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Abstract: In this paper, we review multivariate control charts designed for monitoring changes in a
covariance matrix that have been developed in the last 15 years. The focus is on control charts developed
for multivariate normal processes, assuming that independent subgroups of observations or independent
individual observations are sampled as process monitoring proceeds. Control charts developed between
1990 and 2005 are reviewed according to the types of the control chart: multivariate Shewhart chart,
multivariate CUSUM chart and multivariate EWMA chart. In addition to these developments, a new
multivariate EWMA control chart is proposed. We also discuss comparisons of chart performance that
have been carried out in the literature, as well as the issue of diagnostics. Some potential future research

ideas are also given.
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1. Introduction

In the last two decades, there has been an increasing research interest in multivariate
quality control, which is evidenced by the large number of papers published in statistical
and quality journals. The recent development is certainly welcoming since in many
industrial applications the quality of a product can be attributed to several correlated
quality characteristics, all of which need to be controlled and monitored simultaneously.
For example, in a process in wafer manufacturing called chemical mechanical planarization
(CMP), the quality of a polished wafer depends on several correlated variables. Another
indication of the growing popularity of these methods in industry is the availability of
some of these quality control tools in widely-used commercial software packages such as
Minitab. Numerous authors have pointed out that multivariate quality control, especially
application of multivariate control charts, is an important area of research for the new
century (see, for example, Woodall and Montgomery [35], Stoumbos et al. [27] and
Woodall [34]). With newly developed advanced data acquisition techniques, computing
power and commercial software, multivariate quality control will play a greater role in

monitoring and improving manufacturing processes.

The majority of the research in the last 20 years focuses on developing multivariate
control charts for monitoring shifts in process mean. Excellent reviews of these
developments can be found in, for example, Wierda [33], Lowry and Montgomery [21],
Mason et al. [25], and Montgomery [26]. Although these reviews also contain discussions
on multivariate control charts for monitoring changes in a covariance matrix, the main
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coverage is limited to developments that have occurred prior to 1990, such as those found
in Alt [1], Alt and Bedewi [2], Healy [14], and Alt and Smith [3]. Since 1990, numerous
papers have been published which specifically discuss multivariate control charts for
monitoring the covariance matrix. The main purpose of this paper is to give an updated
review of these developments from 1990 to 2005. Our review focuses on control charts
developed specifically for multivariate normal processes, assuming that independent
subgroups of observations or independent individual observations are repeatedly sampled
as process monitoring proceeds. In addition, the focus is also on control charts designed for
Phase II process monitoring. For discussions of control charts designed for Phase I process
control, see, for example, Alt [1], Wierda [33], Mason et al. [25], Sullivan and Woodall [29]

and Vargas [32].

To give a consistent treatment of the many multivariate control charts that will be
discussed in subsequent sections, some definitions and notation are first introduced. Let
X =(X},X,,..,X,) denote the random variable that represents p correlated quality
characteristics derived from a manufacturing process whose quality is to be monitored.
When the process is in control, it is assumed that X follows a p-dimensional normal
distribution, denoted by N ,(x,Z,), where is the in-control process mean and X, is
the in-control process covariance matrix. On the other hand, when the process is out of
control, it is assumed that X follows N,(u,Z), where either p#py or Z#%, or both.
if u, and T, are not known, it is assumed that at the end of Phase I, k¥ samples, each
with size #, are available for estimating the parameters. From these £ training samples,
X=Y* X/k and S=Y},S,/k can easily be computed which can be used to estimate
4, and X,, respectively. Here x,=%7,X,/n and S;=3%7,(X; - X)X, - x)/(n-1)
denote, respectively, the sample mean vector and sample covariance matrix of the ith
training sample, i = 1, 2, ..., k. When the Phase II process monitoring begins, depending
on the methodologies, either independent samples, each with size n, are taken or
independent individual (# = 1) observations are drawn. For the former, these »
observations are denoted by X,,X,,,...X,,, t=12,., and the corresponding sample
mean and sample covariance matrix are denoted by x,=37,X,/n and
Sy =X, - X (X, ~x,)/(n-1) , respectively. As for the Ilatter, the individual
observations will simply be denoted by X, .

The review will be done based on the types of chart being discussed. The types of
chart include multivariate Shewhart, multivariate CUSUM and multivariate EWMA
control charts. Specifically, Part I will review numerous multivariate Shewhart charts:
Guerrero-Cusumano [9] in Section 2, Tang and Barnett [30, 31] in Section 3, Levinson et al.
[19] in Section 4, Yeh and Lin [39] in Section 5, and Khoo and Quah [18] in Section 6. Part
II will review two multivariate CUSUM charts: Hawkins [11, 13], Yeh et al. [38], Yeh et al.
[37] and Huwang et al. [15] in Section 7, and Chan and Zhang [7] in Section 8. Part III will
review a number of multivariate EWMA charts: Hawkins [11, 13], Yeh ef al. [38], Yeh et al.
[37] and Huwang et al. [15] in Section 9, Yeh et al. [40] in Section 10, Yeh ef al. [38] in
Section 11, Yeh et al. [37] in Section 12, and Huwang ef al. [15] in Section 13. In Section
14, a new multivariate EWMA control chart is proposed. The new chart is essentially based
on the EWMA of the determinants of the sample covariance matrices. Part IV will then
discuss chart performance comparisons that have been carried out in the literature (Section
15), as well as the issue of diagnostics (Section 16). The performance is defined in terms of
the average run length (ARL) of a control chart, where the run length is defined as the
number of samples needed before an out-of-control signal is first detected on a control
chart. Finally, in Section 17 a summary and discussion are given with suggestions of
potential problems for future research.
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PART I: MULTIVARIATE SHEWHART CONTROL CHARTS
2. A Control Chart Based on Conditional Entropy

The entropy of a random vector X may be regarded as a descriptive quantity which
measures the extent to which the probability distribution is concentrated on a few points or
dispersed over many points. Therefore, the entropy is a measure of dispersion, similar to
standard deviation in the univariate case. For a p-dimensional multivariate random

variable X , the entropy of X is defined as
H(x)=]f(x) Inf(x)dzx = E;[~Inf(x)],

where f(x) isthe density functionof X .If X follows N ,(#,,%,) , then the entropy is
given by

H(x)zé—pln(Zﬂe)-k;:lano [

where | A| denotes the determinant of a matrix A . Guerrero-Cusumano [9] suggested
that the following alternative expression of H(x) be considered:

H(x) =—;—p In(27e) +—;2ln A +?1):ln | B, |

= -;jp In(2re)+ —;—Z;”:l ln(o’izo) -T(x)

where P, =X, 5,37 is the correlation matrix, X, =diag(c;) with o4, 1=12,..,p,
being the in-control standard deviation for the 7th component of X . The function T'(x)
is called the mutual information of the random variable X . Estimating o, by the
sample variance for 7th component sf, thus obtaining H(x), and measuring the
difference between sample and theoretical entropy, the author proposed the following
statistic E for each of the samples taken when the monitoring begins:

2
Ee P sr (5. )
2p T

The statistic E is distributed asymptotically as a univariate standard normal
distribution, denoted by N(0,1). The upper control limit (UCL) and the lower control
limit (LCL) of the conditional entropy chart be calculated by

— ~1. ] -
UCL = gp G'(n21)~1n(n2 ) +zaf2k\/pG”(%l)+

2 0 trace(Fy, — 1 ¥, 2)

n—1 n—1_]1 , =1
LCL=gp| G'( ) — In( ) _Zafzk\/PG (“2—‘)+

2 . trace(Fy — Nk, 3)

2 2

where g=2(n-1/p)"?, G'() and G'() are, respectively, the first and second derivative
of the natural logarithm of the gamma function, trace(A) is the trace of a matrix 4, and
z, is the 1-a quantile of N (0,1). Note that in the conditional entropy chart, Z, is
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assumed known and that #> p to ensure that sample covariance matrix has full rank.

3. A Control Chart Based on the Decomposition of S,

Tang and Barnett [30, 31] proposed a multivariate Shewhart chart that is based on
decomposing S, into a sum of a series of independent y? statistics. Assuming that Z
is known, define S;(X;) and S,,(Z,,) respectively as the sample (population) covariance
matrix of the first j variables and of the last £ variables. The sample covariance matrix
can be partitioned into (for simplicity of the discussion, we will drop the subscript ¢ in

this section):

S= S : S(j-l)X(p—fH)J
=| ,
G=Dx(p~j+1) Sepjol
where S, 1) p-jety = (S 1158 111 1o 1) and S, ; represents the row vector of sample

covariances between the £ th Vanable and each of the first j variables. Note that X, can
similarly be partitioned by replacing sample statistics with the corresponding populatlon
parameters. Further define the conditional sample variance of the jth variable given the

first j—1 variables as

g =S =S8 SIS,

Sj~1,2,...,j—~1 b J
(o2 =0} =%, SN, )
F 12,51 S g-1=i-174,i-17
In addition, the conditional sample covariance matrix of the last p—;j+1 variables
given the first j—1 variables can be expressed as
_ ' -1
Sj,j+1m,p'1,2,~-,j—1 - S*.v~j+l B S(f—l)X(p~j+1)Sj-lS(f—l)X(p—jH)

' ~1
G 411200t = Zapmjit = Zityetpmjiy Z 12ty jet)) -

Also let d; (6,), j = 2,3, .., p, denote the vector of sample (population)
regression coefficients when each of the last p-j+1 variables is regressed on the
(- 1) th variable while the first j-2 variables are held fixed. The d; can be expressed

as

d. = {S(j—l)x(p—j-H) - /,’-lj 2 —2( +1; 2 j- 2)}

J 2 '
Sjp TV 1,-25 2S j-1,j-2

4

and likewise ¢, can similarly be expressed by replacing sample statistics with population
parameters. Note that d, (6, ) should be interpreted as the vector of unconditional sample
(population) regression coefficients when each of the last p—1 variables is regressed on
the first variable.

As each sample of 7 observations is drawn, one calculates

=372, @

where



Maultivariate Control Charts 419

—1s?
Zl = @Ml Zi,l{(n 2)51 }})
o2

1

ijib"l ¥

J
012,71

2
s |(m=Dsj2 1 .
[ — ”’for J =23 P,

and

.....

Note that o1 {} is the inverse of the distribution function of N(0,1) and
22[x]=P(x? <x) is the distribution function of a y* distribution with v degrees of
freedom. ‘

When the process is in control, Z,’s are independent and identically distributed (i.i.d.)
as N(0,1), and therefore T is distributed as xzzp_l‘. Thus the control chart can be
established by plotting T ’s against sampling sequence and an out-of-control signal is
detected as soon as 7' exceeds UCL which can be determined from ;(zzp_l . Note that the
decomposition is not unique since it depends on how the p variables are arranged. It was
suggested that the p variables be arranged in decreasing order of importance from 1 to p.
Furthermore, u, and X, are assumed known and it is required that n> p.

The authors also discussed possible extensions of T’ statistics to cases when (i) Z, is
unknown and can be estimated by S and (ii)) 1<n<p when § may not be of full rank.
In the case when X, is unknown, one essentially replaces population parameters in Z,
by their counterparts in S . In the case when 1<n<p, one first transforms S to a matrix
of reduced dimension W by W = ASA, where A4 is a full rank (n-1)xp matrix of
constants. The same methods of decomposing and combining independent statistics can be

appliedto W .

4. A Control Chart Based on Testing H,:2=2,

By treating the problem as testing H,:X=X, vs. H, :IZ#Z,based on two
independent samples, one being the training samples and the other being the repeatedly
drawn independent samples when monitoring begins, Levinson et al. [19] proposed the

following statistic, for £>1,

mM, = m| (k+ 1)~ Din| S, | k(= Din| S |~(n = Din] S, 1], )

1 1 1 2p” +3p-1
where mzl"[k(nwl)+(n-1)*(k+1)(n-1)}x{ 6(p+1) J
and
_kn-1S+(n-1)S,
P (k+D)(n-1)

When the process is in control (i.e, £=2,), the distribution of mM, follows
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P 2(p+1ys2 - Lherefore, the UCL and LCL can be determined based on Z,,( »+1y/2 - Note that in
this chart, ¥, need not be known, since it is estimated by S . Furthermore, it is assumed
that n>p to ensure that S, has full rank.

5. A Control Chart Based on Probability Integral Transformation

In an effort to develop a single multivariate control chart to simultaneously monitor
changes in the process mean and covariance matrix, Yeh and Lin [39] proposed using the
probability integral transformation to transform different statistics into the same random
variable. Thus, different statistics can be combined and plotted on a single control chart.
The part that deals with covariance matrix can be written as, for #>1,

E(n—-1)—k+1—i DS,
; —P[HFH <R ’>x|',§’(’n_1)§'|). ©

Here F,_ | 4n-n-ts1; denotes an F distribution with n-1-i and k(n-1)
—-k+1-17 degrees of freedom, and the p F -distributions in the product are independent.
For each sample of size n, the v, is the probability that the random variable
121 F,oioi e (n-1)-ts1- 1S less than or equal to the observed

Rp=D—k+l-iy |(1-DS,]
n—1-i |k(n-1)S|

(IT%

When the process is in-control, v,’s are a sequence of i.i.d. U(0,1)random variables.
Therefore, the control limits can be set up based on U(0,1). For example, for comparable
3o limits, UCL and LCL can be set to equal to .99865 and .00135, respectively.

6. A Control Chart Based on Individual Observations

Assuming that X, is known and applying an idea from univariate moving range
charts, Khoo and Quah (2003) proposed the following statistic, for #>1,

r+1 - ( t+1 Xt )'ZBI(XM "Xt) : (7)
When the process is in-control, the dlstrlbutlon of M, followsa ;( so that the UCL and
LCL can readily be obtained from ;(p Note that thlS chart is spec1ﬁcally designed for

n=1. However, the M, ’s are not independent.

PART II: MULTIVARIATE CUSUM CONTROL CHARTS
7. Multiple CUSUM Charts Based on Regression Adjusted Variables

Hawkins [11, 13] proposed a multivariate control chart for monitoring the process
mean based on regression adjusted variables. In the discussion he also mentioned, though
did not explain in detail, that the same idea coupled with his earlier work in Hawkins [10]
can be extended to constructing multivariate control charts for monitoring process
variability. This idea is expanded and discussed in more detail in a number of recent works
by Yeh et al. [38], Yeh et al. [37] and Huwang et al. [15].

Note that in the context of regression adjusted variables, s, and X, are assumed to
be known. One first computes, for ¢>1, the following
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Z,=diagE PN X, - 1) s

where Z, =(Z,,Z,;,..,Z,) . When the process is in-control, Z, is distributed as
N,(0,1,), where I, isa pxp identity matrix. In order to detect changes in the variance
of the jthcomponent Z ., j= 1,2,...,p, one further defines the following statistics

1z, -822
v 349

When the process is in control, W, is approximately distributed as N(0,1). On the other
hand, if the distribution of Z, changes from N (0,1) to N(,6%) (o=1), the
distribution of W, changes approximately to N(2.355(0'1’2 ~1),0). Therefore, one can
construct the usual univariate CUSUM chart to monitor mean shifts in W, (and thus
variance changes in Z,). Consequently, p such CUSUM charts can be combined in very
much the same way as was suggested in Woodall and Ncube [36] to obtain the so-called

multiple CUSUM control charts.

Specifically, one calculates, for t>1 and j=12,..,p,

®

S, =max(0,8(y), +W,; —1) 9

and
Sy = min(0, S5y, + Wy +7), - 30

where Sj,=S;,=0 and r is the reference value. Here S; and S, are designed to

detect, respectively, increases and decreases in the variance of the jth component of Z,,
since (62 -1)>0 if o?>1 and <0 if o?<1. An out-of-control signal is detected on

the multiple CUSUM charts as soon as

max{max (S;,~S;)} > 4,

Isjsp

where % is the decision value.

8. A CUSUM Chart Based on Projection Pursuit

The idea of using projection pursuit to de‘ve'lop CUSUM charts for monitoring the
covariance matrix (Chan and Zhang [7]) is predicated on the following two important

observations:

() T=3,, ie, the covariance matrix remains in-control, if and only if a T X and
a., TV’ X have unit variance, where a,,, and a,, are the eigenvectors that correspond -
to, respectively, the largest and smallest eigenvalues of the matrix X" 253542, and

(i) a,, and @ give the maximum and minimum signed difference between the
variance of @'Z; ~X and I, respectively.

Therefore, the projection pursuit CUSUM chart can be developed first by selecting a
univariate CUSUM chart for monitoring changes in variance (from unit variance), and then
applying the univariate CUSUM chart to both g’ ¥:"?X and a' . Z2X | where a,,,
and @, aresome estimatesof a,, and a,,, respectively.

The authors proposed using the univariate CUSUM chart developed in Johnson and

Lcone [16] for monitoring &, Z3"?X and d,,,T;"?X . Moreover, they discussed ways of

min ~(
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obtaining G, and G, in two cases: when n=1 and when n>1. When individual

observations are collected, assuming that 4, =0 and Z;=1,, denote respectively by

A; " and ,1;.""” , 1< j<t, the largest and smallest eigenvalues of the sample matrix

4 ! I
XX+ X X+t XX,

Also define Q; =7 ~(t-j+1)r, and Q; =/1,;f“"’ -(t-j+Dr, where r, and r are
two reference values. Now define

Q} =max {0,Q}, 05, ..., Oy } (1D
and

Q; =min{0,Q;, O, Qs }» (12)
where Qj =Q; =0. The projection pursuit CUSUM chart signals as soon as either
Q' >h, or Q7 <h_,where A, and h_ are decision values.

- When n>1, the only modification is that the sample matrix from which A7 and
A" are computed is replaced by the subgroup sample matrix

1 o ,
Zﬁ:j;jzka Xy Xy -

Note that in the projection pursuit CUSUM chart, X, is either assumed to be known or
that it can be estimated by §. Furthermore, it is also assumed that the process mean
stays unchanged since the chart is sensitive to shifts in process mean. Based on
Monte-Carlo simulations, designs for the projection pursuit based CUSUM chart were
provided for p =2,3,and4,and n =1,2,5,and 10.

PART II: MULTIVARIATE EWMA CONTROL CHARTS

9. Multiple EWMA Charts Based on Regression Adjusted Variables

The multiple CUSUM charts discussed in Section 7, Hawkins [11, 13], can easily be
adapted to multiple EWMA charts. For £>1 and j=1,2,..,p, one calculates

Ey =W, +(1- DWW, (13)

where 0<A<1 is a smoothing constant, Ey;=0 and W, was defined in equation (8).
For a given A, an out-of-control signal is detected on the multiple EWMA charts as soon

aS
l ¢ l L 3

where L is a pre-determined value which depends on A and the in-control ARL ( 4R[,).
Some designs of the multiple EWMA charts were also discussed in the references cited in

Section 7.

10. An EWMA Chart Based on Probability Integral Transformation

Extending the idea proposed in Yeh and Lin [39] (see Section 5), Yeh et al. [40]
developed a multivariatt EWMA control chart based on the probability integral
transformation. Specifically, based on the statistic v, (Equation (6)), define, for ¢>1,
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J, = Ax (v, = 5)+(1=A)xJ, | | (14)

where 0<A<1 is a smoothing constant and J, =0. For any given ¢, E(J,)=0 and
Var(J,) =[A12(2 - A))(1 - (1- A)*") . Therefore, the UCL and LCL can be determined by

e A -
UCL=L \/12(2_1)[1 (1-)*] (15)

xS
LCL=-L \/12(2_;{)[1 -1, (16)

where L is chosen to control the 4RI, of the control chart. The authors called the
proposed chart the V -chart.
Note that in the V -chart, it is assumed that X, can be estimated by S which is

derived from % training samples each of size #, collected when the process was in
control. It is also assumed that #>p to ensure that §, has full rank.

11. An EWMA Chart Based on Likelihood Ratio Test

Yeh et al. [38] treated the problem as a two-sample problem of testing H,:Z =%, vs.
H, .2 #3,, with one sample coming from the training data and the other sample coming
from the repeatedly drawn samples when process monitoring begins. For any given ¢2>1,
an unbiased test derived in Sugiura and Nagao [28] can be performed and the test is based
on a modified likelihood ratio
— —1—(kn~—l) -l—(rz—l)
; NEB-DSPE [(#-D)S, §
! kn+n-2) ’

1
k(=1 +(n-1)S, |2
The testing procedure is typically performed by computing

1, ==2In(L,)
= (kn+n-2)n|k(n-1)S+(n-1)S, |
~(kn—Din| k(n=1)S | ~(n—Din|(n-1)S, |,
and H, is rejected if 7 >c,, where ¢, is a critical value determined by «. Based on
this 7 , the authors proposed computing the EWMA of 7 . Specifically, define the

EWMA statistics as
Rt :'lrz +(1”)“)R1—1) (17)

where 0<A<1 isasmoothing constant and R, =# . Note that the initial value R, is set
to be equal to #, instead of the conventional E(R,) because E(KR,) is unknown and
needs to be estimated. However, by doing so, the variances of R,, when R;=7 and
when R, = E(R,), differ only up to a constant. The proposed chart is called the
exponentially weighted moving likelihood ratio (EWMLR) chart.

Since R, is based on the EWMA of the logarithms of the likelihood ratios, the chart
will signal if R, >UCL. Based on Monte-Carlo simulations, the authors provided the
UCL’s which produced an 4RI, of approximately 370, for numerous cases such as
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different numbers of training samples and different sample sizes. Note that in the EWMLR
chart, £, need not be known, but training samples need to be available and n>p to

ensure that S, has full rank.

12. An EWMA Chart for Individual Observations

When n=1, the sample covariance matrix is not readily available. For any given
individual observation X, , t>1, the matrix (X, - )X, ) still provides an
unbiased estimator of Z,, however. Yeh et al. [37] proposed taking the EWMA of the

running matrices (X, — 1, )(X, — #,)"’s by defining
W, = MX, — )X, = ) + (L= W,y (18)

where 0<A<1 isasmoothing constant and W, =(X| — po (X, — #)'

It can easily be shown that E(W,)=X%, and that W, is positive-definite with
probability one when £ p. Without loss of generality, let 1, =0 and X,=1,. The
authors proposed first separating the diagonal and upper off-diagonal elements of W, and
comparing them separately with diagonal and upper off-diagonal elements of I, based on
the Euclidean distance between two vectors. The two statistics are then combined to derive
the statistic used for monitoring changes in the covariance matrix. Specifically, define

W, = (w,(“),W,(zz),-.-,Wt(pp))'

and
W, = (Wya2)s Weays-+s Wiy s Wao-yp ) » TOT all i<j

where W, isa px1 vector consisting of the p diagonal elements of W,,and W, isa
p(p ~1)/2x1 vector consisting of the upper off-diagonal elements of W, . The vector W,
is a natural estimator of the p population variances, while the vector W, can be used to
estimate the vector of p(p—1)/2 population covariances. To measure the deviation of
W, and W, from the population parameter vectors, the sum of squared errors can be

used by defining
D, =W, -1,Y(, -1,) (19)
and .

D,, =W, W, , (20)

where 1, isa pxl vector of 1's. Furthermore, D, and D,, canbe combined to obtain

Dtl "E(Dzl) th _E(th)

JVar(D,) ~ Var(D,) @1)

MaxD, = max

When the monitoring begins, MaxD, is calculated and plotted against ¢. The
proposed chart signals as soon as the value of MaxD, exceeds a pre-determined UCL.
The proposed chart is called the maximum multivariate exponentially weighted moving
variability (MaxMEWMYV) chart.

The authors derived the asymptotic expected value and variance of both D,; and
D,,. They also provided, based on Monte-Carlo simulations, UCL’s for p = 2, 3 and



Multivariate Control Charts A 425

different values of A when the ARL, is set to equal to approximately 370, equivalent to
a 30 Shewhart control chart. '

It is important to note that the MaxMEWMV chart is specifically designed for
individual observations, although it can easily be extended to the case when 7 >1. Here
3, is assumed to be known and g, is assumed unchanged. ’

13. Multivariate Extensions of Univariate EWMS and EWMY Charts

MacGregor and Harris [23] introduced two univariate control charts for monitoring
process variance with individual observations. One is based on the EWMA of the mean
squared deviations of observations, called the exponentially weighted moving mean square
deviation (EWMS) chart, and the other is based on the EWMA of the updated variances,
called the exponentially weighted moving variance (EWMYV) chart. Expanding on the idea
of MaxMEWMYV chart (see Section 12), Huwang et al. [15] extended the two univariate
control charts of MacGregor and Harris [23] to multivariate processes.

Based on W, (Equation (18)), the EWMA of the running matrices (X, — )
(X, - 4,) , the authors proposed using trace(W,) to detect changes in the covariance
matrix. Assuming that X, =1, it can be shown that E(trace(W,))=p and Var(trace(W,))
= 2p[ W2 - A+ (2 - 242~ A)(1= 2)*“""]. Therefore, the control limits of the proposed chart

are given by

A 2-2A
+L |2 +- 1- )2
d \/ p{z—z 7, 4P (22

where L, dependson A and the desired 4RL,. Based on Monte-Carlo simulations, the

authors provided values of L for which the ARLg is approximately equal to 370 for p
=2 3and A=.1,2,.,9. The proposed chart is called the multivariate exponentially

weighted moving mean square error (MEWMS) chart.

The MEWMS chart assumes that g, is known and does not change. However, if the
mean also shifts, the MEWMS chart will be affected in such a way that the false alarm rate
generally increases. It was demonstrated through numerical examples that if the mean
shifts but £, remains unchanged, the MEWMS chart can no longer maintain its ARL,-
Moreover, if both gz, and X, change simultaneously, the out-of-control ARL'’s of
MEWMS chart are smaller than those obtained when 4, stays unchanged.

In order to tackle the problem of potential mean shifts, the authors proposed the
following modification to W, , for =1,

V,=MX, -Y)X, -1 +A-V ., (23)

where 0<A<1 and V,=(X,-Y,)(X,-1;)'. Here, ¥, is some estimate of the process
mean, which in the paper was taken to be the multivariate exponentially weighted moving

average MEWMA) of X, (Lowry et al. [22))

Y,=wX, +(l-w)Y,_;, (24)

where 0<w<1 is a smoothing constant and Y, = ,. The modified chart which uses
trace(V,) to detect changes in covariance matrix is called the multivariate exponentially
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weighted moving variance (MEWMYV) chart. Note that when p=1, MEWMS and
MEWMYV charts reduce to, respectively, the univariate EWMS and EWMYV charts of
MacGregor and Harris [23].

The control limits of the MEWMYV chart are given by

E(trace(V,)) £ L, [Var(trace(V,))
= Py 2P T gy 25)

where ¢;, i,j=12,..,t, is the ith row and jth column element of a £xt matrix Q
such that
Q=(,-M)YC(I,-M).

Here C =diag((1- A", A(1-A)y"2,..,A(1-4),4) and

w 0 0
w(l-w) w 0

wd-w) wl-w)"? w(l-w) w

Based on Monte-Carlo simulations, the authors provided values of L, which produce
ARL, approximately equalto 370 for p=2,3 and 4, w =.1,.2,.3 and 4. It was also
demonstrated that when there is a mean shift but £, remains unchanged, the 4RI, of
the MEWMYV chart maintains at 370. Furthermore, when the mean and covariance matrix
both change, the out-of-control ARL’s of MEWMYV chart are approximately the same as

those obtained when only the covariance matrix changes.

14. A New EWMA Chart Based on Generalized Variance

A Shewhart chart, generally referred to as the |S |-chart, which is based on the sample
generalized variance |S,| was developed in Alt and Smith [3]. A number of Shewhart
charts discussed earlier also rely on |S,| or some function of it, such as the conditional
entropy chart (Section 2) and the probability integral transformation based chart (Section 5).
A good reference of the statistical properties of the sample generalized variance in the
context of the |§ |-chart can be found in Aparisi et al. [5].

If the objective is to detect changes in generalized variance, it is fairly easy to develop a
multivariate EWMA chart. Specifically, it is known that (see for example Anderson [4]) if
the process is in control (i.e., X, ~N,(#,Z,)) then the distribution of

y < [t=1,151
2p 1%,

is asymptotically distributed as N(0,1). Furthermore, if X, changes to I, then 7, is
aSY_mPtotically distributed as N(/n|Z|/|Z,[,1). In other words, the change in generalized
variance from |Z,| to |Z| in the original p-dimensional quality characteristics of
Interest now translates into a mean shift in ¥,. Therefore, one can devise an univariate
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EWMA chart for detecting mean shifts in ¥, . Assuming Z, is known, define, for 21,

G, =AY, +(1- )Y, 4, 26)

where 0<A<1 is a smoothing constant and G, =0. The control iimits of the EWMA
chart are given by

1 o
iLx\/Z—A[I (1-)%]. 27

If %, is not known, it can be estimated by S, obtained from % training samples
each of size n . The statistic ¥, needs to be modified to '

v - kKn-D, 1S,|
V2pk+ D) |S|

If the pfocess is in control, the ¥, is asymptotically distributed as N(0,1). On the other
hand, if %, changes to X, the Y, is distributed asymptotically as NWE/E+1n|Z|/
|Z, 1, D) . In this case, the EWMA statistic is given by

G =27 +(1-AY,. (28)

Even though Y, and ¥, both are asymptotically normally distributed, the exact
distribution could be quite skewed especially when sample size 7 is small to moderate.
Furthermore, in many industrial applications large samples may not be readily available.
Therefore, it is also of interest to use the proposed chart when 7 is small. For p=2, we
provide in Table 1 the LCL and UCL of the proposed EWMA chart based on G,, ie,
when X, is assumed to be equal to 7. The UCL'’s (similarly the LCL’s), ignoring the
term (1-A)*, were obtained based on Monte-Carlo simulations such that the ARL, is
approximately equal to 740. The standard errors of the simulations are all within 1% of the
simulated ARL,’s. The LCL’s and the UCL'’s are given for n ranging from 4 to 300 and
A=.05,.1,.15and .2. For p=3, the LCL's and the UCL'’s are given in Table 2.

Table 1. The LCL and UCL of the EWMA chart based on generalized variance (p = 2).

A =.05 A =.10 A =.15 A =.20
LCL UCL LCL UCL |- LCL UCL LCL UCL
3582 | -1.225 | -4.310 | -0.704 | -4.925 | -0.310 | -5.491 | 0.022
2965 | -0.831 | -3.598 | -0.345 | -4.129 | 0.024 | -4.609 | 0.355
5248 | 0338 | 2.796 | 0.114 | -3.244 | 0.464 | -3.646 | 0.762
2036 | -0.183 | -2.558 | 0.263 | -2.989 | 0.610 | -3.370 | 0.904
15 | -1.756 | 0.034 | -2.255 | 0.475 | -2.658 | 0.814 | -3.016 1.109
20 | -1.610 | 0.155 | -2.095 | 0.590 | -2.487 | 0.934 | -2.834 1.226
40 | 1362 | 0365 | -1.826 | 0.802 | -2.199 | 1.144 | -2.532 1.438
60 | -1.258 | 0457 | -1.719 | 0.894 | -2.084 | 1.236 | -2.411 1.529
80 | -1.201 | 0.509 | -1.657 | 0.946 | -2.021 1.288 | -2.341 1.585
100 | -1.162 | 0544 | -1.616 | 0.982 | -1.980 | 1.326 -2.291 | 1.623
150 | -1.110 | 0.602 | -1.554 | 1.046 | -1.915 | 1.391 -2.229 | 1.690
200 | -1.070 | 0.633 | -1.513 | 1.080 | -1.874 | 1.428 -2.188 | 1.726
300 | -1.030 | 0.673 | -1.469 | 1.120 | -1.825 | 1.470 -2.140 | 1.774

ool 3
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Table 2. The LLCL and UCL of the EWMA chart based on generalized variance ( p = 3).

A =.05 A =.10 A =15 A =.20

LCL UCL LCL UCL LCL UCL LCL UCL
-10.524 | -5.592 | -12.110 | -4.534 | -13.460 | -3.755 | -14.727 | -3.098
-7.330 | -3.598 | -8.448 | -2.741 | -9.377 | -2.087 | -10.227 | -1.548
-4.890 | -1.857 | -5.747 | -1.129 | -6.443 | -0.565 | -7.077 | -0.085
10 | -4.285 | -1.390 | -5.093 | -0.683 | -5.750 | -0.131 | -6.337 | 0.328
15 | -3.532 | -0.782 | -4.292 | -0.098 | -4.909 | 0.436 | -5.435 | 0.888
20 | -3.157 | 0465 | -3.889 | 0.206 | -4.483 | 0.733 | -5.002 | 1.190
40 | -2.529 | 0.082 | -3.232 | 0.745 | -3.795 | 1.261 | -4.284 | 1.717
60 | -2.281 | 0.309 | -2.972 | 0.969 | -3.516 | 1.488 | -4.010 | 1.938
80 | -2.133 | 0.442 | -2.822 | 1.100 | -3.368 | 1.619 | -3.849 | 2.069
100 | -2.040 | 0.530 | -2.722 | 1.191 | -3.266 | 1.708 | -3.746 | 2.161
150 | -1.891 | 0.669 | -2.570 | 1.326 | -3.113 | 1.847 | -3.584 | 2.301
200 | -1.806 | 0.750 | -2.484 | 1.410 | -3.021 | 1.928 | -3.492 | 2.382
300 | -1.705 | 0.845 | -2.378 | 1.508 | -2.920 | 2.026 | -3.384 | 2478

cclnis|

PART IV: CHART PERFORMANCE AND DIAGNOSTICS

15. Performance Comparisons

In this section, we will discuss the performance comparisons among different control
charts that exist in the literature discussed so far. The performance comparisons are based
on the out-of-control ARL’s of competing charts.

(i) Among the Shewhart charts, Tang and Barnett [30] compared their proposed
S,-decomposition based chart (Section 3) with that of the |S|-chart and the Shewhart
chart based on the likelihood ratio for testing H,:X =X, vs. H, :Z#2X;in the X,
known and unknown cases (see for example Alt and Smith [3]). They found that the
S,-decomposition based chart is far more sensitive to covariance matrix changes considered
in the paper than are the other two competing charts. Yeh and Lin [39] (Section 5)
compared their probability integral transformation based Shewhart chart with the
|S| -chart and found that, although the |S| -chart generally has slightly smaller
“out-of-control ARL’s, these two charts have very comparable performance from a practical
standpoint. The conclusion is that, among these Shewhart charts designed for the case
when #n>p , the S,-decomposition based chart has the best performance and is

recommended.

(ii) Among the CUSUM charts, Chan and Zhang [7] (Section 8) compared the performance
of their proposed projection pursuit based CUSUM chart with that of the |S|-chart,
likelihood ratio based Shewhart chart and another Shewhart chart derived from the Roy’s
maximum and minimum eigenvalues of sample covariance matrices (see for example
Anderson [4]). They found that the projection pursuit based CUSUM chart generally
produces smaller out-of-control ARL’s than the other three competing Shewhart charts.
The likelihood ratio based chart has better performance than the |§ |-chart.

(iii) Among the EWMA charts, Yeh et al. [40] (Section 10) compared the probability
integral transformation based EWMA chart with the |§|-chart in terms of the changes in
generalized variance as expressed by |Z|/|Z,/. They found that their proposed V -chart
outperforms the |S|-chart, especially when a small smoothing constant is used in
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constructing the ¥ -chart. Yeh et al. [38] (Section 11) compared their EWMLR chart with
the multiple CUSUM charts (Section 7) and the multiple EWMA charts (Section 9). It was
found that the EWMLR chart generally outperforms both multiple CUSUM and EWMA
charts. The improvement in performance of the EWMLR chart is particularly noticeable
when a small smoothing constant is used and when there exist moderate to strong
correlations among variables. It was also found that the multiple CUSUM and EWMA
charts ‘could produce undesirable outcomes when only correlations change while variances
remain unchanged in that the out-of-control ARL’s of these two charts could be larger than
ARL,. Among these EWMA charts designed for the case when #n > p, the EWMLR chart
is recommended since it does not have the drawback that the generalized variance based
EWMA charts do, i.e., different covariance matrices can produce the same generalized

variance.

We next focus the discussion on monitoring multivariate individual observations, i.e.,
n= 1. Yeh et al. [37] compared their proposed MaxMEWMYV chart (Section 12) with the
multiple’ CUSUM and EWMA charts. They found that the MaxMEWMV chart
outperforms the other two competitors in cases when (i) variances in variables increase with
or without accompanying changes in correlations and (ii) when only correlations change
but variances stay unchanged. It was also found that the performance of all three charts
will be affected by the presence of mean shifts in such a way that the out-of-control ARL’s
decrease when mean shifts also occur.

The MEWMYV and MEWMS charts (Huwang et al. [15], Section 13) were also
compared to the multiple CUSUM and EWMA charts. When the process mean remains in
control, both MEWMS and MEWMYV charts outperform multiple CUSUM and EWMA
charts, with the MEWMS chart performing slightly better than the MEWMYV chart.
Furthermore, when the process mean and covariance matrix change simultaneously, all of
the MEWMS, multiple CUSUM and multiple EWMA charts will be affected by producing
smaller out-of-control ARL’s than they would if process mean stayed in control. The
MEWMYV chart, on the other hand, was not found to be affected by mean shifts, thus
making it more robust than the other three charts to be used in detecting changes in a
covariance matrix. Our conclusion is that, if the process mean remains unchanged, the
MEWMS chart is recommended among the EWMA charts designed for the case when
n=1, since it has the best overall performance. However, if the process mean also shifts,
the MEWMYV chart is the only chart that is unaffected, and thus recommended.

Table 3. A summary of the recommended charts by sample size and chart type.

I ,
S;’,np © | Chart Type Shewhart CUSUM EWMA
12¢
ded N
Remg;min @ |8, -decomposition(3) | Projection Pursuit (8) EWMLR (1)
ari
n>p

Not affected by 1. My isassumed known. '
Comments Not affected by mean shifts.

mean shifts. 2. Affected by mean shifts.
ded isti
Recommende Not Applicable No Existing Performance MEWMS (13) MEWMV (13)
=1 Chart Comparison
L[4y isassumed known. | Not affected by
Comments 2. Affected by mean shifts, mean shifts.

1. The number in parentheses indicates the section number in which the control chart is discussed.
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Table 3 summarizes the recommended charts by sample size (n>p and n=1) and
chart type. As pointed out by one referee, there are several features based on which control
charts can be compared. Our focus in the current paper is to compare control charts based
on how sensitive they are, in terms of ARL, to changes in the population covariance

matrix.

Table 4. A summary of multivariate Shewhart control charts.

. . Conditional S, Decomp. Two-Sample Prob. Int. Moving R ©
ving Ranges
Requiremen Entropy (2)' 3) Test (4) Trans. (5) g ang
n=1 no no’ no no yes
n>p required required required required not extended
developed assuming not
: €s €s t required es
Ly is known y ¥ notrequ required Y
canuse S . .
as an estimate yes yes required required no
g is known t ired t ired t ired not t ired
not require not require not require not require
0 4 a d required E
affected by mean o o o o .
s
shifts Y
likelihood ratio
2
z S; decomposing of iid .
key feature len ”;_2“ S Hy:Z=% vs. | gps | Ken ~ X )E (X - X))
i= ; t !
o H,:Z#%

1. The number in parentheses indicates the section number in which the control chart is discussed.
2. The decomposition can be extended to the case when 1 <n <p.

Table 5. A summary of multivariate CUSUM control charts.

Requirement Multiple CUSUM (7)' Projection Pursuit (8)
n=1 yes yes
n>p can be extended’ yes
developed assuming ZO is known yes yes
can use S" as an estimate yes yes

Hyo is known required required
affected by mean shifts yes yes
regression adjusted variables | eigenvectors corresponding to
key feature and p univariate CUSUM’s | smallest and largest eigenvalues

1. The number in parentheses indicates the section number in which the control chart is discussed.
2. The chart can be extended to the case when # > p (this was not discussed in the original paper).

Another important consideration is how sensitive a control chart is to changes in the
population mean vector, for which the chart is not designed to detect. Unfortunately, there
was very little discussion of this issue in the existing literature except in our earlier
discussion in this section and Tables 4, 5 and 6. It is also important to consider how
sensitive a control chart is to the violation of the underlying multivariate normality
assumption. Investigation of this particular issue is, however, largely absent in the literature
and therefore deserves further attention for future research.
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Table 6. A summary of multivariate EWMA control charts.
_ ultivariate | V-chart | EWMLR | MaxMEWMY | MEWMS | MEWMYV | EWMA of
Requirement ' : :

EWMA®' | (10 ) (12) (13) a3) IS, g
n=1 yes no no yes yes yes no
n>p can not . A . 3 can not can not .

extended” required required - | was discussed extended” | extended’ fequired
developed
assuming yes no no yes yes yes yes
2, is known
canuse S . .
as an estimate yes required required yes yes yes yes
Hy is known required no no required required no no
- affected by s o o ,
mean shifts Y yes yes no - Ho
, 4 .| EWMA of
reg.a:;llc?1 ;vvar. EWMA of EWMA of EWMA of , EWMA of X - i) EWMA of
key feature univariate iid. log;jhketlilho (XXX ~po) | (X=pXX-4) (X - iy " | generalized
EWMA's v.n’s od ratio and L, norm andtrace’ | nd race var.

1. The number in parentheses indicates the section number in which the control chart is discussed.
2. The chart can be extended to the case when n > p (this was not discussed in the original paper).
3Tt was discussed in the original paper that the MaxMEWMYV chart can be extended to the case whenn >p.

16. Possible Diagnostics After Detecting an Out-of-Control Signal

Another important problem is that of determining which parameters of the covariance
matrix have actually changed when a control chart detects an out-of-control signal. Unlike
the case of the process mean with p parameters, there are a total of p(p+1)/2
parameters in the covariance matrix that could change individually or in combination
which could potentially trigger an out-of-control signal.

For control charts that are derived based on the sample generalized variance, an
out-of-control signal is interpreted as a change in the generalized variance, i.e., an increase
or a decrease in the determinant of the covariance matrix. When the process is in control,
|X,| is proportional to the square of the volume of the ellipsoid generated by
{XeR?, (X -1y S (X ~ ;zO)scz}, which is the form of the confidence region for the
mean vector under normality assumption. Therefore, an increase or a decrease in the
generalized variance is also associated with an increase or a decrease in the volume of the
confidence region of the mean vector. However, a major limitation for the generalized
variance is that different matrices can produce the same determinant. '

In developing the conditional entropy chart (Section 2), Guerrero-Cusumano [9]
argued that since the chart is essentially based on the ratios of sample variance over
population variance for each of the p variables, when the chart gives an out-of-control
signal, one can proceed to find out which of these variances are out-of-control. It was
suggested that one use the Bonferroni probability inequality to set up confidence intervals
for each of the p population variances. One obvious limitation of such an approach is
that it is not capable of capturing changes in correlations among variables.

The multiple CUSUM and multiple EWMA charts (Sections 7 and 9) have the same
advantage as the conditional entropy chart. Since they are essentially p univariate
CUSUM or EWMA charts, one can monitor each of the p univariate charts. When the
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overall chart detects an out-of-control signal, one can proceed to determine which of these
univariate charts also signal. The multiple CUSUM and EWMA charts share the same
drawback as does the conditional entropy chart, namely that they lack the ability to capture

changes in correlations.

For the charts that are based on the likelihood ratio of testing Hy:Z=%; vs.
H,:Z#ZX,, the problem becomes a one-sample problem if X, 1s assumed known, or a
two-sample problem if X, is assumed unknown. When the chart signals one might
consider performing a series of hierarchical likelihood ratio testing procedures proposed by
Manly and Rayner [24] (also see Section 8.3 of Wierda [33]). These testing procedures are
designed to test, in a series of steps, whether (1) = and Z, differ only in correlations; (2)
Z and X, differ only in variances; and (3) £=cZ, where ¢>0, #1 is a constant. If
the result of test (1) is significant, it is concluded that % and %, differ only in
correlations. If the result of test (1) is not significant, proceed to test (2). If the result of test
(2) is significant, it is concluded that £ and I, differ only in variances, whereas the
correlations are equal. If the result of test (2) is not significant, perform test (3). If the result
of test (3) is significant, it is concluded that T=c%,, ¢>0, =1. If the result of test 3)is
not significant, it is then concluded that Z=%,.

In the MaxMEWMYV chart (Section 12), the statistic is based on the maximum of D,
and D,, (Equations (19) and (20)), where D, and D,, are the squared errors for the
sample variances and the sample covariances, respectively. It is suggested that one also
monitor D,; and D,. When the MaxMEWMYV chart signals, depending on whether
D, or D,, (or both) signal, it can be interpreted as the variances or the correlations (or
both) are out of control. One limitation of such an approach is that it is not capable of
showing exactly which of the variances or which of the correlations are out of control.

In a recent study, Apley and Shi [6] proposed a diagnostic technique for identifying
root causes for changes in process variability which closely resembles factor analysis.
However, the objective is not to identify which of the variances of the p variables or
correlations among the p variables have changed. Rather, it is based on a fault model
which assumes that there are m fault factors (m < p) acting independently and that each
of the p correlated quality characteristics is affected by some linear combination of the
m uncorrelated fault factors. Under such a framework, the problem of diagnosing is
transformed into one whose objective is to estimate the number of faults m that are
contributing to process variability, as well as the linear combinations by which each of the

p correlated quality characteristics is affected.

Chen and Hong [8] developed another diagnostic technique which is based on
decomposing S, (via Barlett or Cholesky decomposition) and turning S, into a matrix
T . When the process is in control, the squares of the diagonal elements of 7' are iid.
x° with various degrees of freedom and the squares of the off-diagonal elements of T
are also i.i.d. y7. By linking the changes in each of the variances and correlations in the
covariance matrix to the changes one might expect to observe from 7, the authors
developed diagnostic rules by observing the patterns of changes from T

17. Concluding Remarks

In the preceding sections, we reviewed numerous multivariate control charts,
developed between 1990 and 2005, which are designed to detect changes in process
variability as measured by the covariance matrix. As previously mentioned, the review
focused on Phase II control charts designed for multivariate normal processes, assuming
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that independent subgroups of observations or independent individual observations are
being collected as the process monitoring proceeds. T herefore, we did not discuss other
types of control charts such as the nonparametric procedures designed to detect changes in
covariance matrix as defined by changes of some function of the matrix (Hawkins [12]),
the data depth based nonparametric control charts for non-normal processes (Liu [20]), the
principal component analysis and dissimilarity index based control charts designed for
multivariate time-series data (see, for example, Kano et al. [17] and references therein), and
the likelihood ratio based preliminary Shewhart chart designed for use in Stage 1
(retrospective stage) of the Phase I control (Sullivan and Woodall [29]).

Tables 4, 5 and 6 summarize, respectively, the Shewhart charts, the CUSUM charts
and the EWMA charts in terms of the sample size requirement, the population parameter
assumptions, and whether the charts will be affected by the presence of mean shifts. Some
observations emerge from the control charts discussed herein.

(i) When the sample covariance matrix can be computed and has full rank, the approaches
typically rely on either the sample generalized variance or the likelihood ratio associated
with testing the equality of two matrices (Sections 4, 5, 10,11 and 14). In this context, Z,
is either known or can be estimated from in-control training samples. Exceptions include
the conditional entropy control chart (Section 2) which relies on the sum of the logarithms
of the ratios of sample variance over population variance for each of the p variables, the
control chart (Section 3) which relies on the sum of 2p -1 independent ,(12 derived from
decomposing the sample covariance matrix, and the control chart developed based on
projection pursuit method (Section 8). These charts (Sections 2, 3, 4, 5, 10, 11 and 14)
typically are not affected by the presence of mean shifts, with the exception of the
projection pursuit control chart. Among the Shewhart charts, we recommend using the
S, -decomposition based chart since it generally outperforms both the likelihood ratio and
generalized variance based charts. The projection pursuit CUSUM chart also outperforms
both the likelihood ratio and generalized variance based Shewhart charts. Additional
research is needed to determine whether the S,-decomposition Shewhart chart or the
projection pursuit CUSUM has a better performance. Among the EWMA charts, we
recommend using the EWMLR chart since it can detect changes in a covariance matrix in
which the out-of-control covariance matrix has the same generalized variance as the

in-control covariance matrix.

(i) Numerous control charts have been developed for use when only individual
observations are available. These include the control chart based on moving ranges (Section
6), the multiple CUSUM and EWMA charts (Sections 7 and 9), the projection pursuit
based chart (Section 8), the MaxMEWMYV chart (Section 12), and the MEWMS and
MEWMYV charts (Section 13). All, except the MEWMYV chart, implicitly assume that the
process mean [ stays in control during process monitoring, and therefore the
performance of these charts will be affected if mean shifts also take place. The
out-of-control ARL’s of these charts in general are smaller when the process mean also
shifts than when the mean stays in control, leading to increased false alarms. Therefore, we
recommend using the MEWMYV chart when n=1 and when the process is subject to both

mean shifts and covariance matrix changes.

As previously discussed, the performance comparisons that exist in the literature were
scattered and limited in their scopes. Therefore, one important concern worthy of future
investigation is to compare all the existing charts in a systematic, organized and thorough
manner. Another important area of potential future research is diagnostic techniques. Such
a task is more complicated than with the multivariate process mean due to the complexity
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of the covariance matrix. Because so many parameters are contained in the covariance
matrix and that changes in one or some of the parameters can trigger an out-of-control
signal, it is of eminent importance to be able to further pinpoint which of these parameters

are out-of-control.
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