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Process capability indices (PCIs) have been widely used in manufacturing industries.
In this paper, we take a very specific view that a proper value of the process capacity
index (PCI) represents the true yield of the process. Following this logic, a universal
PCL, Cy, is proposed and derived. The superiority of the new PCI is presented in
theory and demonstrated through examples. Copyright (€ 2005 John Wiley & Sons,
Lid.
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INTRODUCTION

apability analyses often required for purchasing process equipment. The process capability index (PCD)
is widely adopted in the manufacturing industry'->. The most well-known PCI is probably the C p index,
introduced by Juran ef al.3:

C,= USL6U LSL )
where USL is the upper specification limit, LSL is the lower specification limit, and o is the process standard
deviation. Equation (1) represents the ratio of the length of the specification interval (the engineering tolerance)
to the natural tolerance 60, which is also defined as the “process capability’ by Juran. Thus, avalue of C, = 1.33
implies that the specification interval is 33% wider than the natural tolerance to assure a yield of 99.73%.
Note that a Cp, = 1.33 is generally used in practice for an ongoing process®.

Two specific assumptions were made for C, to be appropriate: (a) the underlying quality characteristic X is
a random sample from a normal distribution N (i, 62), and (b) the population mean 4 is at the midpoint of
the interval [LSL, USL]. When a process satisfies both (a) and (b), we say that the process is under the ‘ideal
situation’. In this case, the actual proportion of product that falls within the specification interval [LSL, USL] is
29(3C,) — 1, where ® denotes the cumulative distribution function (cdf) of the standard normat distribution.
See Appendix A for the derivation.

If either assumption {(a) or (b) is invalid, i.e. when the situation is less than ideal, then C, only measures the
potential capability index in the sense that the actual proportion of products that falls within the specification
interval [LSL, USL} is less than 2€(3C,) — 1. Various adjustments have been proposed in the literature.
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The most well-known are

USL — LSL

607 + (u—T)?

The C,y index was developed in Japan and utilized by Japanese c0mpa11ies4, while the Cpy, index was
independently introduced in Chan er al.’ and Hsiang and Taguchi®. For other third-generation generalizations,
such as Cpmk, Cpla, v) or Cpy, s€C Vinnman' and Spiringg. A common feature of all these corrected versions
is that they all satisfy the inequality

USL—p p—LSL
30 3o

Cpp = min { } and Cppy =

Cp* = Cp (2>

where Cp. includes Cpr, Cpm, Cpmks Cplu, v), Cpy, elc. This is also demonstrated in Sommerville and
Montgomery'.

What does PCI really fry to measure? If two processes have an identical PCI, does this imply they are equally
good? If one process has a higher PCI than another process, what does this really mean? More importantly,
are they compatible? If so, in what sense? It is fair to claim that, except for some qualified descriptions®, an
unambiguous definition of PCI is still lacking. In this paper, we believe that a meaningful PCI must have a
meaningful physical support. We first discuss the relationships between yield and other PCIs. A PCI based on
yield, C,, is then defined, some of its properties are discussed. Simulative studies are conducted, followed by
some concluding remarks.

PCIIMPLIES YIELD

One of the most important reasons Tor all these adjustments is due to the concern that the C;, may be higher than
it should be. This is mathematically reflected in Equation (2). It is generally agreed that the original motives
underlying the introduction of PCls were related to the proportion of non-conforming products 10 Sommerville
and Montgomery' make use of C,, to draw conclusions about the process performance expressed in parts per
million (ppm). So when we have a value of C), = 1, it is known that under the ideal situation the yield is 99.73%;
and if the situation is less than ideal, the yield is less than 99.73%. Instead, if we see Cpy (or Cpp)= 0.9, what
can we say about the true yield? Most PCIs do not provide a precise meaning of yield. In this paper, we take a
very specific view that a proper value of PCI should represent the true yield of the process.

Cpt, Cpm and yields

Suppose that LSL = —30, USL = 30 and C ¢ = min{(USL — @)/30, (. — LSL)/30} = 0.9. This implies that
i =%+030. The true yield is then Pr(—33 < Z <2.7) = ®(2.7) — ©(-3.3) =0.996. If the adjusted PCI
should represent the true process capability, then it should indicate the yield under the ideal situation. Now, if
the standard C,, value is 0.9, the true yield should be 2&(3 x 0.9) — 1 = 0.993. In terms of ppm defective, the
difference is 10% x (0.996 — 0.993) = 3000. In fact, for the true yield of 0.996 under the ideal situation, we need
C ), to be 0.9594. In other words, Cp over-adjusts the true yield by under-reporting the equivalent C) value.
In fact, Cp does not imply the yield. The same value of Cpy = 0.9 may imply different yields, depending on
the value of USL and LSL.

For the case of C . the interval is given by T = L with o = 1, it can be shown that the true yield is given by
PT +L<X<T-L)y=®(L—a)—P(—L —a), where g = ,/LZ/(3CP,,7)2 — 1. Note that the true yield
depends on both L and C,,. Thus, the same Cp,, may give different values of yield (depending on the value

of L). This is observed by Pearn e al.'’. As a matter of fact, this phenomenon is true for almost all Cps
values.

Copyright (© 2005 John Wiley & Sons, Lid. Qual. Reliab. Engng. Int. 2006; 22:153-163
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A PCI based on yields
A PCI called Cy, where y stands for yield, is defined in such a way that when we encounter C v =1, then the
process yield is 0.9973, whereas C, = 0.9 represents a process yield of 0.993, etc. In general, we have

process yield =29 (3 x C,) — | 3)

This equation should be true under any situation: whether or not the mean or the process target coincides with
the center of the specification interval [LSL, USL] and whether or not the process follows a normal distribution.
Under the ideal situation, the C, index is indeed equivalent to the C » index. We belicve that this is a sensible
approach if the role of PCls is to monitor the proportion of non-conforming products™ 0.

The meaning of the classical C, is clear only when the underlying distribution is normal and its mean is
the midpoint of the tolerance limits. Under the not-so-ideal situations, however, it is not clear how to properly
generalize the standard index C,. For example, if the population is Gamma, then an interval of length 60 no
longer covers 99.97% of the area under its density function'. Furthermore, it is questionable whether an equal
amount of probability should be assigned to each tail for such an interval. An alternative approach is to use the
shortest possible length of the interval that contains 99.73% of the area!?.

The main difference between our Cy and all other C,, is that we make no effort to generalize C, to cover
all different situations, neither do we suggest an additional family of indices to further confuse the managers.
We do precisely the opposite—we only narrow down our search by linking with the basic simple concept: the
true yield.

THE PROPOSED PCI: C,

Let F be the distribution of the process. Based on the fundamental idea that PCT implies vield, we propose a
universal PCI as

Cy=L1o Y (FUSL) — FULSL) + 1)] @)

where ® denotes the cdf of the standard normal distribution, i.e.

\/7 exp (— ) dr

This seemingly complicated formula can be easily evaluated via any computer software. We next discuss the
theoretical reason behind the formulation and show how to apply Cy in reality through an example.

D(x) =

PCI under normality

To illustrate the proposed C, index, first assume that the underlying process is N (i, o'2), the ideal situation.
By defining a PCI with yield, we have a common basis for comparison under various situations. When two
products claim they have the same C, = 1.2, for example, their yields are 2 (3 x 1.2) — 1 = 0.999 68, or their
ppm non-conforming is 318. Theoretically, assuming X is N(u, o2), then

USL — LSL —
process yield = Pr{LSL < X < USL] = ® ( --_—’i) — o (_____/{)

o o2

Equating the above relation with Equation (4) and solving for C,, we obtain

C, = Lo [i (cb (—-—-——USL_ ’u> + @ (—-—%” _LSL)H (5)
-3 2 o o

A few remarks can be made about the C, index.

Copyright © 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int, 2006; 22:153-163
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e It reduces to the classical formula for C, when u = %(LSL + USL).

e It gives the exact yield of the process.

e It is a function of only two quantities, x| = (LSL — p)/o and x2 = (USL — p1)/o. Note also that C,
attains its maximum at x; = x2, hence Cy < Cp, 80 20(3C,) — 1 still represents the potential yield if the
process is centered.

e By its construction, Cy is the only PCI that gives the correct yield of the process as implied by the classical
value of C, under an ideal situation.

e The formula for C, is complicated in its appearance. However, the function @ and its inverse are available
in almost any statistical software. The computation effort for C\ is rather straightforward. A simple line
of computer code will be sufficient.

PCI under the non-normal population

Now, for a general case, assume the process follows an arbitrary continuous distribution F and let
Y = &~ [F(X)]. then Y is distributed as N (0, 1). Let m denote the median of 7, that is,

Pi{X >m]=Pr[X <m]|=1%=F(m)

The function g(x) = ®~'[F(x)] is monotone increasing, since both F and ® are. The median of ¥ is then
g(m), which is precisely equal to 0. Moreover, X € [LSL, USL] if and only if ¥ = g(X) € [g(LSL), g(USL)].
It follows that

process yield = Pr{LSL < X < USL] = Pr{g(LSL) <Y < g(USL)] = ®(g(USL)) — D (g(LSL))
Hence, the proper definition for C, is
¢, = 107 [1(®(g(USL)) — @(GILSL) + )] = O~ ' [J(F(USL) — F(LSL) + 1)]

as displayed in Equation (4). Note that £ is not necessarily symmetric. Moreover, the parameters are hidden in
the function g, which depends on the distribution function F'. For example, if F'is N (i, 0~ %), then

g(x):®—l [q) (X—M>]:X-M
g e}

and in this case the formula of Cy reduces to Cj, when p = (USL + LSL)/2, as it should.

Our main idea is to first transform the original data to normality and then apply the formula for C designed
under normality. The exact yield is preserved since a monotone transformation changes the specification limits
monotonically. Rodriguez'! introduces the concept of the ‘robust capability index” which indicates the need of
a capability index whose interpretation is insensitive to the departure from normality, unlike that of a standard
CporCpr. Our Cy, as defined in Equation (4), is probably the most robust capability index among all PCIs.

Estimation of C,

When the observations Xi, Xa2. ..., . X, are given, the Cy index is simply a parameter to be estimated.
The general idea is to first estimate the unknown parameter 6 (a finite-dimensional parameter) by 6 and then
substitute it into the formula of Cy. For example, in all previous works of estimating C ., the standard practice
1s to use

I 11 -,
f=2X and 32:,1_12(Xi_x)~
i=1

for @ = (i, 0%). This can be used to estimate C, for the ideal case. In general, the distribution of the process
F can be modeled by a parametric family indexed by a vector-valued unknown parameter 6, we may write F

Copyright © 20035 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:153-163
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as F(x; 6). Using Equation (4), our estimate for the parametric case is simply
Cy =107 [S(F(USL; §) — F(LSL; §) + )]

If F is completely unspecified, very little is known on how to estimate F (LSL) and F(USL). The conventional
approach is to use a parametric method to fit F to a certain family of distributions to obtain an estimator of 6.
See, for example, Clements'? for techniques with respect to the fitting of Pearson curves and Rodriguez!! for
an example from the log-normal family. Rodriguez'! appears to be the only work that makes reference to using
a kernel density estimate to deal with the estimation of PCls (although no specific estimator is suggested).

For the non-parametric case when F is completely unspecified, we use

Cy=L1o  [L(FWSL) — F(LSL) + 1)]

As a general-purpose non-parametric estimate for our use, we suggest

7 1 & ® x — X;
() = n ; (1.065‘/1"1/5)
where s is the sample standard deviation. This is obtained by integrating a kernel density estimate with the
bandwidth & = 1.06sn~!/3 determined by the normal reference rule!3. Such a choice of / is asymptotically
optimal if the underlying distribution is normal. Since ®(x) goes to 0 and | at a rather fast rate as x goes
to extreme values, we see that the values of F(USL), F(LSL) are generally determined by the values of
several extreme observations. Hence the non-parametric estimator does not provide an accurate estimator at
the points of our need. This is indeed the problem of tail distributions with all non-parametric estimators.
In actual application, we suggest that every effort be made to use the classical parametric approach, and the
non-parametric version of éy only be used as a last resource.

SIMULATION COMPARISONS

In this section, we compare four PCls: Cp, Cpr, Cpp, and Cy in various situations:

e Case A: when the process is normal and ¢« = T (the target value);

e Case B: when the process is normal but @ £ T; and

e Case C: when the process is non-normal, the popular Gamma distribution is used to demonstrate the basic
idea.

Case A is the ideal case and we expect that all four PCls should perform well and be similar to each other.
Case B is less than ideal and we expect that C,, and C,,, which take into account the bias between p and 7" will
perform well, while C,; and C,, will not. When the normality assumption is violated, Case C shows the case of
Gamma distribution under different settings of parameters. Here, we follow the procedure previously described,
assuming the underlying distribution is unknown.

In each case, we generate n = 30 random variates (xi, ..., x3p) and calculate the corresponding PCls.
For graphical reasons, any PCI larger than four is set to be four (meaning large). We then repeat this for
k = 10000 iterations and summarize using boxplots for the 10000 PClIs. Table I shows the underlying values
for simulations, where “True PCI’ is evaluated via Equation (3) as a benchmark for comparisons. Boxplots are
given in Figures 1-3.

Figure 1 shows the results of Case A when the standard deviation o = 2, 1.33, 1, 0.75 and 0.5. All four PCIs
have a similar behavior—the median is close to the true PCI value (indicated in Table I), but the distribution
is slightly skew to the right. Furthermore, C, is (nearly) identical to C,. Figure 2 shows the results of Case B
when the standard deviationo =2, 1.33,1, 0.75 and 0.5. Only C, and C,,, which take into account the bias are
close to the true values. As the standard deviation increases, however, C is consistently closer to the true value
than C . For the non-normal (Gamma) case, as indicated in Figure 3, C, outperforms other PCls: C, is rather
stable, while C,; and Cp over-adjust C,, to present a misleading signal (in terms of yield).

Copyright © 2005 John Wiley & Sons, Litd. Qual. Reliab. Engng. Int. 2006; 22:153-163
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L 3

Index

Figure 2. Boxplots for various PCls: Case B (normal and ;¢ = T)
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Index
Figure 3. Boxplots for various PCls: Case C (non-normal)
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Table I. Values used in simulation study

Case Distribution (LSL, USL) Target Parameter True PCI

A Normal (10, 16) 13 o =2.00 0.50
(e =15) o =1.33 0.75
o= 1.00 1.00
o =075 1.33
a=0.5 2.00
B Normal (10, 16) 11 o = 2.00 0.3351
(n=135) o =133 0.4029

o = 1.00 0.4699
o =0.75 0.5630

o =05 0.7592

C Gamma 0,4) 2 scale = 1.0 0.7864
(shape = 1) scale = 0.5 0.9428

scale = 0.4 0.9828

scale = 0.3 1.0290

scale = 0.2 1.0856

CONCLUDING REMARKS

We believe that a meaningful PCI must have a meaningful interpretation and take a very specific view that
PCI represents the true yield to derive a general PCI, called C,. It may be argued that if yield is so important
why not just report the yield directly'®!3? This is a very legitimate question. We agree that Cy and the true
yield imply each other and they provide equivalent information. C, has established its role as the single-number
summary for process capability, which is irresistible to managers responsible for hundreds of process capabilities
running concurrently'!. Here, we take the original C p and derive the C to provide a common ground so that
all processes can be compared. Furthermore, since yield is only a percentage, we can combine various yields to
derive an overall yield. In this way, we can define a company-wise value of PCI. For the same reason, we can
extend €, to higher dimensions.

The extension of ', to a multivariate process capacity index is straightforward: using multiple integration for
a multivariate distribution. However, unless we have a clear definition of what a multivariate PCI really attempts
to measure, such an extension may be meaningless for practitioners (apart from some theoretical exercise).

The study of PCI has received a great deal of attention in the recent literature, notably in Polansky'®,
Deleryd and Vinnman'!7, Pearn and Chen'3, Tang and Than'?, Shiau er al.?°, Noorossana®!, Bordignon and
Scagliarini*?, Pearn and Lin?® and Chang er al.>*. Kotz and Johnson?® provides an excellent review and many
research possibilities. It is our hope that this paper will contribute to this important subject. A rather complete
collection of papers in this area is given in Spiring et al.?°.
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APPENDIX A

Proof of process yield = 2®(3C,,) — 1 is given below:

process yield = Pr[LSL < X < USL], where X ~ N(u, %)

LSL — USL —
= Pr <Z<
o

jJ ., whereZ ~ N(, 1)

=Pr[-3C, < Z <3C,]
=Pr[Z <3C,] - Pr[Z < —3C,]
= ®(3C)) — D(=3C))

= ®(3C,) ~ (1 — DBC,))
=20(3C,) — |
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