

Extensive Crush and Big Crush tests on the “combined”
MT19937 showed that the improved generator passed battery
of tests in TestU01 including linear complexity tests. Detailed
discussion and empirical results can be found in [44].

Acknowledgements

The authors are grateful to the Editor and two anonymous
referees who made many helpful comments and suggestions
that led to a significant improvement of this paper.

References

[1] U. Wolff, Phys. Rev. Lett. 62 (1989) 361.
[2] U. Wolff, Phys. Lett. B 228 (1989) 379.
[3] A.M. Ferrenberg, D.P. Landau, Y.J. Wong, Phys. Rev. Lett. 69 (1992)

3382.
[4] P. Grassberger, Phys. Lett. A 181 (1993) 43.
[5] P.D. Coddington, Int. J. Modern Phys. C 5 (1994) 547.
[6] F. Schmid, N. Wilding, Int. J. Modern Phys. C 6 (1995) 781.
[7] L.N. Shchur, J. Heringa, H. Blöte, Physica A 241 (1997) 579.
[8] L.N. Shchur, H. Blöte, Phys. Rev. E 55 (1997) 4905.
[9] G. Ossola, A.D. Sokal, Phys. Rev. E 70 (2004) 027701.

[10] M. Lüscher, Comput. Phys. Comm. 79 (1994) 100.
[11] M.F. James, Comput. Phys. Comm. 79 (1994) 111.
[12] L.N. Shchur, P. Butera, Int. J. Modern Phys. C 9 (1998) 607.
[13] I. Vattulainen, T. Ala-Nissila, K. Kankaala, Phys. Rev. Lett. 73 (1994)

2513.
[14] I. Vattulainen, T. Ala-Nissila, K. Kankaala, Phys. Rev. E 52 (1995) 3205.
[15] S. Mertens, H. Bauke, Phys. Rev. E 69 (2004) 055702(R).
[16] P.D. Beale, Phys. Rev. Lett. 76 (1996) 78.
[17] W. Janke, Quantum simulations of complex many-body systems: From

theory to algorithms, NIC Series 10 (2002) 447.
[18] D.H. Lehmer, in: Proceedings of the Second Symposium on Large Scale

Digital Computing Machinery, Harvard University Press, Cambridge,
1951, p. 141.

[19] P.C. Wu, ACM Trans. Model. Comput. Simul. 23 (1997) 255.
[20] P. L’Ecuyer, R. Simard, ACM Trans. Math. Softw. 25 (1999) 367.
[21] T.G. Lewis, W.H. Payne, J. ACM 20 (1973) 456.
[22] S. Kirkpatrick, E.P. Stoll, J. Comput. Phys. 40 (1981) 517.
[23] G. Marsaglia, B. Narasimhan, A. Zaman, Comput. Phys. Comm. 60 (1990)

345.
[24] G. Marsaglia, A. Zaman, Stat. Prob. Lett. 8 (1990) 329.
[25] G. Marsaglia, A. Zaman, Ann. Appl. Prob. 1 (1991) 462.
[26] G. Marsaglia, Proc. Sympos. Appl. Math. 46 (1991) 73.
[27] R. Crandall, C. Pomerance, Prime Numbers—A Computational Perspec-

tive, Springer-Verlag, New York, 2000.
[28] P. L’Ecuyer, R. Simard, ACM Trans. Math. Softw. 33 (2007), Article 22.
[29] R.C. Tausworthe, Math. Comp. 19 (1965) 201.
[30] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Applica-

tions, revised ed., Cambridge University Press, Cambridge, 1994.

Author's personal copy

408 L.-Y. Deng et al. / Computer Physics Communications 178 (2008) 401–408

[31] D.E. Knuth, The Art of Computer Programming, vol. 2, third ed., Addison-
Wesley, Reading, MA, 1998.

[32] L.Y. Deng, H.Q. Xu, ACM Trans. Model. Comput. Simul. 13 (2003) 299.
[33] L.Y. Deng, ACM Trans. Model. Comput. Simul. 15 (2005) 1.
[34] P. L’Ecuyer, INFORMS J. Comput. 9 (1997) 57.
[35] L.Y. Deng, D.K.J. Lin, J. Wang, Y. Yuan, Statist. Sinica 7 (1997) 993.
[36] B.A. Wichmann, I.D. Hill, Appl. Statist. 31 (1982) 188.
[37] L.Y. Deng, E.O. George, Comm. in Statist. B 19 (1990) 145.
[38] J.E. Gentle, Random Number Generation and Monte Carlo Methods, sec-

ond ed., Springer-Verlag, New York, 2003.

[39] L.Y. Deng, D.K.J. Lin, Amer. Statist. 54 (2000) 145.

[40] A.E. Ferdinand, M.E. Fisher, Phys. Rev. 185 (1969) 832.
[41] J.S. Wang, Wolff.c, http://www.cz3.nus.edu.sg/~wangjs/BeijingWorkshop.

html, 2002.
[42] P. L’Ecuyer, R. Simard, TestU01: Empirical testing of random num-

ber generators, http://www.iro.umontreal.ca/~simardr/testu01/tu01.html,
2006.

[43] M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simul. 8
(1998) 3.

[44] L.Y. Deng, H.H.S. Lu, T.B. Chen, 64-bit and 128-bit DX random number
generators, Preprint, 2007.

