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Abstract We consider the problem of density estimation
when the data is in the form of a continuous stream with
no fixed length. In this setting, implementations of the usual
methods of density estimation such as kernel density esti-
mation are problematic. We propose a method of density es-
timation for massive datasets that is based upon taking the
derivative of a smooth curve that has been fit through a set
of quantile estimates. To achieve this, a low-storage, single-
pass, sequential method is proposed for simultaneous esti-
mation of multiple quantiles for massive datasets that form
the basis of this method of density estimation. For compar-
ison, we also consider a sequential kernel density estimator.
The proposed methods are shown through simulation study
to perform well and to have several distinct advantages over
existing methods.
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1 Introduction

Massive streaming datasets, especially when the data is in
the form of a continuous stream with no fixed length, are
becoming more and more common in the modern informa-
tion age. They arise from sources as diverse as large call cen-
ters, internet traffic data, telephone traffic data, sales transac-
tional records, or satellite feeds. These extreme size, sequen-
tial data sources present a clear need to be able to process
data accurately and efficiently before becoming inundated
by a continually growing store of data. We investigate ex-
ploratory data techniques that may be applied sequentially
to either a static massive dataset of fixed size or a stream of
data where the data must be processed and then discarded to
free up room for the newly arriving data.

1.1 Density estimation

Density estimation is an important and long studied prob-
lem. In this paper, we address the problem of density esti-
mation when the dataset is not of a fixed size, rather it is
in the form of a continuous stream of data with a non-fixed
sample size.

Applications for density estimates include, but are not
limited to, nonparametric density estimation, cluster analy-
sis, and estimation of various quantities that depend on the
density such as the hazard rates (Silverman 1998). Addi-
tionally, the density can often give a more intuitive picture
of such characteristics as the skewness of the distribution
or the number of modes. A further advantage of having an
estimate of the density is ease of interpretation for nonsta-
tisticians. As noted in Silverman (1998), many statisticians
would explain the normal distribution by drawing the famil-
iar bell-shaped curve rather than drawing the cumulative dis-
tribution function or writing out the explicit formula for the
density of the normal distribution.
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However, to employ the usual kernel density estimation
methods it is assumed that the size of the dataset is known
and the points at which the density is to be estimated must
be specified a priori. As such, alternative methods are re-
quired. Hence we propose estimation of the density at spe-
cific quantile values by taking the derivative of a smooth
spline fit through a set of quantile values. We will first ad-
dress the problem of the simultaneous estimation of multiple
quantiles and then use this new methodology to address the
problem of density estimation.

1.2 Estimation of multiple quantiles

It is well known that given an i.i.d. sample X1, . . . ,Xn with
a common distribution function F , the empirical distribution
function (edf) is a consistent estimator of the cumulative dis-
tribution function (cdf), where we define the edf as

Fn(x) = 1

n

n∑

i=1

I (Xi ≤ x), −∞ < x < ∞.

Further, by the Glivenko-Cantelli theorem (see Billingsley
1986), we have the stronger consistency result that, with
probability 1,

sup
x

|Fn(x) − F(x)|

= max
1≤i≤n

(
max

(∣∣∣∣
i

n
− F(X(i))

∣∣∣∣,
∣∣∣∣
i − 1

n
− F(X(i))

∣∣∣∣

))

→ 0, as n → ∞,

where X(1) ≤ · · · ≤ X(n) is the sorted version of X1, . . . ,Xn.
Other nice properties of the edf are its unbiasedness for

estimating the cdf and asymptotic normality; that is,

√
n(Fn(x) − F(x))

d−→ N(0,F (x)[1 − F(x)]),
as n → ∞.

However, when the size of the dataset is such that sort-
ing to obtain the edf is impractical, both in terms of storage
space and computation time, we need another method to es-
timate the cdf that will ideally have some of these same nice
properties.

Although there have been several methods proposed for
the low-storage sequential estimation of a single quantile
(Liechty et al. 2003; Tierney 1983; Dunn 1991; Rousseeuw
and Bassett 1990; Pearl 1981; Jain and Chlamtac 1985),
only Raatikainen (1987, 1990) gives a method for the simul-
taneous estimation of more than one quantile. Raatikainen
(1987) gives an extension of an algorithm given by Jain and
Chlamtac (1985) that is utilized for the simultaneous esti-
mation of multiple quantiles. The method will return a value
that has been arithmetically manipulated and tracked as part

of the algorithm instead of an actual observation. It will re-
turn only 2k + 3 quantile estimates for the k prespecified
by the user. And finally the method performs poorly for ex-
treme tail quantiles for heavy-tailed distributions such as the
Cauchy. In contrast, we propose a method that returns ac-
tual observations from the dataset as the estimates, returns
km estimates of quantiles for the k prespecified by the user
(where m in practice is chosen to be 50), and performs very
well for extreme tail quantiles even for heavy-tailed distrib-
utions. For these reasons, we will not show a full simulation
comparison with this method, but we mention that in all sim-
ulation experiments the proposed method outperforms the
method of Jain and Chlamtac (1985) particularly in the ex-
treme tails of a Cauchy.

There are three main advantages to simultaneously esti-
mating a set of k quantiles rather than merely running the
single quantile estimation method k times. First there is a
significant savings in computation time. Second, the pro-
posed method is more accurate and the results less variable
than the single quantile method. And a third advantage is
that the output gives a total of km points in ascending order
from the minimum to the maximum of the entire dataset,
each of which will have an estimated rank. These km points
with their ranks can then be used to obtain an estimate of
the entire cdf through curve fitting techniques. The result-
ing fitted curve can then be used for other purposes such as
density estimation since we have the functional form of the
curve.

1.3 Overview and organization of paper

The paper is organized as follows. In Sect. 2, we propose a
new method for the simultaneous estimation of an arbitrary
set of quantiles from an unknown distribution for massive
datasets. We give a brief overview of the algorithm used fol-
lowed by a detailed description of the method. In Sect. 3,
we discuss potential applications. We close with a detailed
description of the simulation studies conducted in Sect. 4
followed by concluding comments in Sect. 5.

2 Estimation of multiple quantiles

Modern relational database management systems utilize
low-storage quantile summaries for use in query optimiza-
tion (Manku et al. 1999). There is a great amount of interest
in this particular problem in the private sector as evidenced
by the large body of current research being produced by such
companies as IBM (Poosala et al. 1996), Bell Labs (Chen et
al. 2000), and Microsoft Research (Manku et al. 1998).

Network routing decisions, and hence quality of service
for the network users (see Kesidis 1999), could be improved
by having more accurate summaries of the distributions of
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the historical traffic data. As noted in Dunn (1991), another
application is in the computation through simulation of crit-
ical values and percentile points of new statistics whose dis-
tributions are unknown. A further application could be in the
summarization of MCMC analysis where simulations rou-
tinely generate massive amounts of data.

In this section, we propose a method for simultaneous es-
timation of multiple quantiles for massive datasets. This pro-
posed method, which we call the data skeleton (DS) method,
is an extension of the method of proposed by Liechty et al.
(2003) where the authors give a low-storage sequential al-
gorithm for the estimation of a single quantile. This method
uses estimated ranks and assigned weights to calculate a
score for every data point that determines which points to
keep and which to drop as each new data point is observed.
The estimated ranks are calculated by linear or exponen-
tial interpolation (see overview of algorithm below). The
weights are determined by taking the nearest neighbor dis-
tance in the ranks between adjacent points. The result of this
is that a new point falling “close” to an existing point in the
tracking array is penalized and is hence more likely to be
dropped.

For output, this method will give a set of points “chosen”
by the algorithm with each point having an associated es-
timated rank. We may think of this as a “skeleton” of the
empirical distribution function. That is, we will have a very
small subset of points along the actual edf, but not the entire
edf.

2.1 Overview of the data skeleton algorithm

1. Sort the first km points, where k is the number of subar-
rays of size m being used to estimate the k quantiles, and
assign estimated ranks and weights to these points;

2. Find within which of the k subarrays of points the next
observation falls and assign an estimated rank and weight
to this point accordingly with a point falling between two
subarrays being assigned to its nearest neighbor;

3. Calculate scores for all m points in this subarray and for
the new point and drop the point with the highest score
retaining the ordering in the subarray;

4. Repeat steps 2–3 for all remaining observations;
5. Take the estimates from the final set of observations.

Step 1 consists of loading an array with the first km obser-
vations and sorting this array. This initial array is composed
of k subarrays of size m. We will refer to this array as the
tracking array. Each subarray will be dedicated to the esti-
mation of a single quantile. We then assign initial estimated
ranks to each point equal to its actual rank in this original
sample after it has been sorted, i.e. the first element has es-
timated rank 1 and the last element has estimated rank km.
We assign an initial weight of 1 to each point. This weight

is a measure of the relative importance or value of a given
point. At the first step, all points are equally valuable.

The data skeleton algorithm proceeds in step 2 by observ-
ing the next point in the dataset and finding within which of
the k subarrays it falls. This determines which quantile the
point will be used to estimate. For example, if the point falls
anywhere between the 1st and mth points, then it will be
used to estimate the lowest quantile being estimated, if it
falls anywhere between the m + 1st and 2mth points, then
it will be used to estimate the 2nd lowest quantile, and so
on. If the point falls between two subarrays, e.g. between
the mth and m + 1st points, then it is assigned to its nearest
neighbor and then used for that associated quantile. Once the
proper subarray has been determined, we then find between
which two of the m points the new point falls between and
assign an estimated rank and weight to the new point. Note
here that the estimated ranks of all points among the km that
are greater in value than the new point are incremented by
1. The new point, denoted by x∗, is then assigned an esti-
mated rank, denoted by r∗, according to the following linear
interpolation formulas.

• If the new point is a new maximum, i.e. x∗ > xkm, the new
point becomes the new maximum and the old maximum
becomes the new point. Let r∗ = rkm and then let rkm =
rkm + 1.

• If the new point is a new minimum, i.e. x∗ < x1, the
new point becomes the new minimum and the old min-
imum becomes the new point. Let r∗ = r1 and then let
r1 = r1 − 1.

• If the new point is just less than the maximum, i.e.
xkm−1 < x∗ < xkm, then

r∗ = rkm−1 + rkm − rkm−1

1 − δ
(1 − e−λ(x∗−xkm−1)), (1)

where

δ = e−λ(xkm−xkm−1), λ = − log(1 − q2(1 − δ))

q1(xkm − xkm−1)
,

and q1 and q2 are set by the researcher (see Liechty et al.
2003).

• If the new point is just greater than the minimum, i.e. x1 <

x∗ < x2, then

r∗ = r2 + r1 − r2

1 − δ
(1 − e−λ(x2−x∗)), (2)

where

δ = e−λ(x2−x1), λ = − log(1 − q2(1 − δ))

q1(x2 − x1)
,

and q1 and q2 are, again, set by the researcher.
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• If the new point falls any where else, i.e. x2 < x∗ <

xkm−1, then

r∗ = ri + (ri+1 − ri)
x∗ − xi

xi+1 − xi

.

The weight, denoted by w∗, for the new point, denoted
by x∗, is assigned according to the following formula.

w∗ = min(ri+1 − r∗, r∗ − ri),

and the score is then calculated as

s∗ = |r∗ − target|
w∗

.

Here target refers to the target rank at that point, say after
observing n′ points, and is simply calculated as n′ ·p. When
determining which point to drop, the current minimum and
maximum are by default always kept.

The nonlinear functions, as described in (1) and (2), are
exponential curves which are designed so that the estimated
ranks quickly go to the rank associated with the maximum
or minimum element as the new point moves towards either
of these elements. These nonlinear functions are necessary
to account for the tail behavior of extremely heavy-tailed
distributions such as the Cauchy. For further discussion of
the motivation for the exponential curves, see Liechty et al.
(2003).

2.2 Comparison of single and multiple quantile methods

We begin by comparing our proposed DS method that si-
multaneously computes the quantile estimates to the method
given by Liechty et al. (2003) that computes a single quan-
tile. In this comparison, we show that there is a distinct
advantage to simultaneously estimating a set of quantiles
rather than estimating them one at a time. In our simula-
tion studies, we have considered many commonly studied
distributions such as the normal, Cauchy, chi-square, and
mixtures of normals and achieve similar results for all dis-
tributions investigated. We would like to thank the referee
for making many helpful suggestions that have greatly im-
proved the quality of the graphs. We present results for the
Cauchy in Figs. 1 and 2. The extreme heavy-tailed nature of
the Cauchy presents certain problems for tail quantile esti-
mation. We present these results to demonstrate the effec-
tiveness of our method for the estimation of extreme tail
quantiles even for very heavy-tailed distributions, but note
that similar performance is observed for all distributions
studied. The averaged point estimates of the quantiles for the
simultaneous and the single quantile method are not mean-
ingfully different. Although we have chosen to focus on the
standard Cauchy distribution for our comparison since this
was the most difficult case to handle, our studies have shown

similar results for other common distributions such as the
standard normal, chi-square, and mixtures or normals.

The first advantage is that the amount of time needed to
estimate the quantiles simultaneously is much less than it
would be to estimate them separately. For example, if we let
T be the average time in seconds to execute the single quan-
tile estimation method given by Liechty et al. (2003), then
to compute k quantiles using the single quantile method will
take kT seconds on average. However, using the simultane-
ous estimation method to compute the same k quantiles will
take on average only T + (k − 1)t seconds, where t � T .
That is, for every additional quantile beyond the first, the si-
multaneous method adds some number of seconds t that is
much less than T .

The second advantage is that simultaneous estimation
yields improved accuracy over the single quantile estima-
tion method when compared to the true sample quantile. For
example, we define the mse ratio as the ratio of the given
method’s mean squared error to the mean squared error of
the sample quantile. Ideally we would like a ratio as close to
1 as possible. A ratio close to 1 means the proposed method
has approximately the same variability as the sample quan-
tile. In Fig. 1, we can see that the mse ratio is improved
in every case by using the simultaneous estimation method.
Similarly we define a measure called mse∗ as the average
squared deviation of the proposed estimator from the sample
quantile. This measure differs from the usual mean squared
error in that we are interested in deviations from the sample
quantile instead of the population quantile. With this mea-
sure we are looking at how closely the proposed method
approximates the accuracy of the sample quantile. Here we
would like to see mse∗ as close to 0 as possible. In Fig. 2, we
can see that the mse∗ is also improved everywhere by using
the simultaneous estimation method.

3 Density estimation

Density estimation for massive streaming datasets poses par-
ticular problems. The traditional kernel density estimation
method requires that the points at which the density is to
be estimated be specified a priori before the algorithm is
executed. Further, the optimal bandwidth selection depends
upon knowing the total sample size. When the data is in the
form of a continuous data stream and the total sample size
is not known, new estimation methods are needed.

One important thing to note is that while we have very ac-
curate estimates of the k quantiles that were prespecified, we
also have information about all of the other points that the
algorithm kept but did not choose as estimates. That is, each
of the km points that the DS algorithm gives as output has
an associated estimated rank. As mentioned in the introduc-
tion, we are interested in obtaining an estimate of the entire
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Fig. 1 mse ratio vs. logit(p). Standard Cauchy example

unknown cdf. To that end we propose fitting a cubic spline
to the set of km points with associated estimated ranks. By
doing so we will have an estimate of the underlying cdf in a
functional form which we may then work with analytically.

Further, while these estimated quantiles are useful and
informative on their own, some might find it more useful
to have information about the density as well since this can
give a more intuitive picture of such characteristics as the
skewness of the distribution or the number of modes. Hence
we will explore the possibility of density estimation through
taking the derivative of the cubic spline fit, thereby having
access to density estimates over the entire range of the orig-
inal sample. We also give an alternative method of density
estimation that uses a sequential kernel density estimation
technique.

3.1 Sequential kernel density estimation

The well known kernel density estimator (see Silverman
1998) defined by

f̂ (x) = 1

nh

n∑

i=1

K

(
x − xi

h

)
,

where h is the bandwidth, x is the point at which we are
estimating the density, and the xi are the observations, and
the kernel function K is some nonnegative function satis-
fying the condition

∫ ∞
−∞ K(x)dx = 1. The optimal band-

width is determined by some function of the total sam-
ple size n. For example, in Silverman (1998), the author
recommends using a bandwidth of h = 0.9An−1/5, where
A = min(standarddeviation, interquartilerange/1.34).

Hence if we wish to use the traditional kernel density
estimation method to obtain estimates of the density at the
prespecified but unknown quantiles, ξ1, . . . , ξk , we need to
know n in order to choose a reasonable bandwidth and we
need good estimates of the ξi . However, even if these quan-
tities were available to us, the traditional kernel density es-
timator would still be undesirable because we have to make
more than one pass through the data: one pass to get good
estimates of the quantiles and a second pass to estimate the
density at those points. Ideally we would like to be able to
sequentially update both the quantile estimates and the es-
timates of the density at those quantile values to avoid ei-
ther storing the whole dataset or making more than one pass
through the dataset.
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Fig. 2 mse* vs. logit(p). Standard Cauchy example

Tierney (1983) presents a sequential version of the ker-
nel density estimation method. He uses the sequential den-
sity estimates as part of a sequential quantile estimation
method and proves the convergence of the density estimates.
The bandwidth is treated as a sequence of bandwidths that
tends to zero rather than a fixed constant. He defines a se-
quence {hn} to be of the form {n−β}, where 0 < β < 1. Al-
though Tierney sets hn to be the sequence {n−1/2}, we will
use {n−1/5} to incorporate the recommended bandwidth sug-
gested in Silverman (1998), as it gives us the optimal rate of
convergence. As in Tierney (1983), we will use the rectan-
gular kernel defined by

K(t) =
{

1
2 if |t | < 1,
0 otherwise.

Hence we define our sequential kernel density estimator as

f̂n(x) = 1

n

n∑

i=1

K

(
x − xi

hi

)
= 1

n

n∑

i=1

I (x, xi, hi)/(2hi),

where

I (x, xi, hi) =
{

1 if |x − xi | ≤ hi ,
0 if |x − xi | > hi

and x is the point at which the density estimate is being cal-
culated.

3.2 Smoothing and interpolating cubic splines

A cubic smoothing spline, F̂ is defined as the unique func-
tion, over all those functions with continuous first and sec-
ond derivatives, that minimizes the penalized sum of squares

km∑

i=1

{yi − F(xi)}2 + α

∫ b

a

{F ′′(t)}2 dt,

where α is the smoothing parameter (see Green and Silver-
man 1994).

For the case of an interpolating cubic spline, our goal is
to find a smooth curve F̂ such that F̂ interpolates the points
(xi, yi), i.e. F̂ (xi) = yi . That is, we wish to find an interpo-
lating cubic spline such that F̂ (xi) = ri/n for i = 1, . . . , km
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Fig. 3 Density estimation—standard Cauchy example (10,000,000 observations)

and where the ri are the estimated ranks obtained by the DS
algorithm.

In general, suppose we are given values y1, . . . , yr

at the points x1, . . . , xr . We wish to fit a smooth curve
F̂ through the points (xi, yi). In the cubic spline liter-
ature (see Green and Silverman 1994) the points xi are
called the knots. The function F̂ defined on some inter-
val [a, b] such that a < y1 < · · · < yr < b is a cubic
spline if F̂ is a cubic polynomial on each of the intervals
(a, y1), (y1, y2), . . . , (yr−1, yr), (yr , b) and if F̂ has a con-
tinuous 1st and 2nd derivative at each xi . We will explore
two types of cubic splines: smoothing and interpolating.

As a result of running the DS algorithm, we will have as
output a set of km points covering the entire range of the data
that was seen, where k is the number of quantiles estimated
and m is the number of points in each subarray dedicated
to the estimation of a single quantile. Each point will have
an estimated rank associated with it. The first point and last
points will be the minimum and the maximum of all points
observed with the first point having rank 1 and the last point
having rank n. Hence our goal will be to fit a cubic spline
through the set of km points given as output by the DS al-

gorithm. To that end, we will treat the xi from this set of km

points as the knots that we will use to fit either a smooth-
ing or an interpolating cubic spline. A desirable property of
both cubic splines is that by definition both their first- and
second-derivatives exist. In other words, assuming the data
comes from a continuous distribution, we may obtain esti-
mates of the unknown density by taking the 1st derivative of
the cubic spline fit, F̂ . For both smoothing and interpolat-
ing cubic splines in our application, we are given km values
y1, . . . , ykm at the points x1, . . . , xkm. Here the xi are the km

points from the tracking array and the yi ’s are the ri/n’s that
are given as output from the DS algorithm.

It is commonly known that f (x) = F ′(x), assuming of
course that the density f exists. By definition, the cubic
spline has a first derivative that exists everywhere along
the curve, including at the knots themselves. As in Wahba
(1975), we take the derivative of this function, F̂ ′(x), to ob-
tain a pointwise estimator of the density, f̂ (x); i.e. f̂ (x) =
F̂ ′(x).

To guarantee a positive density, we would merely have to
first guarantee a strictly increasing estimate of the CDF. This
would guarantee that the resulting derivative of the CDF,
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Fig. 4 Log-scaled Q–Q plot of DS method vs. true quantiles. Standard normal with 10,000,000 observations and 1000 replications

the density, is strictly positive. One possible approach to
this are to use the COBS library in R (standing for Con-
strained B-Splines). This method allows for the imposition
of constraints to a spline fit. In particular, this method al-
lows to constraint the fitted spline to be strictly increasing.
This method also allows the fit to be constrained to have a
minimum of 0 and a maximum of 1, as with a true CDF for
a continuous distribution. Another possible approach is to
use the MGCV library in R (standing for Multiple smooth-
ing parameter estimation by Generalized Cross Validation).
This also allows the fit to be constrained to be strictly in-
creasing. Since we never encountered these situations in our
work with the cubic smoothing splines, we did not find it
necessary to employ these other more complex and compu-
tationally intensive methods.

3.3 Comparison of two density estimation methods

One advantage of this method of density estimation over the
sequential kernel density method proposed in the previous
section is that we are not restricted to density estimates just
at the chosen quantile values. Since we now have an esti-
mate of the cdf over the entire range of the dataset that has

two continuous derivatives by definition, we may take the
derivative and obtain an estimate of the density at any point.

A second advantage is that the cubic spline derivative
method requires no additional computation: the set of points
through which we fit the spline is a byproduct of the DS al-
gorithm. In contrast, the sequential kernel method requires
additional computation upon seeing each new data point. For
example, using a sample of size 10,000,000 and estimating
13 quantiles and the associated density estimates at those
quantiles, the sequential kernel method takes over 10 times
as long to compute as the cubic spline derivative method
takes. In fact, the cubic spline derivative method adds no
appreciable computation time to the DS algorithm compu-
tation time since all that is required is to fit a cubic spline
and take its derivative at the desired points after the DS al-
gorithm has been run.

An additional study conducted was a comparison be-
tween the two density estimation methods presented: the se-
quential kernel density estimation method and the method
utilizing the derivative of a cubic spline fit. We simulated
data from the standard normal distribution: the sample size
was 10,000,000 and the number of replications was 100. For
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Fig. 5 Comparison of empirical cdf and skeleton cdf (LBL-PKT-4 dataset)

each dataset we computed the sequential kernel density es-
timate presented above at each of the 9 deciles and at 4 tail
quantiles, i.e. at the .001th, .01th, .1th through .9th, .99th,
and .999th quantiles. Since we do not know the values of
these quantiles, we must update the estimates of them se-
quentially and plug them into the sequential kernel density
estimator. Thus after observing each new point we must first
update our estimates of the quantiles and then use these es-
timates to update our estimates of the density at these quan-
tile values. These estimates are then compared to the cubic
spline derivative estimates of the density.

Both methods give consistent estimates of the density at
the quantiles. The sequential kernel density estimates are
slightly more accurate, as exhibited by a marginally lower
mean squared error. However this increased accuracy is off-
set by the tenfold increase in computation time required to
execute this method. A further drawback for the sequential
kernel method is that the values at which the density is to
be estimated must be specified before the algorithm is run
and we will get density estimates only at those points. In
contrast, the cubic spline derivative method does not require
that the points at which the density is to be estimated be
specified a priori.

In Fig. 3, we give an example of the density estimate
obtained by the DS algorithm for a standard Cauchy. The

example is computed by running the DS algorithm on a
sample of size 10,000,000 with the 29 quantiles specified
corresponding to p = (0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1, 0.15, 0.2, 0.25, . . . , 0.75, 0.8, 0.85, 0.9, 0.95, 0.99,
0.995, 0.999, 0.9995, 0.9999). Hence the resulting smooth-
ing cubic spline fit is obtained by fitting the curve through
km = (29)(50) = 1450 points. The density estimates are
plotted on the log scale to demonstrate the accuracy in the
tails.

4 Example: Internet traffic data

In this section we apply our DS algorithm to a real-world
dataset in an attempt to see how accurately the method can
handle non-simulated data. The data we are considering is
internet traffic data. As an example we will analyze a dataset
containing internet traffic data from the Lawrence Berkeley
Laboratories. The website, http://ita.ee.lbl.gov/html/contrib/
LBL-PKT.html, contains the dataset used in this example.
A detailed description of this dataset, or trace, can be found
in Paxson and Floyd (1995) along with a list of references.
The trace was collected from 2PM to 4PM in January 1994.
The dataset is named LBL-PKT-4. There were approxi-
mately 863,000 packets collected in this trace of which ap-
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Fig. 6 Density estimate from derivatives of the cubic spline fit. LBL-PKT-4 dataset

proximately 276,000 packets were of size zero. The size
zero packets are used for control purposes to let outside
sources know that a packet has been received. For the pur-
poses of studying throughput these packets can be ignored.
Hence we have approximately 587,000 non-zero packets in
LBL-PKT-4. Each packet will have a timestamp associated
with it identifying the start time of the transfer. A derived
measure of interest for this data is something called through-
put. This is defined as the size of the packet divided by the
time it took to travel to its destination. Throughput is com-
monly studied as a measure of network efficiency. We will
be looking at the distribution of the packet-level throughput
quantities for this dataset.

In Fig. 4, we give a log-scaled Q-Q plot of the true sam-
ple quantiles versus the DS estimated quantiles for the LBL-
PKT-4 dataset. Graphically, the DS estimate of the quan-
tiles are very close to the sample quantiles obtained by ac-
tually sorting the dataset. For this example, we compute
the deciles plus two tail quantiles: the .001th and .999th
quantiles. This example demonstrates the applicability of
the proposed method to non-simulated data. Note here that
although the size of our example datasets are less than

1,000,000 observations, they are also only a days worth of
traffic data on a single data stream at a site with not very
heavy traffic. One can easily imagine datasets growing into
the gigabyte or terabyte or petabyte range as the number
of days and the number of streams and the rate of traffic
grow.

In Fig. 5, we present a graphical comparison of the em-
pirical cdf of the LBL-PKT-4 dataset and the skeleton cdf
of the same dataset. Visually, we are unable to detect a dif-
ference between the two. Looking at the graph, one might
guess that the number of modes for the underlying popula-
tion is three: one located very close to 0, a second located
close to 1, and a third located between 4 and 5. Hence we
might think of this datastream as originating from a mixture
of three subpopulations.

Although having estimates of the quantiles might lead
one to guess at the number and location of the modes, hav-
ing a picture of the density gives a clearer, more intuitive un-
derstanding of the shape of the distribution. Hence in Fig. 6
we present a graphical representation of our density estimate
obtained by taking derivatives of the cubic spline that was fit
to the data skeleton. Here we can clearly see the three dis-
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tinct modes. We note here that the locations of the modes
agrees with the histogram of the dataset.

One possible application for these methods is as a diag-
nostic tool for detecting if a new subpopulation has entered
into the datastream or if the locations of the existing modes
have shifted. For example, if we continued to monitor this
datastream and replotted the density estimate every hour, we
may find that a fourth mode has emerged or that the mode
that is currently located around 4 may have shifted up to
around 5.

5 Concluding comments

We have demonstrated the effectiveness of our methods
through simulation study and application to real datasets.
We believe that the resulting estimates from our approach
provide useful insights into the structure of massive datasets.
However, there are some related issues such as the choice of
which quantiles to specify for estimation and the choice of
curve fitting techniques.

The choices of which quantiles and how many quantiles
to be estimated will depend on the specific application to
which this method is applied. For example, if one were in-
terested mainly in the extreme tail of a distribution, one
could choose to concentrate the quantiles in that area and
devote less computation to other areas of the distribution.
Poor choices could be made for a given application and care
should be taken to choose appropriately based on the situa-
tion. The points at which the sequential kernel method esti-
mates are to be computed need to be prespecified, but which
values should one choose? A priori, we do not know what
values the distribution will take and hence we may choose
poor values at which to estimate the density. For example,
we may choose equally spaced values from −1000 to 1000,
but the actual data may be distributed as Chi-square and only
take positive values, or the data may be distributed as N(0,1)
and so we will very rarely (if ever) see values near −1000
or 1000. The benefit of the DS method is that the range of
actual values is not needed to obtain a good estimate of the
entire range of the observed data.

Another issue is the situation where the distribution from
which the data is arising changes over time. To track changes
over time, one could possibly have multiple instances of the
algorithm running with each one having been started at dif-
ferent times. For example, one could restart a new instance
of the algorithm hourly or daily and compare the resulting
estimates as each instance progresses. Similarly, as in our
internet traffic example, one could track the position and
number of modes of the distribution over time to see how
the distribution is changing.

The code for the simulation studies was implemented us-
ing the C programming language for the computationally

intensive components, such as sorting large datasets or exe-
cuting the DS algorithm, and the R statistical programming
language for the analysis, such as fitting the cubic splines
or taking the derivative of the splines to obtain density esti-
mates.
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