CHAPTER 4

REsPONSE SURFACE
METHODOLOGY Axp
Reratep Torics Deais .1, L

Department of Supply Chain & Information \Systems
The Pennsylvania State University
University Park, PA 16802-3005

STATISTICAL INFERENCE FOR RESPONSE
SURFACE OPTIMA

John J. Peterson

GlaxoSmithKline Pharmaceuticals, R&D
' 709 Swedeland Road
King of Prussia, PA 19406-0939
editor

André I_ Khuri This chapter is a review of research to date on statistical inference for
e ) response surface optima and related parameters. The need for such a
University of Florida, USA review stems from the fact that the majority of literature on response
surface optimization addresses only optimization of a fitted response
surface. However, replication of the experiment will not produce the
exact same response surface. As such, it is important to be able to
assign some measures of risk or regions of uncertainty to our response
surface optimizations. This chapter is an attempt to bring together and
review most of the research that has been done on statistical inference
for response surface optima and related parameters, such as the
eigenvalues of the symmetric matrix of regression coefficients for the
popular second-order polynomial model. This review will also include
a review of research done on statistical inference for multiple response
surfaces.

1. Introduction

Response surface methodology consists of a group of techniques used in
the empirical study of the relationship between the response and a
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number of input variables. Typically, the experimenter attempts to find
the optimal setting for the input variables that maximizes (or minimizes)
the predicted response. Suppose we have a set of data containing
observations on a variable y and k predictor variables &, &, ..., & A
response surface model is a mathematical model fitted to y as a function
of the &'s in order to provide a summary representation of the behavior
of the response, as the predictor variables are changed. This might be
done in order to (a) optimize the response (minimize a cost, maximize a

- percentage yield, or minimize an impurity, for example), (b) find what
regions of the &-space lead to a desirable product (viscosity within stated
bounds, transparency not worse than a standard, appropriate color
maintained, for example), or (¢) gain knowledge of the general form of
the underlying relationship with a view to describing options such as (a)
and (b) to customers. ’

When the mechanism that produced the data is either unknown or
poorly understood, so that the mathematical form of the true response
surface is unknown, an empirical model is often fit to the data. An
empirical model is usually linear in the parameters and often of
polynomial form, either in the basic predictor variables or in transformed
entities constructed from these basic predictors. The purpose of fitting
empirical models is to provide a smooth curve that will summarize the
data.

There is another useful type of model, however, the mechanistic
model. If knowledge of the underlying mechanism that produced the
data is available, it is sometimes possible to construct a model that
represents the mechanism reasonably well. A mechanistic model usually
contains fewer parameters, fits the data better, and extrapolates more
sensibly. (Polynomial models often extrapolate poorly.) However,
mechanistic models are often nonlinear in the parameters, and more
difficult to formulate, to fit, and to evaluate. For information on this
topic, see Bates and Watts' and Seber and Wilde®.

When little is known of the nature of the true underlying relationship,
the model fitted will usually be a polynomial in the &'s. The philosophy
applied here is that we are approximating the true but unknown surface
by low-order (equivalently: low degree) terms in its Taylor's series
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expansion. Most used in practice are polynomials of first and second
order. The first-order model is

yu=a0+al§1u+"'+a2§2u+"'+ak§ku+gu (1)

where, Vu, &1us. -5 &), u= 1,2, ..., n, are the available data, and where it
is usually tentatively assumed that the error term g, ~ N, &%), with
independent errors for each observation. Such assumptions should
always be carefully checked by examining the residuals (the differences
between observed and predicted values of y) for possible contradictory

patterns. The second-order model containing k(k+1)/2 additional terms
is:

Yu =g+ oGy + andoy, + + oy,
2 2 2
o187y + apadsy + 0 + i, )

+1281uSw + 013814830 1+ Ok 1 k1,4 + Ey -

Polynomial models of order higher than two are not typically used in
practice. (However, an exception occurs for mixture experiments where
3™ order models are common. See, for example, Cornell®). This is partly
because of the difficulty of interpreting the form of the fitted surface, and
partly because the region of interest is usually chosen small enough for a
first- or second-order model to be a reasonable choice. When a second-
order polynomial is not adequate, and often even when it is, the
possibility of making a simplifying transformation in y or in one or more
of the &'s would usually be explored before proceeding to higher order
polynomial. A more parsimonious representation involving fewer terms
is generally more desirable.

In actual applications, it is common practice to code the &'s via, x;=
(&—&o)ei, i=1,2,..., k, where & is some selected central value of the &
range to be explored, and c; is a selected scale factor. For example, if a
temperature (£=T) range of 150-170°C is to be covered using three
levels, 150, 160, 170°C, the coding x = (T - 160)/10 will code these levels

to x = ~1,0,1, respectively. The first- and second-order model would
then be recast respectively as
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y=PBo+Bx+..+ Prxp +¢ 3)

and

y=ﬂ0 +ﬂ1x1+...+ﬂkxk +,811x12+...+ﬁkkx]% (4)
+B12x1%p + -"'*':Bk——l,kxk-lxk +£.
However, it is often more useful to write the second-order model in

(4) in a more compact form using vector and matrix notation as shown in
the model in (5) below.

y=fy+x'f+xBx+¢, 5)

where x =(x,...%¢), B=(B....0) , and B is a kxk symmetric matrix
with diagonal elements equal to fB; (i = 1,..., k) and off-diagonal
elements equal to “afyy (i <j, j = 2,...k). This would usually be fitted
by least squares in the coded form. Substitution of the coding formulas
into (3) or (4) enables the o’s to be expressed in terms of the p's, if
desired.

This chapter is organized as follows. First we consider response
surface statistical inference for first-order models (3) by reviewing
work on confidence regions for the path of steepest ascent
(descent). Following this we consider quadratic models as in (5), and
more general models as well. We discuss statistical inference for
these models to address: the shape of the response surface in (5)
(including inference about the B matrix), optimal mean response
analysis (and in particular “ridge analysis”), a confidence region
for the optimizing x value, multiple comparisons for response
surface contrasts, and optima for multiple-response surfaces. We
conclude with a brief discussion of some recent research work
(with noise variables) and some considerations for future work

related to statistical inference for nonstandard response surface
models.
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2. Statistical Inference for the Path of Sieepest Ascent

For the first-order model as in (3), the path of steepest ascent (descent) is
the path which produces a maximum (minimum) response subject to
the constraint, x’x =7, as one increases r from zero onwards. More
generally, this is also called the ridge trace path for a first order
model. (In the next section we discuss the ridge trace path for a
second-order model.) From now on we consider only the path (i.c.
direction) of steepest ascent. The direction cosines for the true direction
of steepest ascent are given by &, =p,/ {B ﬁ}m .., k), where
B= (,6’1, ,B.) . Note that E(b;)) = 5 for each i, where y={gp"
and b, is the least squares estimator of the i-th regression coefficient. The
direction cosines can easily be converted into direction angles of steepest
ascent.

It is important to take into account sampling variation in assessing the
direction of the path of steepest ascent. This is because that the
estimated path is based on the regression coefficient estimates; and hence
the estimated path itself has sampling variation. This sampling variation
can lead to a confidence region for the underlying path based upon
the true regression coefficients, the f,'s (i = 1,...,k). The value of the
confidence region may be illustrated by plots, say in the case of two
or three variables. A graphical analysis may indicate the amount
of flexibility the practitioner has in experiments along the
path. Furthermore, the set of angles of directions formed by this
confidence region forms a confidence cone. The angles of directions
excluded by such cones can be helpful in avoiding sub-optimal directions
when an experimenter is trying to improve the mean responses for one
or more first-order response surfaces.

Box and Draper* show how to obtain a 100(1-)% confidence
region for the J&;'s as follows. Suppose there are & design
variables. The coefficients by, by, ..., b provide estimates of the relative
movement of variables along the path. For the first-order model, the true
path is defined by parameters S, f,..., [, Furthermore, E(b;) = S,
for i=1,...,k, and the true coefficients are proportional to the relative
movement along the path, which implies 8 = y5;, where the &,'s
represent the direction cosines of the path. In other words, &, &, ..., &
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are the constants which, if known, could be used to compute any
coordinates on the true path. Now, if we think of this relationship as a
regression model in which the ; are responses and the &, are the levels of
a single-predictor variables, then y is the “regression coefficient” of the
by, by, ..., by on the &, &, ..» & The required region is supplied by
those elements &, & ..., & which just fail to make the residual mean
square significant compared with Var(b;) = o} at some desired level
a. Here, the variance of each b, will be equal to some common value,
oy, say, if a two-level orthogonal design is used.

Another way to view this problem is to consider the confidence
region to be derived by inverting a hypothesis test about the direction
cosines. If Jjg, &y, ..., G are the specified direction cosines, which
equal the true dxrectlon cosines, then it follows that the null hypothesis,
Hy:B=75,, is true, where &, =(J,,...,, ) Hence the confidence
region for the true § value can be taken as the set of all J, values such
that H,: B =y, is not rejected at level @ That is (assuming a two-level
orthogonal design) for those J,'s which satisfy

1 N bi_}?é‘i ’
3 (6=79)

(k“l) i=1 SZ

where s} is an estimate of o} and v, is the number of degrees of
freedom on which this estimate s? is based. Here,

= Zb5/252 Zba

i=l

<F_,(k-Lv,)and 88 =1,

Because all the quantities in the foregoing inequality are known except
for the values of the &,'s , this expression defines a set of
acceptable &, 's , hence a confidence region for the direction of steepest
ascent. For details, see Box and Draper or Myers and
Montgomery’. Recently, Sztendur and Diamond® extend these results to

cover the cases of heterogeneous error variances, nonorthogonal designs,
and generalized linear models.

Statistical Inference for Response Surface Optima 71

3. Statistical Inference Related to the Shape of the Quadratic
Model

In process optimization, as the experimenter gets closer to a stationary
point he or she can expect to encounter some curvature of the underlying
response surface. As such, if one wants to have an adequate model in the
neighborhood of a stationary point one should consider a response
surface model with curvature. While we may not know the true
functional form of the response surface, a second-order model is often a
reasonable approximation about the neighborhood of a stationary
point. The second-order model, y = Po+x'B+xBx+¢e, can also be
thought of as a second-order Taylor series approximation to the true
response surface function.

The matrix B is important in that it contains information about the
curvature of the second-order response surface. If all of the eigenvalues
of B are positive (negative) then the stationary point of (5) corresponds
to a minimum (maximum). If some eigenvalues are positive while the
rest are negative, this corresponds to a saddle surface. If one or more
eigenvalues are zero then this corresponds to a line, plane, or hyperplane
of points that may form a rising ridge or a stationary ridge of points. If
all of the eigenvalues are nonpositive (nonnegative) with some equal to
zero, and there is a stationary point, then there will exist a line, plane, or
hyperplane of stationary points that are equivalent maximum (minimum)
points. This allows the experimenter some leeway with choosing factors
that may satisfy other desirable conditions such as those relating to
economic considerations. In any case, it is useful to be able to make
statistical inferences about the eigenvalues of B.

Box and Draper® stated without proof that for a rotatable design the
variances of the eigenvalues of B are approximately equal to the
variances of the estnnates of the £3;;, terms in the model. A proof of this
is outlined in Peterson” and also in Carter, Chinchilli, and Campbell’.
This fact allows one to construct approximate confidence intervals for
the eigenvalues of B when the design is rotatable or approximately
rotatable.

Carter, Chinchilli, Myers, and Campbellw created a confidence
interval for an eigenvalue of B for rotatable or nonrotatable
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designs. However, their method can be quite conservative and requires
solving the following two nonlinear programming problems

}:min 4 (B), max&-(B)}

BeC BeC

where 4; (B) is the i® eigenvalue of B and C is the usual elliptically-
shaped (normal-theory) confidence region for the elements of B.

Carter, Chinchilli, and Campbell’ sought less conservative confidence
intervals for the eigenvalues of B by using the delta-method. They did a
simulation study to show that their method works well for most designs
occurring in practice, whether they are rotatable or nonrotatable,

Peterson® showed how to compute a confidence interval for the
maximum (or minimum) eigenvalue of B as a byproduct of a ridge
analysis methodology (which will be discussed later on in this
chapter). This method is also applicable whether or not the design is
rotatable. Bisgaard and Ankenman'' provide a "double linear regression"
method to compute the variances of the eigenvalues of B and use them
to get approximate confidence intervals. They then show that this
approach is equivalent to the delta method of Carter, Chinchilli, and
Campbell’ but it can be done Just using a standard statistical package that
does regression analysis. However, a transformation of the design matrix
using matrix multiplication is also needed. Ankenman'? extends the
approach of Bisgaard and Ankenman'' to construct a hypothesis test to
identify rising ridge behavior in a quadratic response surface. Here, one
or more of the eigenvalues are zero and no stationary point exists. A
simple example of such a quadratic response surface model with a rising
ridge is a two-factor model with £5 = £y, =0 and 3, #0.

4. Statistical Inference for the Optimal Mean Response

Even if statistical inference for the eigenvalues of B gives the
experimenter a good idea of the shape of the response surface, further
exploratory work may need to be done to understand how the response
surface changes in an optimal fashion as operating conditions depart
from the center of the design space. A graphical and analytical method
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for making such an assessment is ridge analysis. The idea of ridge
analysis was introduced by Hoerl"'* and given a more mathematical
analysis by Draper®. .

In standard ridge analysis ‘we maximize (or minimize) the mean
response on circles, spheres, or hyperspheres centered at the center of the
design space. If j(x) is the predicted mean response, then a ridge
analysis (involving maximization) solves the following optimization
problems for various radius values, r,

ﬁ(x,)= max ﬁ(x) ,

x'x=rt

where x, is the value of x that maximizes jz(x) on x'x = r*. The results
of a ridge analysis are displayed on two plots. One plot is the "optimal
response plot" which is a plot of 7(x,) vs. r, while the other plot is
called the "optimal coordinate plot", which is an overlay plot of
X VS.7 (i=1,...,k), where x, =(xy,,..., Xj, )’. Below in Figure 1 is the
optimal response plot for a five factor response surface constructed from
the data in example 11-5 in Box and Draper®. The corresponding
optimal coordinate plot is given in Figure 2. In this example, the goal
is to increase the percentage yield of a chemical process.

Predicted Mean Response

0 0.5 1 1.5 2 25 3 3.5
Radius

Fig. 1. The optimal mean response plot for the ridge analysis of the five-factor response
surface example.
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Fig. 2. The optimal coordinate plot for the ridge analysis of the five factor response
surface example.

From Figure 1, we see that going out a distance of 2.5 to 3 from the
center of the design space appears to maximize the mean yield of the
chemical process. From Figure 2, we see that the corresponding process
factors change in a smooth linear fashion. This is a nice example of the
power of ridge analysis to capture the important aspects of a response
surface optimization problem where the entire response surface itself
cannot be easily plotted as we have more than two x-factors.

The optimal response plot allows the experimenter to see how the
mean response changes in an optimal fashion regardless of the number
of factors. Likewise, the optimal coordinate plot allows the experimenter
to see how the factors change in an optimal fashion as we leave the
center of the design space. Hence ridge analysis becomes increasingly
important, and contour plots less interpretable, as the number of
factors increase. Hoerl'® gives a nice overview of classical ridge
analysis. Extensions of ridge analysis to mixture experiments have been
given by Hoerl'”, Peterson®, and Draper and Pukelsheim'®!. Draper®
established conditions to find the appropriate Lagrange multiplier value
needed to compute y(x,) for each value of r. See Westlake?® and
Fan® for some discussion of the numerical analysis aspects. Khuri and
Myers? introduce a modification of ridge analysis that takes into
consideration the variance of the estimated response, y . Paul and
Khuri® extend this modification to weighted least squares regression and
to generalized linear models.
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Carter Chinchilli, Myers and Campbell'® first proposed a confidence
band for the underlying optimal response trace, y(x) vs. r, in ridge
analysis. This provides the investigator with a "guidance band" to help
with making decisions about how far from the center of the design the

- new operating conditions should be set. Peterson® improved upon this

approach and in doing so generalized the statistical model to the form
y=z(x)’0+5 , 6)

where z is a general function of the vector of factors, x. The more
general model in (6) is useful for modeling response surfaces that are
not symmetric about their stationary point (such as cubic models)
or in modeling some of the more exotic response surface functions
useful in mixture experiments’. Peterson, Cahya, and del Castillo®
propose an informal bootstrap approach for graphically assessing the
uncertainty in a quadratic model ridge analysis with regard to both the
optimal response and optimal coordinate plots. Their approach is
particularly useful when there are more than three or four
factors. Peterson, Cahya, and del Castillo®® use example 11-5 of Box
and Draper® to illustrate their proposed approach.

If it appears that the factor levels corresponding to the overall
optimal response are well within the experimental region, then one may
decide not to do a ridge analysis but to make a statistical inference
about the global optimal response. Let 77(9) represent the maximum of
the response surface function in (5), where @ is the vector of all of
the regression coefficients. Carter, W. H., Chinchilli, V. M., Campbell,
E. D., and Wampler, G. L.”, proposed a conservative approach to this
problem where finding the confidence interval endpoints for 77(9)
involves minimizing and maximizing 77(9) over the confidence region
for @ Unfortunately, this approach can become very conservative if
the dimension of @ is not small.

Using a general, differentiable response surface form, f (x;H),
Peterson”® constructs a large-sample (delta method) confidence interval
for the maximum of f (x; 6) , where the maximum can be unconstrained
or subject to a differentiable equality constraint, such as x'x=r?.
Chinchilli, Carter, Breen, and Campbell”’ propose a delta method
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confidence interval for the maximum of the unconstrained quadratic
form in (5); however, their method can be viewed as a special case of the
confidence interval given by Peterson?. Chinchilli Carter, Breen, and
Campbell”’ provide a small simulation study that indicates that about ten
replications of a 3% design provides close to nominal coverage.

5. A Confidence Region for the Optimizing Factor Levels

In addition to having a confidence interval for the optimal mean
response, it is useful to have a confidence region for the factor levels
associated with the optimal point. Box and Hunter”® (hereafter referred
to as BH) proposed a confidence region for the stationary point of a
response surface for the quadratic model in (5). However, they point out
that their methodology can be applied to the more general parametrically
linear model in (6). Unfortunately, for the more general model in (6) it
can be difficult to characterize which stationary points are global optimal
points. For the quadratic model, one can use the statistical inferences
about the eigenvalues of B to provide evidence as to whether the
response surface is convex, concave, or a saddle surface. Even here,
however, one must be cautious as shown by Peterson, Cahya, and del
Castillo” (hereafter referred to as PCD). They provide an example from
Box and Draper® where a 90% confidence interval for the maximum
eigenvalue of B indicates that it is negative, thereby indicating that B is
negative definite (n.d.). A B that is n.d. corresponds to a concave
response surface with a unique stationary point that is the global
maximum. However, the associated 90% BH confidence region looks
rather odd, being unbounded and split into two disjoint regions. PCD
provide a theorem which helps explain why this can happen with the BH
confidence region.

Sometimes the global response surface optimum may be outside of
the region of admissible experimentation, and as such, one may desire a
confidence region for constrained optimal factor levels. Stablein, Carter,
and Wampler’® (hereafter referred to as SCW) proposed a modification
of the BH confidence region by using a Lagrange multiplier to model a
constrained optimum. Bockenholt* extends the work of SCW to address
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the situation where it is reasonable to have a common optimal x-point in
a multiple response surface experiment.

PCD propose a methodology for finding a confidence region for
optimal factor levels that can be used for constrained or unconstrained
situations, and can be used with the more general response surface model
in (6). In addition, the constraint region can be completely general and
involve equality or inequality constraints. The approach of PCD avoids
Lagrange multipliers and is focused on global optimal points, not
stationary points. Cahya, del Castillo, and Peterson’? provide an
algorithm that improves the computational speed and accuracy of the of
PCD method. For the x'x =7* constraint in ridge analysis, Gilmour and
Draper™ propose a clever modification of the confidence region of SCW
that appears to be conservative, although they do not provide a proof that
their approach guarantees at least nominal coverage. Gilmour and
Draper®® prefer a somewhat conservative version of the SCW confidence
region to compensate for the fact that the SCW confidence region is
approximate.

A MatLab® program for executing the algorithm in Cahya, del
Castillo, and Peterson® is available for free download at:
http://Www.ie.psu.edu/researchlabs/Engineeringstatistics/software.htm.
The computer code of a Maple™ program called BH.mws for computing
the BH confidence region is also available at the same address as
above. This program is discussed in del Castillo and Cahya*.

6. Multiple Comparison for Response Surface Contrasts

One area of statistical inference for response surface models that
has received only modest attention is multiple comparisons. Sa and
Edwards® introduced some special-case solutions for the "multiple
comparisons with a control" (MCC) problem applied to quadratic
response surfaces. Here statistical inference centers on the function,

§(x)=E(Y|x)-E(Y|x=0),

where x = 0 is considered a combination of factor levels associated with
a control. If the optimization goal is maximization, it is desired to find
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simultaneous lower confidence bounds for & (x) . Such sets are typically
displayed to show a region of x-points where & (x) > 0 with
simultaneous confidence. Sa and Edwards®® achieve this using existing
regression methodology applied to response surface models. Sa and
Edwards® consider the quadratic regression model in (4) and obtain an
exact result for k£ = 1. They obtain a conservative solution for rotatable
designs using a quadratic model.

Later, Merchant, McCann, and Edwards®® improved upon this method
by providing improved bounds for more widely applicable designs. Both
of these solutions employ sophisticated probability inequalities to obtain
the necessary critical values. However, the general Monte Carlo
approaches discussed in Hsu’’ can also be used to compute MCC
intervals. This approach is easy to understand and widely applicable for
the parametrically linear response surface model, as in (4). A somewhat
related problem has been discussed by Gilmour and Mead?®.

Moore and Sa* introduced "multiple comparisons with the best"

(MCB) in response surface methodology. For MCB, they are considering
instead the function,

5(x)=E(Y1xO)—-E(Y}.x),

where X corresponds to a stationary point of a quadratic response
surface model. They assume that the stationary point for their model is a
global optimum. They apply two different approaches, the delta method
and an F-projection approach. Their delta method approach can be
easily derived as a straightforward consequence of Peterson®®. Both their
delta method and their F-projection approaches use the Scheffe' critical
value, which is very conservative. Using the delta method and the
approach of Merchant, McCann, and Edwards®, Miller and Sa* improve
upon the methods of Moore and Sa* by obtaining approximate but much
less conservative results. These MCB problems may have an intimate
connection with the confidence region of PCD since their confidence
region is composed of the x-points for which the estimated optimal point
is not statistically significantly better. A special set of multiple
comparisons useful for combination-drug response surfaces has been
proposed by Hung*. These simultaneous confidence intervals identify
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treatment combinations that give better responses than either respective
treatment component given alone. However, the methods in Hsu?’ can

be used as well to compute these simultaneous confidence intervals, but
in a less conservative manner.

7. Statistical Inference for Multiple-Response Surfaces

Statistical inference dealing with multiple response surface optimization
has received more attention in recently. Overviews of multiple response
surface methodology can be found in the books by Khuri and Cornell*?
and Myers and Montgomery’. The standard regression model for

multiple response surface modelling is the classical multivariate multiple
regression model,

Y=Bz(x)+¢, )

where Y is a gx1 vector of g response types, B is now a gXp matrix of
regression coefficients and z(x) is a px1 vector-valued function of x. The
vector £ has a multivariate normal distribution with mean vector 0 and
variance-covariance matrix, 5. Typically in response surface analysis,
the model in (7) takes the form of ¢ quadratic models for each mean
response.

The methods used most often for optimizing multiple response
surfaces are "overlapping contour plots" and "desirability functions".
The overlapping contour plot approach simply finds x-points associated
with estimated mean response values that satisfy some simultaneous
(desirable) set of conditions, C, such as a set of x-points corresponding to
yeC, where § = Bz(x) and B is the least squares estimate of B.

A desirability function, D(3), is typically a (weighted) geometric
mean of ¢ individual desirability functions, d;(j;), one for each
element, j; of j. Each d;(7;) function is scaled to be between 0 and
1, with 0 indicating unacceptable quality and 1 indicating optimal quality
with regard to the response associated with ¥i . Since D( j}) is a
geometric mean of the d;(;)'s, it can only be close to 1 if all of the
di(5;)'s are. Likewise, D(y) will be small if any of the d; ( $i)'s are
sufficiently close to zero. One then seeks to find values of x to maximize
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D( _fz) . For other approaches to desirability functions, see for example,
Kim and Lin* and Kim and Lin*,

Cahya, del Castillo, and Peterson*’ have proposed a large sample
approach to a confidence region for the optimal factor levels, x,, for a
desirability function. Here, they take a log or logit transformation of the
desirability function to obtain a function, g(B;x), of the regression
model parameters in (7) and the factor levels, x. They then approximate
g(B;x) by a first-order Taylor series about B and apply the
methodology of Peterson, Cahya, and del Castillo® to obtain the
confidence region for x, .

Using the model in (7), Ding, Lin, and Peterson*® have constructed a
large-sample confidence band about an optimal ridge trace for a

desirability function. The optimal ridge trace here is defined as the
function

n(B;r)= max g(B;x), ®)

xx=r’

where g(B;x) is defined using a logistic transformation of the overall
desirability ~function. They conmstruct 100(1-&)% asymptotic
simultaneous confidence intervals for n(B;r) for various values of the
radius, r. Two versions of these simultaneous confidence intervals are
obtained, respectively, by means of two different critical values. One
critical value obtained using the Bonferroni adjustment is, z_,,, , where
Zg124 18 the standard normal distribution percentile corresponding to the
a/2h upper-tail-area and /s is the number of radius values
(i.e. intervals) used. The other critical value used is 7. (2) This is
the asymptotic limit of the critical value used in Peterson® which was
2F_,(2,0), where v is the degrees of freedom associated with tests
about the regression coefficients. Peterson's simulations had showed
that 2F_,(2,0) can be a good approximate critical value for a
confidence band about a ridge trace for a univariate mean response
surface. A simulation based upon parameter estimates from a realistic
data set show that both critical values give good coverage with the
Bonferroni adjustment being somewhat conservative and the pn (2)
critical value being close to the nominal 95% coverage rate. However,
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more simulation work needs to be done here to examine more examples
and to see how small the sample sizes can be and still provide reasonable
asymptotic results. o

For the standard multivariate multiple regression model, Peterson®’
has proposed a. Bayesian approach to multiple response surface
optimization that uses a posterior predictive distribution to compute the
probability that a vector of responses, ¥, lies in a desired region, 4. This
approach can also be easily modified to compute the posterior reliability
that a desirability, D(Y), or quadratic loss function, Q(¥), will be within
a desired range. In addition, a modification is possible to compute a
Bayesian credible region for the factor levels that correspond to a good
Bayesian reliability. Peterson” finds values of x to maximize the
posterior probabilities,

Pr(Y e d|x), _pr(D(Y)ZD*;x), or r(Q(¥)<0" %), ©

where 4, D*, or Q* are associated with desirable values specified by the
experimenter. He shows that such posterior probabilities can be
noticeably less than one might expect. This is due in part to the fact that
the events within the probability measures in (9) may require the
individual response-elements of ¥ to be within a small region of the joint

distribution of Y. The probabilities in (9) can also reduced noticeably

due to model parameter uncertainty, for which the Bayesian approach
takes account. Such reduction is more noticeable for small sample sizes.
A few extensions to Peterson*’ have been recently proposed. Mir6-
Quesada, del Castillo, and Peterson® have proposed a modification of
Peterson*’ to include noise variables (see section 8). Peterson, Mird-
Quesada, and del Castillo* have proposed a generalization of Peterson®’
to address seemingly unrelated regression models™ and #-distribution, as
well as normal distribution, error terms. Here they use Gibbs Sampling™'
to simulate the necessary posterior predictive distributions. Rajagopal
and del Castillo®® have proposed a modification to assess the uncertainty
of the model form itself using "Bayesian model averaging"'®. Rajagopal,
del Castillo, and Peterson®® extend this further with the incorporation of
noise variables and #-distributed residual errors into the Bayesian model-
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averaging framework. A further extension worth considering involves
constructing a posterior predictive distribution for the multiple response
~ surface model proposed by Chiao and Hamada® . Their model is nice in
that it allows the variance-covariance matrix of the residual error vector
to be a function of the covariates. However, it appears that some
sophisticated Markov Chain Monte Carlo work would be needed to
enable one to sample from the posterior predictive distributions.

8. Recent Results and Some Future Directions for Research

We wrap up this chapter with a discussion of some more recent work and
possible future directions on statistical inference for response surface
optima. Some recent work with regard to statistical inference for
response surface optima involves modeling some of the factors as noise
variables. A noise variable is a factor that cannot be completely
controlled when the process is in actual operation, even though it can be
controlled in an experimental setting. For example, this might involve
the baking temperature of a food product that is cooked in a consumer's
oven.

The quadratic response surface model often used for incorporating
noise variables with controllable factors was initially proposed by Box
and Jones™, and appears in well-known response surface texts by Myers
and Montgomery’ and Khuri and Cornell*?. It has the form

Y=pF+Bx+xBx+yz+x'dz+¢, (10

where x is a kx1 vector of control factors, z is an /X1 vector of noise
variables, and £ is a random normal error term with mean zero and
variance o . The parameters £ and B ‘are as defined in %),
7=(y1,...,;/1)' , and A is a kx/ matrix composed of elements i
(i=1,..., kj=1,...0). In the model in (10), it is assumed that the noise
variables have a multivariate normal distribution, and have been scaled
so that they have a mean vector equal to 0 and a variance-covariance
matrix equal to o2 £2. It is also often assumed that o> and £2are known,
based upon experience with the noise factors.*®
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In the presence of random noise variables, z, we wish to do robust
optimization, that is we wish to find factor levels of x (the controllable
factors) that minimize the "loss function” of the mean square error of the
predictive model about a target value, 7, i.e. minimize

MSE (x) = E,[m(x,z;¢) - T T, (1)

where m(x,z;¢) 1s the predictive mean model conditional on z. Here,
m(x,z;4) is given by the first five terms in the model in (10). In (11)

- the expectation is done with respect to z, and @ is the vector of all of the

regression coefficient parameters in (10).

Statistical inference for response surface optima involving noise
variables was first introduced by Kuhn®’. This Kuhn modified the
confidence region approach of SCW to consider a noise variable
situation where one desires to minimize the variance of a response when
the mean is subject to an equality constraint. It is important to point out
that this problem has two sources of variability: the random replication
error and the error due to the noise variables. It is the goal of robust
process optimization to find controllable factor levels such that they
minimize the influence of the noise variables on the variability of the
response. This is possible if the some of the noise variables in the
response surface regression model appear in interaction terms with some
of the controllable factors’,

Peterson and Kuhn®® (hereafter referred to as PK) have introduced an
approach to ridge analysis that allows the experimenter to incorporate
noise variables into his/her analysis. Instead of doing a ridge analysis on
the predicted mean response, j)(x) , PK propose minimizing the mean
square about a target value in (11) subject to constraints of the
form, x'x = r%. PK also provide a method to compute a confidence band
about the optimal ridge trace. They also provide a modification of their
approach to handle "larger the better" (LTB) and "smaller the better”
(STB) optimization problems. This is done by replacing the target, 7, in
(11) by an estimate of a maximum or minimum, respectively, over the
experimental region. It is also possible to adapt the approach of PK to
the dual response surface optimization problem as posed by Lin and
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Tu”. Here, the mean is as in (4) or (5), but the standard deviation of the
residual error is a parametrically linear model in the factors as well.

One computational issue with the ridge analysis approaches of
Peterson® and PK is that if the number of factors is not small, then
some kind of efficient global optimization procedure is needed to do the
ridge analysis and to compute the confidence band about the optimal
ridge trace. It has been suggested by Peterson® and PK that a global
optimization algorithm may be a useful for doing the necessary
computations. Therefore it is interesting to consider if a genetic
algorithm® might be an efficient way to do the computations when the
experimenter has, say, more than three or four (controllable) factors.

These ridge analysis procedures involve maximizing nonlinear
functions of the factors. For each r, these functions may have several
local optima on the constraint set, S ={x:x'x =r?{. Forx = (xl,...,xk )' ,
the spherical constraint set, S, can be transformed into a (k1)
dimensional rectangle by the use of polar coordinates. Here, x = r(a),
where a is a (k-1)x1 vector of (radian) angles in the set

A={a:—-§~<ai Sg—(i=1,...,k~2), -7 < ap_1 Sﬂ'}

The form of the vector-valued function, ¢, can be found in Peterson®
((A.1)-(A.3)). Using this polar coordinate transformation, optimizations
can now be done over 4 for various fixed values of . Using genetic
algorithms applied to the functions of angles on 4, it may be possible
to have reasonably large values of k¥ when doing the necessary
optimizations. But future work is needed to assess this computational
approach to ridge analysis.

An additional area for future research work deals with the issue of
obtaining reliable inferences with nonstandard regression models. Based
on the empirical work of Lewis, Montgomery, and Myers®, PCD have
suggested that their confidence region method for the optimal x-point
ought to work reasonably well for generalized linear models but the
simulation work still needs to be done. Likewise, one could ask if some
of the methodologies above could be adapted to rank-based regression®
or nonparametric regression®. It would not be surprising to be able to
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make such adaptations successful with large sample sizes, but the real
challenge would be to see how small the experimental designs could be
and still provide useful inferences about response surface optima.
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