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Abstract

The problem of choosing a good parameter setting for a better generalization performance in a learning task is the so-called
model selection. A nested uniform design (UD) methodology is proposed for efficient, robust and automatic model selection for
support vector machines (SVMs). The proposed method is applied to select the candidate set of parameter combinations and carry
out a k-fold cross-validation to evaluate the generalization performance of each parameter combination. In contrast to conventional
exhaustive grid search, this method can be treated as a deterministic analog of random search. It can dramatically cut down the
number of parameter trials and also provide the flexibility to adjust the candidate set size under computational time constraint.
The key theoretic advantage of the UD model selection over the grid search is that the UD points are “far more uniform”and “far
more space filling” than lattice grid points. The better uniformity and space-filling phenomena make the UD selection scheme more
efficient by avoiding wasteful function evaluations of close-by patterns. The proposed method is evaluated on different learning
tasks, different data sets as well as different SVM algorithms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, support vector machines (SVMs) with linear or nonlinear kernels (Vapnik, 1995; Cristianini and
Shawe-Taylor, 2000) have become one of the most promising learning algorithms for classification as well as re-
gression (Smola and Schölkopf , 2004). However, poor choice of parameter setting can dramatically decrease the
generalization performance of SVMs. The problem of choosing a good parameter setting for a better generalization
ability is the so-called model selection. It will be desirable to have an effective and automatic model selection scheme
to make SVMs practical for real life applications, in particular, for people who are not familiar with parameters tun-
ing in SVMs. In this article, we develop a nested uniform design methodology for model selection in SVMs, which
allows users to find a good parameter combination efficiently and automatically. We focus on selecting the regular-
ization parameter and the Gaussian kernel width parameter. This problem can be treated as finding the maximum
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(or minimum) of a function which is only vaguely specified and has many local maxima (or minima). One standard
method to deal with the model selection is to use a simple exhaustive grid search over the parameter space. It is
obvious that the exhaustive grid search cannot effectively perform the task of automatic model selection due to its high
computational cost. Therefore, many improved model selection methods have been proposed to reduce the number
of trials in parameter combinations (Keerthi and Lin, 2003). Chapelle et al. (2002) use a gradient-based approach
to find the minimizing parameter setting for error bounds made by leave-one-out procedure. There are also other
gradient-based approaches in the literature (Larsen et al., 1998; Bengio, 2000). Although the gradient-based methods
present impressive gain in time complexity, they have a great chance of falling into bad local minima. In contrast to
conventional exhaustive grid search, our proposed method can be treated as a deterministic analog of random search
known as quasi-Monte Carlo (Niederreiter, 1992). We first give a heuristic for setting up a two-dimensional search box
in the parameter space, which is able to automatically scale the distance factor in the Gaussian kernel. Regardless of
the search scheme, it is always important to set up a proper search region. Once the search region is determined, we
apply the 2-stage UD methodology to select the candidate set of parameter combinations and perform a k-fold cross-
validation to evaluate the generalization performance of each parameter combination. The 2-stage uniform design
procedure first sets out a crude search for a highly likely candidate region of global optimum and then confines a
finer second-stage search therein. We test our method on different learning tasks and different data sets, as well as
on several SVM algorithms. Numerical results and comparisons show that our method can effectively find a good
parameter combination in a few trials. Our model selection scheme is robust and efficient and can be carried out fully
automatically.The nice feature of our model selection scheme is that it provides the flexibility to adjust the candidate
size under computational cost constraint. In practice, it can be combined with variants of SVM implementations
easily.

The article is organized as follows. Section 2 provides a brief introduction to formulations of SVMs for classification
and regression. The model performance measure is discussed in Section 3. Section 4 presents the UD methodology.
Section 5 describes our nested UD scheme for model selection. All numerical results are presented in Section 6.
Section 7 concludes the article.

A word about our notation is given below. All vectors will be column vectors unless otherwise specified or transposed
to a row vector by a superscript T. For a matrix A ∈ Rm×d , Ai is the ith row of A. A column vector of ones of arbitrary
dimension will be denoted by 1. For A ∈ Rm×d and B ∈ Rd×l , the kernel K(A, B) maps Rm×d × Rd×l into Rm×l . In
particular, if x and y are column vectors in Rd then, K(xT, y) is a real number, K(A, x) = K(xT, AT)T is a column
vector in Rm and K(A, AT) is an m × m matrix.

2. Support vector machines

In this section we give a very brief introduction to nonlinear SVMs for classification and regression. A nonlinear
SVM model can be defined by a kernel mixture. One of the most popular kernel functions is the Gaussian kernel
(also known as the radial basis function) defined by K(uT, v) = e−�‖u−v‖2

2 , where u, v ∈ Rd , and � is the width
parameter of the Gaussian kernel. The value of K(uT, v) represents the inner product of �(u) and �(v) in some high
dimensional feature space F, where �(·) : Rd �→ F is a nonlinear map that we do not have to know explicitly in SVM
formulations. Besides, values of K(uT, v) drop off at a rate determined by ‖u − v‖2

2 and �. Note that the parameter �
is the key performance factor for SVMs (Lee and Mangasarian, 2001a, 2001b; Lee et al., 2005). It is also well known
in statistical kernel smoothing literature that the kernel window size, corresponding to 1/

√
2� here, plays a major

influential role for the final appearance of the fitted curve or model (Silverman, 1986). Too large or too small of a �
value will lead to overfitting or underfitting, respectively. We will give a method for determining a search range for � in
Section 5.

2.1. SVMs for classification

Consider the problem of classifying points into two classes, A− and A+. Given a training data set {(xi, yi)}mi=1,
where xi ∈ X ⊂ Rd is the vector of the ith input data point and yi ∈ {−1, 1} is its class label, indicating one
of the two classes, A− and A+, to which the input point belongs, we represent these data points by an m × d ma-
trix A, where the ith row Ai corresponds to the ith input data point. We use alternately Ai (a row vector) and xi

(a column vector) for the same ith data point depending on the convenience. The SVM classifier f (x) is of the
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following form:

f (x) = �T DK(A, x) + b =
m∑

j=1

yj�jK(Aj , x) + b, (1)

where K(zT, x) is a kernel function, and D is an m × m diagonal matrix with class labels, yi’s, along its diagonal.
Conventionally, the coefficients �j are obtained by solving the following dual maximization problem:

max
�∈Rm

− 1
2�TDK(A, AT)D� + 1T�

subject to 1TD� = 0, (2)

0���C1,

where [K(A, AT)]ij = K(Ai, A
T
j ) and C > 0 is a tuning parameter. The term b in (1) can be determined by the

Karush–Kuhn–Tucker (KKT) conditions (Vapnik, 1995; Cristianini and Shawe-Taylor, 2000). Most of the SVM pack-
ages, such as LIBSVM (Chang and Lin, 2005) and SVMlight (Joachims, 2002), implement SVM by solving the
maximization problem above. An alternative smoothing strategy (Lee and Mangasarian, 2001b) has been proposed and
solved by a fast Newton–Armijo algorithm that converges globally and quadratically.

2.2. �-Insensitive support vector regression (�-SVR)

In the regression problem, yi ∈ R is the response observed at xi . The aim is to find a linear or nonlinear regression
function, f (x), tolerating a small error in fitting the training data set. This can be achieved by utilizing the �-insensitive
loss function that sets an �-insensitive “tube” around residuals. The tiny errors that fall within the tube are discarded.
Also, applying the idea of SVMs, the function f (x) is made as flat as possible in fitting the training data set. Similar
to the formulation of SVM classification, we consider a function f (x) of the following form:

f (x) = uTK(A, x) + b =
m∑

j=1

ujK(Aj , x) + b. (3)

The coefficients u and b can be determined by solving an unconstrained minimization problem given as follows:

min
(u,b)∈Rm+1

1

2
uTu + C1T|�|�, (4)

where |�|� ∈ Rm, and (|�|�)i = max{0, |f (xi) − yi | − �}, which are the �-insensitive fitting errors. The positive control
parameter C here weights the trade-off between the fitting errors and the flatness of f (x). Conventionally, problem
(4) is reformulated as a convex quadratic programming problem (Smola and Schölkopf , 2004). A smoothing strategy
for the �-SVR is derived and solved, again, by a fast Newton–Armijo algorithm (Lee et al., 2005). When dealing with
large data problems, classification or regression, a reduced kernel technique for support vector machine (RSVM) can
be applied to cut down the computational cost as well as the model complexity (Lee and Mangasarian, 2001a; Lee and
Huang, 2007). In our numerical study, the reduced kernel approximation will be applied to some experiments.

3. Performance measure for SVM model selection

The most common performance assessment method is probably the k-fold cross-validation (Stone, 1974) and the
leave-one-out procedure. Both require that the learning engine be trained multiple times in order to obtain a performance
measure for each parameter combination. In a k-fold cross-validation, the training data are randomly split into k mutually
exclusive subsets (the folds) of approximately equal sizes. The resulting SVM model (i.e., the decision rule or the
regression function) is obtained by training on k − 1 subsets and then the model is tested on the remaining one subset.
This procedure is repeated k times and in this fashion each subset is used for testing only once. By averaging the
test errors over the k trials it gives an estimate of the expected generalization error. The leave-one-out procedure can
be viewed as an extreme form of the k-fold cross-validation with k equal to the number of examples. Although the
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Fig. 1. Three examples of search space of model selection.

leave-one-out is known as an unbiased estimation method, it is computationally much more expensive than a k-fold
cross-validation.

One standard method to deal with the model selection problem is to use a simple grid search on the parameter domain
of interest. In this article, we consider the parameter space consisting of the regularization parameter C and the Gaussian
kernel width parameter �. For �-insensitive support vector regression, we leave the parameter � as user pre-specified. That
is, our search region is a two-dimensional box. It is obvious that the exhaustive grid search cannot do automatic model
selection effectively due to its high computational cost. For example, for a grid search with 20 × 20 mesh parameter
combinations (400 trials) in a 5-fold cross-validation, it will take 2000 times of SVM trainings to select the best
parameter combination. Therefore, many improved model selection methods have been proposed to reduce the number
of trials in parameter combinations. Chapelle et al. (2002) use a gradient-based approach to find the minimal error bound
made by leave-one-out procedure. To show the model performance of some various parameter combinations, Fig. 1
plots the 5-fold average test set accuracy for three public available data sets, banana, waveform and splice, in
a three dimensional surface, where the x-axis and the y-axis are log2C and log2�, respectively. The z-axis is the 5-fold
average test accuracy. Each mesh point in the (x, y)-plane stands for a parameter combination and the z-axis indicates
the model performance measure. It is easy to see that there are many local maxima. Thus, the gradient-based methods
have a great chance of being trapped into (bad) local maxima. Also these plots show that these surfaces have low-degree
of regularity, which further hinders the use of gradient-based methods.

Below we introduce the use of nested uniform designs (UDs) for model selection in SVMs. Basically the UD finds
good representative points uniformly scattered over the parameter domain to replace the lattice grid points for a much
more efficient parameter search.

4. Uniform design (UD)

The uniform experimental design is one kind of space filling designs that can be used for computer and industrial
experiments. The UD seeks its design points to be uniformly scattered on the experimental domain. Suppose there are
s parameters of interest over a domain Cs . The goal here is to choose a set of m points Pm = {�1, . . . , �m} ⊂ Cs such
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that these points are uniformly scattered on Cs . Let F(�) be the cumulative uniform distribution function over Cs and
Fm(�) be the empirical cumulative distribution function of Pm. Let the L2-discrepancy of nonuniformity of Pm be
defined as

D2(C
s, Pm) =

[∫
Cs

|Fm(�) − F(�)|2 d�

]1/2

. (5)

Here we consider only the case that Cs is a cube and for convenience a unit cube, i.e., Cs = [0, 1]s . The search for
UDs with minimum L2-discrepancy is an NP-hard problem. Approximation is used to find low-discrepancy design
close to the minimum discrepancy UD. A modification to the L2-discrepancy is the centered L2-discrepancy, which
considers the uniformity not only of Pm over Cs , but also of all the projection uniformity of Pm over Cu, where
Cu is a |u|-dimensional unit cube involving only |u|-many coordinates. The UD tables in the UD-web are all con-
structed under the centered L2-discrepancy. See Fang and Lin (2003). These are the UDs that we will employ in this
article.

For implementing the UD in SVM model selection problem, the following steps are necessary:

(1) Choose a parameter search domain, determine a suitable number of levels for each parameter (or factor in design
terminology).

(2) Choose a suitable UD table to accommodate the number of parameters and levels. This can be easily done by
visiting the UD-web. http://www.math.hkbu.edu.hk/UniformDesign

(3) From the UD table, randomly determine the run order of experiments and conduct the performance evaluation of
each parameter combination in the UD.

(4) Fit the SVM model.
(5) The last step is a knowledge discovery step from the built model. That is, to find the best combination of the

parameter values that maximizes the performance measure.

For a detailed discussion, literature review and recent development on UD, see Fang and Lin (2003).

5. Nested uniform designs for model selection in SVMs

We describe our search strategy based on nested UDs (Niederreiter and Peart, 1986; Fang et al., 2000; Fang and
Lin, 2003) to reduce the number of trials in parameter combinations. Regardless of the search scheme, it is always
important to set up a proper search region. Many numerical experiments and past experience have indicated that the
width parameter � is the key factor in SVMs model selection . Hence, the appropriate � range must be made prior to
parameter search. We note that the function value of the Gaussian kernel not only depends on � but also on the distance
between two data points. The magnitude of the distance between a pair of data points also depends on the input space
dimension. Here, we propose a heuristic for determining the search range of �, which is able to automatically scale the
distance factor in the Gaussian kernel. Let A∗̄

i
and A∗̄

j
be a pair of the closest distinct points in the training data set and

let � = ‖A∗̄
i
− A∗̄

j
‖2

2, i.e., � = minAī 	=Aj̄
‖Aī − Aj̄‖2

2. We confine the kernel function value of this pair of points to the

range [0.150, 0.999]. That is,

0.150�e
−�‖A∗̄

i
−A∗̄

j
‖2

2 = e−�� �0.999, (6)

which can be converted to L� ���U� with

L� = − ln(0.999)

�
≈ 10−3

�
and U� = − ln(0.150)

�
≈ 1.90

�
. (7)

The lower bound for �, leading to a lower bound for underfitting, comes from the inequality e−�� �0.999, which
basically says that the window parameter � should be able to sustain the closest neighboring pair to have at most 0.999
similarity measure but not higher. Pairs of data with similarity measure greater than 0.999 are considered “being lumped
together” by the kernel smoothing with lower bound width parameter L�. The upper bound for � can be transformed
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into a lower bound for 	 via 	 = √
1/(2�). Then,

min
Aī 	=Aj̄

‖Aī − Aj̄‖2

√
2 × 1.90

�	.

The denominator is roughly about 2. That is, in terms of 	, the kernel window size is at least about half of the minimum
nearest neighbor distance. The k-nearest neighbor kernel smoothing with k = 1

2 is highly overfitting (Silverman, 1986).
In brief, the lower bound value L� will lead to inadequately underfitting, while the upper bound value U� will lead to
highly overfitting. Thus, the search range [L�, U�] has covered the extent from underfitting to overfitting.

In practice, finding the closest distinct points in a massive training data set is very time consuming. We suggest the
following scheme for the upper and lower bound estimates based on a random subset. First, randomly sample a small
subset from the entire data set, next calculate the upper and lower bounds using this random subset, and finally adjust
the bounds by a multiplicative factor (m/m̄)2/(4+d), where m̄ is the subset size and d is the dimension of x. For assessing
the search range of � using a reduced set, it should be adjusted accordingly to account for the effect caused by using
only a fraction m̄/m of data. It is well known in the nonparametric literature that an ideal window width 	 is of order
	 = O(m−1/(4+d)), or equivalently � = O(m2/(4+d)) (Stone, 1984; Silverman, 1986). Thus, if only a fraction m̄/m of
data is used, a multiplicative factor (m/m̄)2/(4+d) adjustment should be adopted. This adjustment factor is often close
to one in the reduced set case with a moderate to large sized d.

The SVMs regularization parameter C is another challenge in SVM model selection. The parameter C determines
the trade-off between minimizing the training error and reducing the model complexity. The range of C depends on
the underlying SVM learning algorithm being used. Our empirical observation suggests that the most appropriate C
range for SVMs is between 10−2 and 104 except for the case of RSVM (Lee and Mangasarian, 2001a; Lee et al.,
2005). The justification is that the reduced kernel technique has dramatically reduced the model complexity. Hence, it
usually requires a larger C to obtain a good resulting model. The appropriate C range for RSVM is between 100 and
106. The conventional �-SVR implemented in LIBSVM will take a long CPU time to obtain the resulting model when
C is large. For this reason, we use the range of C between 10−2 and 102 in the �-SVR model selection experiment
for LIBSVM. Once we have the two-dimensional parameter search box we are ready for describing our nested UDs
scheme.

One reminder for the reader is that the range for the search box is based on several subjective choices of settings. It
remains somehow arbitrary, but it is probably the best one can do here. One simple remedy is, one can make the search
range conservative to include some extent of coverage for the first-stage UD search and then the “nesting mechanism”
shrinks the range for the second-stage UD search. In other words, the method of nested designs first sets out a crude
search for a wide range of candidate region and then confines a finer second-stage search therein.

Fig. 2 shows the UD sampling patterns, where N runs means that we distribute N trial points of parameter combinations
uniformly on the predetermined search domain. Note that each log2 C or log2 � value is used at most once in the nested
UD-based method, and there is no point placed on the corners. These characteristics are very important for efficient
model selection. The corner points on the search domain often cause the overfitting or underfitting phenomena, and
should be avoided. The parameter points from the UD sampling patterns are wisely chosen by the number-theoretic
methods (Fang and Wang, 1994) to make them “uniform” and “space-filling”. This UD methodology is a deterministic
analog of random search known as quasi-Monte Carlo. It is known that a quasi-Monte Carlo method with judiciously
chosen deterministic points usually leads to a faster rate of convergence than a corresponding Monte Carlo method and
lattice grid method (Niederreiter, 1992).

We perform the UD-based method in two stages. At the first stage, we use a 13-run UD sampling pattern (see Fig. 3)
in the appropriate search range proposed above. At the second stage, we halve the search range for each parameter
coordinate in the log-scale and let the best point from the first stage be the center point of the new search box. We do
allow the second-stage UD points to fall outside the prescribed search box. Then we use a 9-run UD sampling pattern
in the new range. The total number of parameter combinations is 21 (the duplicate point, i.e., the center point at the
second stage, is trained and counted only once). Moreover, to deal with large sized data sets, we combine a 9-run and a
5-run sampling pattern at these two stages, as pictured in Fig. 4. The total number of parameter combinations is reduced
to 13 (again, the duplicate point, i.e., the center point at the second stage, is trained and counted only once), and the
UD-based method can still make the resulting SVM model perform well. In next section, the numerical results will
show merits of the nested UD model selection method.
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The method of nested UDs is not limited to two stages and can be applied in a sequential manner and one may
consider a finer net of UDs to start with. The reason that we use a crude 13-run or a 9-run design at the first stage is that
it is simply enough for the purpose of model selection in the real data SVM problems in our experiments. See Section
6 for more numerical details. The nested UPS for model selection have some intrinsic connection with the popular and
widely used quasi-Monte Carlo methods (Niederreiter, 1992; Fang and Wang, 1994). This UD quasi-random search
can be considered as a localization-of-search type algorithm (Niederreiter and Peart, 1986) to speed up the decision of
model selection in SVM.

6. Numerical results

In this section, we will apply our model selection method not only to different data sets but also to different SVM
packages, including LIBSVM (Chang and Lin, 2005), SSVM (Lee and Mangasarian, 2001b), �-SSVR (Lee et al.,
2005) and RSVM (Lee and Mangasarian, 2001a; Lee and Huang, 2007). LIBSVM is probably one of the most popular
libraries for conventional support vector classification and regression. SSVM and �-SSVR are alternative SVM imple-
mentations, which utilize a smoothing technique and are solved by a fast Newton–Armijo algorithm. RSVM utilizes
the reduced kernel approximation to reduce the computational complexity. We implement our model selection method
in MATLAB. All experiments are run on a personal computer consisting of a 3.0 GHz Pentium-4 processor and a 1-GB
memory.

In binary classification experiments, we follow the same procedures and data sets in IDA; Keerthi and Lin (2003)
and Newman et al. (1998). All data sets have their own partitions into training set and test set, and they are directly used
as given in the above mentioned references without any further normalization or scaling. Table 1 shows the summary
of binary classification datasets. The terms TrnA and TrnB stand for the numbers of positive and negative training
examples, respectively. Similarly, the terms TstA and TstB stand for the numbers of the positive and negative test
(validation) examples. The number of input predictor variables is denoted by the term No. variables.

For the model selection procedure in classification problems, a 5-fold cross-validation is used to obtain estimates of
generalization error in the training set (TrnA+TrnB). For each data set, the parameter pair (C, �) with the smallest 5-fold
cross-validation error rate among all UD pairs is chosen as the final parameter estimates and is used in SVM training
with all the training set (TrnA+TrnB). The resulting model is used to predict the test set (TstA+TstB), and the test set
error rates are shown in Table 2. Note that the test set does not enter the training and model selection procedures.

In Table 2, the term UD1 stands for the strategy of using 13 and 9 trial pairs of UDs at the first stage and the second
stage, respectively. The term UD2 denotes the strategy of using 9 and 5 trial pairs of UDs at the respective two stages.
The numbers of trial pairs of the Grid method and Keerthi and Lin’s method are 441 and 54. However, we only use 21
or 13 total trial pairs in the UD1 or UD2 method, respectively. Keerthi and Lin’s search scheme is confined to a good
parameter region and then do twice one-dimensional search therein, while ours strikes for most economic scattering
points through mathematically rigorous number-theoretic approach. The Grid and Keerthi and Lin columns are the test
set error from Keerthi and Lin (2003). The UD1 and UD2 columns are the average test set error ± standard deviation
from 10 times repeated experiments of our model selection method. We obtain comparable test set errors for LIBSVM
and SSVM. However, our proposed methods have used a lot of fewer trial pairs. The fewer trial pairs take less computing
time in model selection procedures. We further apply our model selection method to RSVM. The RSVM randomly

Table 1
Summary of classification data sets

Problem Size

TrnA TrnB TstA TstB No. variables

Banana 217 183 2159 2741 2
Image 740 560 580 430 18
Splice 483 517 1044 1131 60
Waveform 132 268 1515 3085 21
Tree 198 502 3050 8642 18
Adult 395 1210 7175 22 414 123
Web 72 2405 1094 37 900 300
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Table 2
The average test set error rate of classification problems

Problem LIBSVM

Grid (441) Keerthi and Lin (54) UD1 (21) UD2 (13)

Banana 0.1235 0.1178 0.1128 ± 0.0038 0.1121 ± 0.0054
Image 0.0248 0.0248 0.0244 ± 0.0013 0.0246 ± 0.0025
Splice 0.0970 0.1011 0.1044 ± 0.0039 0.1017 ± 0.0065
Waveform 0.1078 0.1078 0.1071 ± 0.0038 0.1120 ± 0.0044
Tree 0.1132 0.1246 0.1157 ± 0.0047 0.1168 ± 0.0041
Adult 0.1614 0.1614 0.1618 ± 0.0032 0.1602 ± 0.0013
Web 0.0222 0.0222 0.0210 ± 0.0015 0.0212 ± 0.0004

Problem SSVM RSVM

UD1 (21) UD2 (13) UD1 (21) UD2 (13)

Banana 0.1219 ± 0.0070 0.1185 ± 0.0070 0.1229 ± 0.0077 0.1239 ± 0.0053
Image 0.0307 ± 0.0040 0.0279 ± 0.0061 0.0437 ± 0.0082 0.0429 ± 0.0081
Splice 0.1005 ± 0.0019 0.1003 ± 0.0030 0.1346 ± 0.0041 0.1360 ± 0.0053
Waveform 0.1055 ± 0.0035 0.1087 ± 0.0053 0.1138 ± 0.0040 0.1121 ± 0.0039
Tree 0.1171 ± 0.0026 0.1189 ± 0.0029 0.1193 ± 0.0054 0.1178 ± 0.0040
Adult 0.1605 ± 0.0020 0.1611 ± 0.0021 0.1614 ± 0.0019 0.1625 ± 0.0016
Web 0.0236 ± 0.0014 0.0229 ± 0.0020 0.0248 ± 0.0014 0.0258 ± 0.0020

The Grid and Keerthi and Lin columns are the test set error from Keerthi and Lin (2003). The UD1 and UD2 columns are the average test set error
± standard deviation by 10 times repeated experiments of our model selection method. RSVM randomly selects 5% training set to form the reduced
kernel. The number in parentheses denotes the number of trial pairs.

Table 3
Summary of regression data sets

Problem Size

Training Test No. variables

Housing 456 50 13
Comp-Activ_1000 900 100 21
Kin-fh_1000 900 100 32
Comp-Activ 7373 819 21
Kin-fh 7373 819 32

selects 5% training set to form the reduced kernel and also obtains comparable test set errors. Moreover, RSVM saves
even more computing time in every single training run.

In regression experiments, we follow the same procedures and data sets, housing, computer-activity and Kin-fh, as
in the article by Lee et al. (2005). Table 3 shows the summary of regression data sets. We also randomly select 1000
rows from Comp-Activ and Kin-fh, respectively, to form two smaller data sets: Comp-Active_1000 and Kin-fh_1000.
In these experiments, the 2-norm relative error is used to evaluate the discrepancy between the predicted values and
the observations. For an observation vector y and its prediction ŷ, the 2-norm relative error is defined as follows:

‖y − ŷ‖2

‖y‖2
. (8)

In order to evaluate how well each method generalizes to unseen data, we split the entire data set into two parts, the
training set and the test set. The training set is used to estimate the regression function; the test set, which is not involved
in the training procedure nor the model selection, is used to evaluate the prediction ability of the resulting regression
function. We have also used a stratification scheme in splitting the entire data set to retain the “similarity” pattern
between training and test data sets. That is, we try to make the training set and the test set to have similar observational
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Table 4
The average 2-norm relative error (8) of regression problems

Problem LIBSVM

Lee UD1 (21) UD2 (13)

Housing 0.1168 0.1206 ± 0.0041 0.1196 ± 0.0042
Comp-Activ_1000 0.0307 0.0317 ± 0.0002 0.0322 ± 0.0002
Kin-fh_1000 0.1403 0.1363 ± 0.0004 0.1365 ± 0.0004
Comp-Activ 0.0280 0.0284 ± 0.0001 0.0287 ± 0.0001
Kin-fh 0.1322 0.1319 ± 0.0001 0.1319 ± 0.0001

�-SSVR

Lee UD1 (21) UD2 (13)

Housing 0.1171 0.1158 ± 0.0026 0.1187 ± 0.0033
Comp-Activ_1000 0.0300 0.0317 ± 0.0002 0.0317 ± 0.0003
Kin-fh_1000 0.1385 0.1356 ± 0.0004 0.1358 ± 0.0003

RSVM

Lee UD1 (21) UD2 (13)

Housing N/A 0.1619 ± 0.0042 0.1632 ± 0.0047
Comp-Activ_1000 N/A 0.0339 ± 0.0007 0.0340 ± 0.0009
Kin-fh_1000 N/A 0.1357 ± 0.0003 0.1360 ± 0.0004
Comp-Activ 0.0299 0.0287 ± 0.0001 0.0289 ± 0.0002
Kin-fh 0.1319 0.1321 ± 0.0003 0.1321 ± 0.0003

The Lee column is the 2-norm relative error from Lee et al. (2005). The UD1 and UD2 columns are the average error ± standard deviation by 10
times repeated experiments of our model selection method. RSVM randomly selects 5% training set to form the reduced kernel. The number in
parentheses denotes the number of trial pairs.

Table 5
The average CPU time in second ± standard deviation by 10 times repeated experiments

Problem SSVM/�-SSVR RSVM

UD1(105) UD2(65) UD1(105) UD2(65)

Banana 0.348 ± 0.013 0.423 ± 0.020 0.005 ± 0.000 0.008 ± 0.001
Image 15.180 ± 0.213 45.670 ± 17.575 0.068 ± 0.001 0.069 ± 0.002
Splice 3.157 ± 0.091 2.998 ± 0.216 0.113 ± 0.002 0.119 ± 0.008
Waveform 0.217 ± 0.015 0.220 ± 0.017 0.007 ± 0.001 0.010 ± 0.001
Tree 1.579 ± 0.100 1.670 ± 0.042 0.016 ± 0.001 0.020 ± 0.001
Adult 15.149 ± 0.316 14.944 ± 0.073 0.264 ± 0.006 0.263 ± 0.008
Web 75.023 ± 2.937 72.098 ± 0.779 1.470 ± 0.032 1.498 ± 0.050

Housing 0.545 ± 0.015 0.562 ± 0.009 0.009 ± 0.000 0.009 ± 0.000
Comp-Activ_1000 2.779 ± 0.021 2.851 ± 0.029 0.036 ± 0.001 0.037 ± 0.001
Kin-fh_1000 2.610 ± 0.030 2.711 ± 0.026 0.040 ± 0.001 0.041 ± 0.001
Comp-Activ N/A N/A 8.609 ± 0.096 8.342 ± 0.129
Kin-fh N/A N/A 6.756 ± 0.167 6.946 ± 0.373

The number in parentheses denotes the number of SVM or SVR trainings in a single experiment for model selection with a 5-fold cross-validation.
RSVM randomly selects 5% training set to form the reduced kernel.

distributions. A smaller test error indicates a better prediction ability. We perform a 10-fold cross-validation on each
data set and report the average test error in Table 4.

In Lee et al., 2005, the reduced kernel approach has been used for solving the two large data sets: Comp-Activ and
Kin-fh. The term “N/A” in Table 4 indicates that there are no full kernel numerical results reported in Lee et al. (2005).
Their experiments have used a manual grid method with many trial pairs for parameters. However, the UD-based
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automatic model selection method can obtain comparable 2-norm relative errors for LIBSVM and �-SSVR in much
smaller numbers of trial pairs. The number of trial pairs is 21 in the UD1 method and 13 in the UD2. Moreover, the
UD-based model selection works well successful for �-SSVR with the reduced kernel.

In summary, our numerical experiments show that our method can find a good parameter combination in a small
number of trial pairs. It can be applied to different SVM packages such as SSVM, �-SSVR, RSVM and LIBSVM. The
small overall standard deviations shown in Tables 2 and 4 indicate the robustness of our method. We also report in
Table 5 the average CPU time for a single training run.

7. Conclusion and Future Work

We have developed a nested UD methodology for model selection in SVMs, which can find a good parameter
combination in an efficient and fully automatic way. We believe that this is a novel application of UD in computer
experiments. In practice, our proposed method can be combined with any SVM packages easily. Further research will
be applying the nested UD methodology to model selection problems involving more parameters, e.g., parameters in
polynomial kernels or the �-insensitivity in �-SVR. One advantage of using UDs, or nested UDs, over the grid search
is that, as the dimension increases, the grid search is getting less feasible.

However, the impact of dimensionality to UD is rather minor. UDs in high dimensional boxes can be looked up
in the UD-web. The UD-web has tabulated the UDs for dimensionality as high as 20–30. However, one should be
cautious for using high dimensional UDs. As the dimensionality increases, scattering points becomes sparse, and it is
true for UD points, too. Due to the efficient UD model selection, we are able to build a web-based data analysis system
that will allow users to upload their data sets via web browsers, and the system will return the resulting SVM trained
models with testing results to the users in a fully automatic way. The web-based data analysis system is available
at http://dmlab1.csie.ntust.edu.tw/WDAS. The automatic UD-based model selection is implemented in
MATLAB, named “hibiscus” in the SSVM toolbox available at: http://dmlab1.csie.ntust.edu.tw/
downloads/.
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