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We propose a low-storage, single-pass, sequential method for the execution of convex hull peeling for massive datasets. The method is
shown to vastly reduce the computation time required for the existing convex hull peeling algorithm from O(n?) to O(n). Furthermore,
the proposed method has significantly smaller storage requirements compared to the existing method. We present algorithms for low-
storage, sequential computation of both the convex hull peeling multivariate median and the convex hull peeling pth depth contour,
where 0 < p < 1. We demonstrate the accuracy and reduced computation time required of the proposed method by comparing to the

existing convex hull peeling method through simulation studies.
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1. Introduction

Massive datasets are becoming more and more common
in modern society. They arise from sources as diverse as
large call centers, internet traffic data, sales transactional
records, or satellite feeds. This phenomenon presents a clear
need to be able to process the data accurately and effi-
ciently so that current analyses may be performed before
becoming innundated by a continually growing store of
data.

In this paper, we are specifically interested in multivariate
density estimation for massive datasets. Density estimates
are essential for many statistical analyses. We will utilize
sets of quantile estimates to obtain an estimate of the entire
cumulative distribution function (cdf) in a functional form
that can then be used to obtain density estimates. We use
the term “massive” to mean very large in terms of number
of observations and/or number of dimensions. The sequen-
tial convex hull peeling method we present is applicable to
high dimensional data. In fact, the gain in computational
efficiency will increase with the number of dimensions since
our method will remain linear in time.

While there are other methods available for multivari-
ate density estimation, our method has several advantages.
Parametric methods, such as the maximum likelihood,
method of moments, or the parametric bootstrap all have
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the limitation that they must prespecify the form of the
density being estimated. Nonparametric kernel density es-
timation is a viable alternative, but one must still specify
the bandwidth parameter a priori. Our proposed method
makes no assumptions about the form of the distribution
of the data and lets the data speak for itself.

In one dimension, the concept of a quantile is well defined.
We define the pth quantile as §, = F~'(p) = inf{x : F(x) >
p}, for 0 < p < 1 (see Serfling (1980)). In more than one di-
mension, however, there is no universally accepted notion
of a quantile. Indeed, there is not even a universal concept
of ordering in more than one dimension. Hence, alternate
definitions are required. Barnett (1976) and Small (1990)
offer comprehensive surveys of different proposed alterna-
tive definitions of multivariate medians. One approach is to
assign each point in a dataset a measure of depth. That is,
for each point we have a measure of how far it is from some
concept of the center of the dataset. In Liu ez al. (1999),
the authors give various examples of different definitions
of data depth such as Mahalanobis depth (Mahalanobis,
1936), half-space depth (Hodges, 1955; Tukey, 1975), con-
vex hull peeling depth (Barnett, 1976), Oja depth (Oja, 1983),
simplicial depth (Liu, 1990), majority depth (Singh, 1991),
and likelihood depth.

Of these methods, we will focus on the convex hull peeling
depth method because of its ability to be adapted to the
sequential low-storage form that we require. Although there
are different versions of convex hull peeling (see Eddy (1982)
and Green (1981) for a variation given by Tukey (1975)), we
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will focus on the simple convex hull peeling version given
by Barnett (1976).

Chazelle (1985) gives an optimal algorithm for determin-
ing the convex layers of a set of # planar points. However, it
requires the entire dataset to be stored as this method finds
the convex layer to which each point belongs. Instead, we
are interested in finding the convex hull, or contour, that
contains a certain percentage of the dataset. Furthermore,
we require that the amount of storage used be very low rel-
ative to the entire sample size.and that it be computed se-
quentially so that if additional data arrives, processing may
be picked up where it left off without having to recompute
for the entire dataset.

This paper is organized as follows. In Section 2, we in-
troduce convex hull peeling and the computational issues
associated with the existing methods. New methods for the
sequential computation of both the convex hull peeling me-
dian and pth depth contour are proposed in Section 3. Sim-
ulation studies are presented in Section 4. In Section 5, we
present an application of our proposed convex hull peeling
algorithms to bivariate density estimation. In this section
we also discuss the use of multivariate splines as a method
of fitting a multivariate surface to our bivariate density es-
timates. In Section 6 we present an application to a real
dataset from astronomy and concluding remarks are given
in Section 7.

2. Convex hull peeling

The convex hull of a set of points is the minimum convex
set that contains the entire dataset. In other words, it is
the set of points that make up the outermost perimeter of
the dataset where the polygon formed by connecting these
points contains the entire dataset. Convex hull peeling is
achieved by systematically identifying and then deleting the
set of points that make up the convex hull of the set. For
example, if we had a set of 100 points and we identified
the set of, say, ten points that make up the convex hull,
we would then delete these ten points from the dataset and
have 90 remaining. We would now repeat the procedure by
finding the set of points that make up the convex hull of the
remaining 90 points and again deleting them.

To find the convex hull peel multivariate median we would
repeat this process until we cannot peel any more. At this
point we will have a hull consisting of three or more points
with no points inside of it or we will have a set of either one
or two points. In both cases, we cannot peel any further
because we would then have no points remaining. If we
have three or more points remaining, we take the centroid
of the polygon formed by these points as our estimate of
the multivariate median. If we have two points left, we take
the average of each coordinate and use this pair of averages
as the coordinates of our point estimate of the median.
Obviously, if only one point is left we take that point as our
estimate of the median.
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We define the convex hull peeling depth (see Barnett (1976)
and Liu et al. (1999)) of a point x in terms of the convex hull .
to which it belongs in the peeling process. Specifically, we
will refer to the hull that contains approximately np obser-
vations as the convex hull peeling pth depth contour or simply
as the pth depth contour, 0 < p < 1, and we will denote this
by C,. Hence, to find the pth depth contour, we would peel
the dataset consisting of # observations until approximately
np observations are remaining. We say approximately here
because you will rarely have exactly np points remaining at
any given stage and, furthermore, np may not be an integer.
Then the depth of a point x, denoted by D(x), is defined
as 1 — p, where p refers to the depth contour, C,, to which
the point belongs. That is, the depth of a point is one mi-
nus the proportion of the # points that were in the original
dataset that are contained by the depth contour to which
the point belongs. For example, the outermost convex hull
contains the entire dataset. Hence, the depth of all points
that make up this hull is 1 — (n/n) = 0. Using the above
example, if there were ten points that made up this hull,
they would then be discarded and the process would be re-
peated for the remaining 90 points. The points that made
up the convex hull that contained these 90 points would all
then have convex hull peeling depth of 1 — (90/100) = 0.10.
The points that make up this hull are then discarded and the
process continues until the dataset can be peeled no further.

In one dimension, a depth contour reduces to a central in-
terval of quantiles. For example, the one-dimensional depth
contour of level p = 0.5 is just the interquartile range. That
is, it is the central interval that contains 50% of the popula-
tion. In two dimensions, we get a central region determined
by the shape of the underlying distribution we are consid-
ering. For example, the standard bivariate normal distribu-
tion gives us a central circle, with center at the origin and
with radius, r, uniquely determined by the level p as

r=+/—21n(l — p). 1)

This result is derived as follows. We begin by considering
integrating the density of the standard bivariate normal in
polar coordinates, setting this equal to p, the proportion
of the population within the depth contour of level p, and
solving for the radius, in this case denoted by a. Hence we
have

2 a
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Now setting the result in Equation (2) equal to p and
solving for a gives us the result in Equation (1).

Efron (1965) gives integral formulae for the computation
of the expected number of vertices for the convex hull of a
finite set of points drawn at random from a normal or a uni-
form distribution in two or three dimensions. For example,
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the expected number of vertices comprising the convex hull
of a random set of points from a standard bivariate normal
distribution is ‘

BV :4&(’;) [ o oo,

where ® and ¢ are the cdf and density respectively of the
standard univariate normal. The expected number of ver-
tices grows very slowly as a function of sample size. For
example, at 1000 000 the expected number of vertices 1s
~17 and even at 1000 000 000 is only ~22.

The result of this on the convex hull peeling algorithm
is that, for very large datasets, it takes a very long time to
peel away the outer layers because so few are peeled at each
layer. For example, if we have a dataset of size 1000 000, the
expected number of vertices in the convex hull of this set is
17.24 ~17. Hence, after peeling away this layer we still have
~ 1000 000 — 17 = 999 983 points remaining.

Similarly, for the three-dimensional normal distribution
we see the same behavior (see Fig. 1). Here the expected
number of vertices for a random sample of size n is given

by
2423 (’3’) / Y o) (p)dp-

e}

For a random sample of size 1000 000 drawn from this
distribution, the expected number of vertices in the con-
vex hull is 92.96 ~ 93 and even when the size reaches
1000 000 000 the expected number of vertices is still only
147.77 ~ 148. Thus, we see that the same problem exists in
higher dimensions as well.

3. Proposed methods

There are two main problems with the existing convex hull
peeling method. The first problem is that we have to physi-
cally store the entire dataset to execute the algorithm. The
second problem is one of computation time. The time re-
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Fig. 1. Expected number of points in the convex hull of a set of
points in three dimensions.
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quired to execute the existing method grows at a guadratic
rate as the sample size increases. We now propose methods
that address both of these issues.

3.1. Sequential convex hull peeling—multivariate median

We have defined the convex hull peeling multivariate median
as the centroid of the innermost hull obtained by succes-
sively peeling away the outermost convex hull layers. As
noted above, the traditional method of obtaining this multi-
variate median is computationally intensive and imposes an
extreme storage burden. The alternative we propose solves
both of these problems by only storing a very small num-
ber of points at any one time and attacking the massive
dataset with a “divide-and-conquer” strategy that yields a
computational complexity that is linear in 7, the sample
size.

Overview of sequential convex hull peeling algorithm for
estimation of the multivariate median

Step 1. Take the first m points from the dataset and peel
the layers until approximately n1/2 points are left.
Add enough points from the remaining dataset to
bring the number up to m again.

Repeat until the dataset is exhausted.

Peel the final set of points down to the innermost
hull.

The “center” of this resulting hull is taken as an
estimate of the multivariate median.

Step 2.

Step 3.
Step 4.

Step 5.

By “center” we mean the centroid of the final hull. In
practice, we take m to be between 1000 and 10 000 as this
range of values has proven to work well in all situations
considered. It should be noted that one could take values of
m larger than 10 000, but one must weigh the improvement
in performance against the increase in computation time.
We discuss the implications of taking different values of m
in Section 5.

3.2. Sequential convex hull peeling—depth contours

We have defined the convex hull peeling pth depth contour as
the convex hull obtained by successively peeling away the
outermost convex hull layers until approximately #np points
are within the perimeter of the hull and approximately n(1 —
p) points are outside of the perimeter. We now present a
sequential algorithm to sequentially compute and maintain
the convex hull peeling depth contour for a given value of
p,for0<p<1.

Overview of sequential convex hull peeling algorithm for
estimation of the pth depth contour

Step 1. Take the first m points from the dataset and peel
the layers until approximately mp points are left,
where p represents the proportion associated with
the desired quantile contour.
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Fig. 2. Example of the quantile contour algorithm output.

Store the b; points representing this convex hull.
Repeat k times, each time appending the b; points
from the new depth contour to the previous set of
points.

Peel the resulting set of Zf‘:, b; points until approx-
imately (1/2) Zf;l b; are remaining.

This final hull is the estimate of the pth depth
contour.

Step 2.
Step 3.

Step 4.

Step 5.

In Fig. 2, we give an example of the output of the se-
quential depth contour algorithm. The black lines are the k
contours obtained from Steps 1 through 3 of the algorithm.
We note that each of these black lines is really just a convex
hull formed by a set of points which will then be peeled
in Step 4. The white line in the center of the black lines is
the depth contour obtained after completing Step 4 of the
algorithm.

In Fig. 3, we give an example of a set of depth contours
for a dataset of 1000 000 observations drawn from a bivari-
ate normal distribution with a zero-mean vector and with
variances of one and a covariance of three. We have used our
proposed algorithms to compute the 0.01, 0.05,0.1,0.2, 0.3,
0.4,0.5,0.6,0.7,0.8,0.9,0.95, and 0.99 depth contours and
the convex hull peeling median. In Fig. 3, the centralmost
point is the estimate of the median and the contours from
the center moving out are the p = 0.99 through p = 0.01
depth contours. Again, a level of p for a given depth con-
tour means that approximately (1 — p) x 100% of the data
is contained within it.

The decision to iteratively peel the data until approxi-
mately half the points are remaining was based on intuition:
what we are looking for is a “median contour” or “central-

most contour”. We peel until half of the data are remaining .

because the resulting contour represents the median con-
tour of the set of pth depth contours.

McDermott and Lin

Fig. 3. Example of a set of depth contours.

4. Simulation studies

4.1. Median simulation studies

For the median simulation studies, we will compare the se-
quential convex hull peeling median to the traditional con-
vex hull peeling median. The data for the simulations will
be drawn at random from the standard bivariate normal
distribution. Our comparisons will include the mean dis-
tance of each method’s estimates from the origin, the vari-
ances and the ratio of the variances of the two method’s
estimates of the distance from the origin, and a time com-
parison by looking at the average time required for each
method. We look at different values of m and n, the to-
tal sample size, to see if different values of these parame-
ters will have an effect on the estimator’s performance. We
take m = 1000, 2000, 5000, and 10 000 and » = 100 000
and 1000 000. The results of these studies are given in
Table 1.

For the median studies, the performance differences be-
tween the two methods are very small. Asseenin Table 1, the
traditional convex hull peeling method consistently outper-
forms the sequential version, however, the differences are
insignificant. We note that as the sample size, 1, increases,
the performance of both methodsimproves. Also, for a fixed
sample size, as m, the maximum number of points stored,
increases from 1000 to 10 000 the performance of the se-
quential version remains relatively constant. For example,
in Table 1, when n = 100 000, the mean of the sequential es-
timates is 0.0123, 0.0122, 0.0118, and 0.0116 for m = 1000,
2000, 5000, and 10 000, respectively. Recall that these num-
bers represent the average distance of each estimator from
the origin, the true center in this case.

We now consider the difference in computation time be-
tween the existing convex hull peeling median estimation
method and our proposed sequential median estimation
method. While changing the value'of 2 has little or no effect
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Table 1. Median study on bivariate standard normal distribution with results averaged over 100 replications

Mean Variance Time

m n Trad Seq Trad Seq Ratio Trad Seq
1000 5000 0.0411 0.0446 0.000 467 0.000 537 1.150 0.29 0.21
10000 0.0302 0.0330 0.000 256 0.000 302 1.177 0.81 0.46
20000 0.0220 0.0247 0.000 143 0.000172 1.201 2.89 1.22
50000 0.0150 0.0173 0.000063 0.000 082 1.297 11.7 2.55
100000 0.0105 0.0123 0.000032 0.000043 1.348 40.7 5.18
2000 5000 0.0413 0.0462 0.000480 0.000 567 1.182 0.28 0.19
10000 0.0297 0.0324 0.000 287 0.000 310 1.078 0.78 0.47
20000 0.0220 0.0249 0.000 126 0.000 161 1.280 2.33 1.06

50000 0.0144 0.0165 0.000065 0.000072 1.108 10.9 2.81
100000 0.0106 0.0122 0.000030 0.000 042 1.381 47.4 6.63
5000 10000 0.0301 0.0346 0.000261 0.000 309 1.186 1.00 0.58
20000 0.0224 0.0246 0.000 143 0.000171 1.191 3.58 1.92
50000 0.0147 0.0164 0.000 060 0.000071 1.192 16.8 5.47
100000 0.0105 0.0118 0.000031 0.000 040 1.304 48.6 9.42
10000 20000 0.0219 0.0251 0.000 136 0.000 167 1.223 2.40 1.33
50000 0.0151 0.0164 0.000060 0.000 067 1.124 13.2 5.50

100000 0.0105 0.0116 0.000031 0.000037 1.196 52.1 14.2

(Trad = traditional exhausted method; Seq = proposed sequential methods).

on the performance of the sequential estimator, it does have
some impact on the computation time. For example, in Ta-

presented in Table 1 where again the same quadratic ver-
sus linear computation time is observed. For example, in

ble 1, when n = 100 000, as in goes from 1000 to 2000 to ~ Table 1, when m = 1000, the average computation time for

5000 to 10 000, the average computation time goes from
5.18 to 6.63 to 9.42 to 14.2, respectively.

In Fig. 4, we present the results of a separate time com-
parison study. We plot the average time taken to execute
the existing method and the proposed method for the con-
vex hull peel multivariate median for samples of differing
sizes drawn from the standard bivariate normal distribu-
tion. Note that the time for the existing method grows at
a quadratic rate as the sample size n increases. In contrast,
the computation time required for the execution of our pro-
posed method is linear as a function of n. Additional time
comparisons of the two median estimation methods are

1000

4+ old method
o new method

Average time
600
L

0 200

20 40 60 80 100

Number of points (x 1000)

Fig. 4. Comparison of the average time taken to execute the usual
convex hull algorithm and the proposed method for median esti-
mation.

n = 50001s 0.29 and 0.21 for the two methods. There is not
much difference at this point as the ratio of these two av-
erage times is 1.38. However, when the sample size reaches
100 000, the average computation times are 40.7 and 5.18
with the ratio of these two average times being 7.88. Based
upon our experience and simulation results, we make a rec-
ommendation of setting m equal to 10 000. These settings
should give slightly better accuracy and a reduction in com-
putation time.

4.2. Depth contour simulation studies

For the depth contour simulation studies, we will compare
the sequential convex hull depth contour to the traditional
convex hull depth contour. The data for the simulations
will again be drawn at random from the bivariate standard
normal distribution. Since for this study we will not have
point estimates as output, but rather a collection of pointsin
the form of a convex polygon, we will use different measures
to compare the method’s performance.

As mentioned in Section 2, for the standard bivariate
normal, the theoretical pth depth contour, C,, will be a cir-

cle with radius r = /—21n(1 — p). Hence, to evaluate how

closely the convex polygon, f}p, determined by the set of
points obtained from one of the two algorithms approxi-
mates this circle, we will convert the points output by the al-
gorithm to polar coordinates. We will then compare how far
each pointis from the point on the circle with the same polar
coordinate 6. That is, for a given point X = (x;, X3) € R?,
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we calculate the angular polar coordinate for x = (x1, x2)
as @ = arctan (x2/x;). We then calculate the straight-line
distance between x = (x1, x2) and the point on the circle,
(r cos @, r sin@). We do this for every point given as output
for a given contour estimate and take the total of these er-
rors. Since not all contours will have the same number of
points, we will also take the average of these errors. Addi-
tionally, we will compare the area of the polygon, é’p, with
the area of the circle, C,. This is a cross-check against the
total and average error measures because if there were very
few points making up the polygon, then these error mea-
sures could potentially be very small but the area most likely
wouldn’t be close to that of the circle, C,. As with the me-
dian simulation study, we will also conduct an average com-
putation time comparison. The results from this study are
given in Table 2. In these studies, we examine three different
contours: p = 0.9, 0.5, and 0.1. We also vary the value of m
between 5000 and 10 000. A final variation is in the sample
sizes. Table 2 considers the cases where n = 100 000 and
n = 1000 000. As n increases, we see the similar behavior as
that observed in the median simulations. Again, as with the
median algorithm, we make a recommendation of setting
m = 10 000 for the sequential depth contour algorithm.

5. Bivariate density estimation

We now consider estimation of the bivariate density based
upon the computation of expected volumes under the den-
sity surface by utilizing the depth contours discussed above.
We begin with the observation that, since the pth depth
contour contains p x 100% of the population, if we could
integrate the unknown density over the entire region of this
depth contour it would integrate to p. That s, it would inte-
grate to the total volume under the density and enclosed by
the contour. Hence, the total volume under the surface of
the density outside of the contour would integrate to 1 — p.

McDermott and Lin

Using this fact, we will then solve for the heights, or values
of the density, of the points in each contour by beginning
at the lowest contour and “building” our way up.

As we step through this algorithm it will be helpful to re-
fer to Fig. 5 as a reference. This figure shows a cross-section
of the lower part of a density and we use it to demonstrate
our density estimation procedure. Our first volume compu-
tation begins at the bottom of the density. We take the dif-
ference of the areas for the convex hull of the entire dataset,
which we denote by C.inf, and the most outlying depth con-
tour, which in our example is the 0.999th depth contour and
is denoted by €.999. This difference gives us the total area
between these two hulls, which we denote by 4. Now, since
we know the total volume under the density and inside of
C.999 is 0.999, we know that the volume under the density
and outside of C.999 is 1 — 0.999 = 0.001. Hence, we will
set the volume of the section under the density and outside
C.999 equal to 0.001 and solve for the height between the
two contours. We denote this first volume by V¥, and this
first height by /. We approximate the curve of the outer
surface of the density by a straight line. Note that in the
cross-section in Fig. 5 the volume V7 is represented as a
triangle. For the whole volume, we must sweep this triangle
around the entire circumference of C.999, thereby making
a kind of “triangle-donut”. Hence, we have that:

1 1
V) = z(area(C.inf) — area(C.99N)Y = §A1h1 = 0.001,

and so Ay = 2(0.001)/4;. We must next compute /,, the
height from C.999 to C.995.

We now use the volume V> to again solve for /;. The
volume under the surface of the density and contained
within C.995 is 0.995 and the volume outside C.995 is
1 — 0.995 = 0.005. We also know the volume ¥y = 0.001.
A further known quantity is the volume of the “rectangle-
donut” beneath ¥, and beside V. We refer to this as a

Table 2. Contour study on bivariate standard normal distribution with results averaged over 100 replications

Total error Average error Area error Average time
n D m Trad Seq Trad Seq Trad Seq Trad Seq
100 000 0.9 5000 0.9667 1.6247 0.0101 0.0217 7.3 x 1073 1.1 x 107! 18.00 1.31
0.9 10000 0.9784 1.1311 0.0101 0.0158 7.0 x 1073 53 x 1072 17.54 1.91
0.5 5000 0.5811 0.7033 0.0053 0.0090 5.1 x 1074 5.0 x 1073 61.49 3.90
0.5 10000 0.6188 0.6504 0.0056 0.0085 6.7 x 1074 4.0 x 1073 60.59 5.85
0.1 5000 - 0.3882 0.3730 0.0054 0.0073 6.8 x 1073 4.6 x 1074 80.99 5.36
0.1 10000 0.3757 0.3376 0.0052 0.0067 5.4 x 1073 2.6 x 10~ 80.45 7.90
1000000 0.9 5000 0.6890 2.9041 0.0034 0.0184 7.1 x 1074 6.6 x 1072 7217.1 12.71
0.9 10000 0.6904 0.9395 0.0034 0.0068 4.7 x 1074 9.6 x 1073 702.3 17.42
0.5 5000 0.3746 0.5713 0.0019 0.0038 3.9 x 1073 9.4 x 10~ 24438 36.67
0.5 10000 0.3966 0.4279 0.0017 0.0030 3.9 x 1073 4.7 x 1074 2548.4 53.27
0.1 5000 0.3631 0.2999 0.0024 0.0029 3.4 x 107 6.9 x 1073 3231.0 52.03
0.1 10000 0.3517 . 0.2280 0.0023 0.0023 3.4 x 1073 2.6.x 1073 32514 73.47

(Trad = traditional exhausted method; Seq = proposed sequential method).
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Fig. 5. Schematic for computation of the bivariate density.

“rectangle-donut” because we sweep the rectangle around
the circumference of C.999. The volume of this piece is just
(C.999 — C.995)h;, that is, it is the product of the differ-
ence in the areas of €.999 and C.995 and the just computed
height, &;. Hence, we have that:

0.005 = 0.001 + V> + (area(C.999) — area(C.995))
1
= 0.001 + E(area(C.999) — area(C.995);
+ (area(C.999) — area(C.995)h

1
= 0.001 + '-2-142/12 + Ay,

and so hz = 2(0.004 - Az/n)/Az‘

Continuing in this manner, we may determine all of the
heights, A;. Then to obtain the density estimate for a given
contour, we add up the heights until we reach the desired
contour. For example, in Fig. 5, to obtain the density esti-
mate for points in the C.995 contour, we add the first two
heights. So, /; + hy would be our density estimate for all
points that make up this depth contour.

We now generalize this procedure. Assume we have 0 <
pi < - < pa2 <p1 < landcorresponding depth contours,
Cpv-oos Cpyy Gy, and define Ciy to be the convex hull of
the entire dataset. Let 4] = area(Cyy) — area(Cp )and 4; =
area(C,,_,) — area(Cp,), for i = 2, ..., k. Then we have

b = 2(1—p1)
=

; 2((p1 — p2) — A2hy)
(I 4 s

and in general

2A(pi1 —p) — Ay A A i)

/7,' A,'

fori=3, ...,k

In Table 3, we present the results of a simulation study to
quantify the performance of our proposed bivariate density
estimator. We have generated 1000000 observations from
the bivariate standard normal distribution and computed
the 0.999, 0.995, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,
0.2,0.1,0.05,0.01, 0.005, and 0.001 depth contours. Recall
that these contours as listed go from outermost to inner-
most since the 0.999th contour contains 99.9% of the data
and the 0.001th depth contour contains 0.1% of the data.
We ran the simulation for m = 10000 and m = 20000 and
averaged results over 100 iterations. We then compare the
averaged estimates to the true density value for the points

Table 3. Density estimation for the bivariate standard nor-
mal density with # = 1000000 and results averaged over 100
replications

m = 10000

r True density Mean Variance

0.999 0.00016 0.000 09 5.7 x 1071
0.995 0.00080 0.000 64 6.3 x 10710
0.99 0.001 59 0.001 63 6.1 x 107%
0.95 0.00796 0.00643 1.5x 107
0.90 0.01592 0.016 80 5.8 x 107
0.80 0.03183 0.02932 1.3 x 10707
0.70 0.04775 0.04943 4.0 x 1077
0.60 0.063 66 0.06147 1.2 x 107%
0.50 0.079 58 0.08160 2.6 x 107%
0.40 0.09549 0.09320 4.9 x 1079
0.30 0.11141 0.11404 7.2 x 1079
0.20 0.12732 0.12495 8.5 x 107%
0.10 0.14324 0.14720 1.1 x 1070
0.05 0.15120 0.147 55 1.8 x 1070
0.01 0.15756 0.15696 2.4 x 1079
0.005 0.15836 0.15935 1.3x 107%
0.001 0.15900 0.16623 2.7 x 107%
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Fig. 6. Three-dimensional contours of a standard bivariate normal density.

in each contour and we also examine the variance of the
100 estimates. ‘

One can see that the results are quite accurate. For exam-
ple, with m = 10000, the 0.001th contour averaged estimate
was 0.00 009 compared to the true density value of 0.000 16,
while the 0.999th contour averaged estimate was 0.16 623
compared to a true density value of 0.159 00. We also note
that increasing m from 10000 to 20 000 made no apprecia-
ble difference in performance, but thisincrease did cause the
running time to increase dramatically. This gives empirical
support for our recommendation of m = 10000.

Having thus obtained density estimates for all of our
depth contours, we may then wish to fit a multivariate spline
to our results. Refering back to Fig. 3, we see an example of
a set of contours obtained from a sample of 1000 000 obser-
vations taken from the standard bivariate normal distribu-
tion. We then assign heights, obtained by the above bivari-
ate density estimation method, to these two-dimensional
contours. We plot the resulting three-dimensional points in
Fig. 6, and in Fig. 7 we present the result of a multivariate
spline fit to the three-dimensional set of points made up by
the points in the contours and their associated estimated
density values.

6. Application to an astronomy dataset

We now apply our methods to an astronomy dataset as an
illustration. The data is taken from the Digital Palomar

Observatory Sky Survey (DPOSS). We have a set of 11355
objects in the sky and we will be looking at measures of
the magnitude of these sky objects in the blue-green and
near-infrared visible bands. Although the dataset we con-
sider has only 11 355 objects, the DPOSS project projects

fysusp

Fig. 7. Example of multivariate spliné fit to contours.
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Fig. 8. DPOSS dataset used in example with 7 = 11 355.
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Fig. 9. Convex hull peeling depth contours and medians using: (a) traditional methods; and (b) sequential methods.
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Fig. 10. Multivariate spline fit to the depth contours with density
estimates from the DPOSS dataset.

that over 50 000 000 galaxies and over two billion stars will
be contained in the final sky catalog (Djorgovski et al.,
2002).

In Fig. 8, we present a scatterplot of the DPOSS dataset
used in this example. In Fig. 9(a and b), we give the results
of executing both the traditional and sequential convex hull
peeling algorithms on the DPOSS dataset as a side-by-side
graphical comparison. We compute the multivariate medi-
ans, which are represented by a central point, and the sets of
depth contours ranging from the centralmost contour with
p = 0.1 out to the farthest contour with p = 0.9. Despite
utilizing only 11 355 data points, visually there is not much
difference between the two graphs. The outermost contour
in Fig. 9(a and b) is the convex hull of the entire dataset.
This is given as a visual reference. We note here that the
outermost convex hull of the entire dataset may easily be
computed sequentially by taking m points at a time, taking
the convex hull of these points, and then taking the convex
hull of the union of this hull and the next m points. Con-
tinuing in this manner we may keep a sequential version of
the outermost hull and this will be exactly the same as if
we had stored the entire dataset and taken the convex hull.
We quantify the difference between the areas of depth con-
tours for the two methods as follows from the outermost
contour to the innermost: 0.6603, 0.3690, 0.3364, 0.2541,
0.0791, 0.0736, 0.0488, 0.0128, and 0.0593. The distance
between the traditional and sequential multivariate medi-
ans was 0.0258. In Fig. 10, we fit a multivariate spline to

the contours using the density estimation method given in

Section 3.
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7. Concluding remarks

One drawback to the sequential depth contour algorithm
is that, although it uses much less storage than the tradi-
tional method, it still requires perhaps more storage than
we would like. Experiments have shown that approximately
1-2% of the dataset must be stored to execute the algorithm.
There is room for improvement in this area. Another thing
to note is that at this time the depth contours must be com-
puted separately. Hence, to avoid having to make more than
one pass through the data, one would have to program the
algorithm in parallel with each individual contour being
computed by a separate processor.

Another potential drawback to this method is that there
is very little theory available for convex hulls. Hence, we do
not at this time have a good sense of breakdown properties,
i.e., the robustness of the estimator. A further drawback is
that standard errors are not available for our estimates and
hence to develop inferential methods for our estimators, we
would need to develop other methodologies to get some
measure of the variability of the estimates. We have consid-
ered the possibility of various resampling methods, such as
the bootstrap, but this is an area for future work.

By utilizing the contours and recognizing their relation-
ship to expected volumes under the surface of the unknown
density, we are able to obtain bivariate density estimates for
all points on each contour without making any choice of
bandwidth as we must do with kernel density estimation.
We may then fit a multivariate spline to the resulting three-
dimensional set of points to obtain the functional form of
the entire density. The ideas in this paper can be extended
to dimensions higher than two. This is an area of future

“work.

The linear complexity of the proposed algorithms occurs
because at any given time, we have at most m points in local
storage for these methods. Each set of m points will have the
same algorithm steps applied to it, with each step having a
maximum amount of time needed for its execution. Hence,
as the size of the dataset grows, the time needed to execute
the algorithm will continue to grow at a linear rate.

Clearly there could be situations where, if the data was
not presented in a “random” manner, the proposed al-
gorithms could have problems. However, these methods
should be able to “adapt” to minor changes in the under-
lying distribution of the data as it arrives. The sequential
nature of the methods allows for distributional changes over
time. For example, if the “center” of the distribution was
drifting over time, the median estimation method should
be able to drift with it. This is another area for future
work.

The convex hull of a random set of points in two dimen-
sions is a convex polygon. In three dimensions, the con-
vex hull will be a polyhedron, a region in three-dimensional
space whose boundary is made up of a finite number of
two-dimensional polygon faces. Any two of these faces will
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be disjoint and meet at edges and vertices. O’Rourke (1998)
gives algorithms for the computation of the convex hull in
three dimensions. The quickhull algorithm (see Barber et al.
(1996)) can be used to obtain the convex hulls for datasets
of arbitrary dimension. Although this method can handle
arbitrarily large dimensional data, this method will face the
same problem as other methods in terms of computation
time. Hence, our approach can be used in conjunction with
the quickhull algorithm when the data is in the form of a
stream with no fixed length.

The code for these methods was written exclusively with
the R programming language as the basic algorithm for
finding the convex hull of a planar set of points is part of
the base R code. For a description of the algorithm used by
the R progamming language, see Eddy (1977a, 1977b).
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