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Abstract

When the number of the experimental variables is large, the first and most critical step is to identify
the (few) active factors among those (many) candidate factors. Supersaturated design is shown to be
helpful for such a critical first step. A general construction method for mixed-level supersaturated
design is proposed. The newly constructed design has several advantages, including the flexibility for
the number of runs and the assurance of upper bound of the (pairwise) dependency among all design
columns. Specific applications to the construction of two-level and three-level mixed-level designs
are discussed in detail.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Quality Engineers are constantly faced with distinguishing between the effects that are
caused by particular factors and those that are due to random noise. In variation reduction
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of quality characteristics, for example, the conventional approaches is to reduce variation
for the factors that affect the quality characteristics. In such experimental studies, the first
step aims to find active factors from many candidate factors in order to conduct additional
experiments based on these selected factors. Supersaturated design works well for finding
active factors from many candidate factors by only a small number of experimental runs.

Supersaturated design was originatedSajterthwaite (1959nd has received a great
deal of attention in the recent literature. This includes construction methadis (@991,

1993, 1995)Wu (1993) lida (1994) Nguyen (1996)andLi and Wu (1997) theoretical
justifications inDeng et al. (1994)Cheng (1997)Tang and Wu (1997)andYamada and
Lin (1997) data analysis methods Westfall et al. (1998)Abraham et al. (1999Beattie

et al. (2002) andLi and Lin (2002, 2003)Recently, some extensions to multi-level and
mixed-level supersaturated designs have been proposed. See, for exéamada and Lin
(1999) Yamada et al. (1999)ang et al. (200QandYamada and Matsui (2002)

In this paper, we show a general construction method for mixed-level supersaturated
design which allows flexibility of the number of runs, as opposed to the previous methods
which generate designs with only some particular numbers of runs. A special feature of the
proposed method is that the maximum dependency among all pairs of design columns can
be specified. An example of construction with two- and three-level designs is given in details
for illustration. For the simplicity of presentation, all proofs are given in the Appendix.

2. Preliminaries

Let %} be the set ofn-dimensional column vectors such that each vectos %}
consists of an equal number of 1s, 2s,, Is; and%}, be the set oh-dimensional col-
umn vectorsd € 2" consists of an equal numbers of 1s, 2s, ms. Ann x (p +
g) matrix (cy, ..., Cp, di,...,dy), with ¢; € %} andd; € Z,, is called a mixed-
level design consisting dflevel andm-level columns. Amn-dimensional design matrix
(C1, ..., Cp, Oy, ..., dy) is called supersaturated when a degree of saturation defined by

(—=Dp+@m—21ygq

p= 12D H0 ®

is greater than IMamada and Matsui, 2002\e are interested in constructing a method of
mixed-level supersaturated designs witk: /m¢ runs, wherd is a positive integer.

Letn?®(c, d) be the number rows in the x 2 matrix(c, d), ¢ € %) andd € Z;,, whose
values arda, b). It is clear that

Z n(c,dy =n.

ae{l,...,l} be{l,...,m}

A design is calledorthogonalif n%’(c, d) is a constant for alla,b) € {1,...,1} x

{1, ..., m}. For a two-level design, the orthogonality implies that the inner product of any
two design columns is zero. In other words, a uniform frequenay*dtc, d) is preferable

in terms of estimation of factor effects, namel§/ (c, d) = n/(Im) for all combinations
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of (a,b) € {1,...,1} x {1, ..., m}. Some measures for non-orthogonality (dependency)

based om“’(c, d) have been proposed; for exampfamada and Lin (1999)roposed the
%2 statistic criterion

ab _ 2
Xz(c’d)_ Z Z (n“’(c, d) n/(lm)); 2)

aefl,...l} befl,.. n/Um)
Fang et al. (2000})lefines
Z Z n“"(c, d) —n/(Am). 3

aefl,....l} bell,...,m}

These measures are defined based on the differences between the actual frequency from
the expected frequency, namely a function of the quaniit(c, d) — n/(Im). Note that
Eq. (3) is equal to zero if and only j£ value in Eq. (2) is equal to 0.
Motivated by the popular criterion of (s2) proposed byBooth and Cox (1962)we
use the average gf values as the criterion for the overall design optimality. Consider a
mixed-level supersaturated design, ..., c,, ds, ..., d;), wherec; € 4} andd; € &;,.
The averagg? values over all pairs of twblevel columns, all pairs of onlelevel and one
m-level column and all pairs of tworlevel columns are defined by

aveyf, =y X2(ci,cj)/<§), (4)
1<i<j<p

avey;, = Z Z (€. d))/(pg). (5)
1<is<pl<j<gq

aved, = Xz(di,dj)/<q2), 6)
1<i<j<gq

respectively. A lower bound of the sum gt values for any level of mixed-level supersat-
urated design obtained bdamada and Matsui (2002)an be shown to be
%v(v —Dnn —1). (7)
Furthermore, the measurement
5 v(v—Dnn —1)/2

Leff = 2 (8)
Zsum

is utilized to evaluate the efficiency for an attainmeny®optimality, wherex%umis the
sum of all they? values in Egs. (4)—(6).

Another design optimality criterion under consideration is the maximéwalue over
all pairs, defined by

maxy?, = max*(ci, ¢;) | G, Cj € €} i # j}, (9)

maxy?,, = max;*(c;. d;) | d; € €7, d; € 7}, (10)
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maxy?, ,, = max(x*(d;, d;) | d;, d; € 2%, i # j}. (11)

We will deal with a constructing problem of mixed-level supersaturated design consisting
of I-level andm-level columns, that is a generation of the columns from the ggtand

27 while maintaining low dependency, i.e., keeping a small value ofxﬁgxnaxxlzm,
maxy? ,,, aves?,, ave/?, and aves, .

3. The construction of supersaturated design

An initial design matrix withn = /m rows is constructed, safC;, D,,) = (Cy, ..., Cp,
di, ..., dy), wherec; € 4" andd; e 2. Next, letT! andT!, be(t x r;) and(t x ry)
matrices whose elements are® ...,/ — 1 (I levels) and 01, ..., m — 1 (m levels),

respectively. Am-run design can be generated by
C=T,8C, 12)
D=T!, & Dp. (13)

where, the operat@p determines thé(i — 1)im +u, (j —1)p + v) elementin the matrix
Cby mod#;; + ¢,y — 1, 1)+ 1, ands;; andc,,, denote théi, ;) and(x, v) elements ifT} and
C;, respectively. The location of elements is determined based on the original elements in
the same way as the “Kronecker Product,” while the calculation at each element is different.
Eqg. (12) generates dmt x pr; design matrixC from anim x p initial matrix C; and a
t x r; generating matri{;. In the same manner, Eq. (13) generateganx gr,, design
matrix D from an/m x ¢ initial matrix D,, and & x r,,, generating matriX’, . The resulting
design is theriC, D). Theorem 1 below gives a theoretical justification of this constructing
method. We first provide an example.
As an illustrative example, consider the following matrices:

0 0 00
T2=<O 1)7 T§=(1 2>7 C2=

and

NNN R R R

PFNNN R R

NFENRNR
N R R

D3 =

WNEFPWN P
P WNWN PP
NEFPWWNPE

The(9, 5) element at the generated mafﬁ%(ea Co, for example, is determined by tli2, 2)
element afl'% and(3, 1) atCy by modz2 + c31 — 1, 1) + 1 = 2. In the same manner, all
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elements inT% @ Co andT% @ D3 are generated as follows:

[

C=T:aC,=

PNRPNRPNNRENRN
RERENNNERPNNRE R B D

D=T;®Ds3= (14)

P WNRPWONWONPRPONE NNNERPRPEPNNNERERPRE
NFPWOWRFRPWONRFRPRONWONE PNNMNNMNRPERPEPNNNPRPRE
WNERPRPRPWONNRPRPWOWOWNE NMNENPNMNEPENMNENRERDNPRE
NRFPWONRPRWWNRERPRWONRERE NDNDNPPEPNNNREREDN
WNEFPNRPWORPRWOWNWNE PPEPNMNNNNNDNERRERRE
EWNNRPWONRPWWNE NPRPRPNMNNRPNNMNRPRE

Theorem 1. Consider the supersaturated desi@) D) generated by initial matrice§; =
(c1,...,¢p) andD,, = (dy, ..., d,) and generating matrice¥; and T/, as in Eqs.(12)
and(13). For all 1< k1, k2 <t, we have the following

(@ 2(¢h, ch)<t2(Ci,c), if=(a—=Dp+i, j*=(ke—Dp+]J,
1<i<j<p. i* # j*

b) 72t A<t y%(ci dj)  i*=(ka—Dp+i, j*=(k2—Dg+ ],
1<i<p. 1<j<q.

(© 72, dh) <t 72(didj), i*=(ka—Dg+i, j*=ka—Dg+
1<i<j<q, i* #j*.

(15)

Theorem 1 provides the property of assuring the maximdmaalues in the resulting
designs. This is convenient for design construction. Specifically, the max'pgﬁurib, c}‘.*)
satisfies

2w s tmax(z2(c, c))}, (i #Jj),
max{;“(Cix, Cjx)} < {tml(l Y / Q=) (16)

wherei*=(k1—1) p+i, j*=(ko—21) p+j,and 1< k1 <kp <t. This suggests the importance
of selecting initial matrices as well as generating matricesndT),.
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Inequality (16) implies that a small value of the maximufrvalue in the initial design
matrix implies a small value of the maximuyA value in the resulting design matrix. It also
implies the possibility to generate a design matrix whose maxitisalue is lower than
the level specified by the right-hand side of Inequality (16). For examplé #&, m = 3,
r=2,c=(1,1,1,222),andT2 = (8 2) the;g2 value between the two constructed
vectors byT%EBc is 0; while the upper bound specified by Inequality (16) is 12. Although the
above is a case of twdevel (orm-level) columns, similar properties hold on the maximum
%2 value between onklevel and onan-level columns.

4. Two-level and three-level designs

We first consider the case o 1. For anyc € %5 andd e 5, ;2 value varies as follows:
72(Ci, cj) € {5, 6}, y2(ci. d;) € {0, 4} andy?(d;, d)) € {3, 6, 12}. Itis desirable to explore
designs which maintain low level of values, such ag?(c;, ¢;) = % and2(d;, d;) = 3.
Mixed two- and three- level supersaturated design can thus be constructed as follows:

C=

O
o
Il

17)

NNNEFE PP
NNEFENPFP P
NEFENNPRFP P
P NNNREP P
NNEFEEFEPDNPRE
NFEFNEFEDNPRE
P NNEFEDNPREP
P FEPDNDNPE
P NEFENDNPRE
2N NN
WNEFP,WN PP
WWNN PP P
P WNWN -
NEFENWWERF
NNEFE WE

2

The design<C,, D3 were constructed by a lexicographical enumeration and a computer
search, respectively. These designs are justified by the following properties:

e A mixed-level supersaturated d_esi@hg, D3) satisfies/(c;, cj)= % andy?(d;, dj)=3.

e Atwo-level supersaturated desi@a and a three-level supersaturated de§igrare op-
timal in terms ofy2 efficiency, respectively. Thus the mixed-level supersaturated design
(Co, D3) is also optimal in terms of? efficiency.

The following Lemma implies the difficulty to construct supersaturated designs with the
property ofy?(c;, ¢;) = § andy?(c;. d;) = 0. Specifically,;? values between a two-level
column and any three-level column in the & must consist of four Os and six 4s. This
implies the impossibility of keeping?(c;, d;) =0 with more than four two-level columns.

Lemma 1. Let S = {cy, ..., cio} be a set of two-level columns from the @satisfy—
ing 72(ci.c;) = § (i # j). For any pair of three-level columnd, d' e 5§, we have
Z}glxz(ci, d) = 24 for each vectod ¢ @g.

This Lemma can be regarded as an extension from the results in two-level and mixed-
level supersaturated design including orthogonal desigas1éda and Lin, 1997; Yamada
and Matsui, 200R The proof is given in the Appendix.
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For the case of >2, we apply a computer search to obtain the generating matrices
T, and T4, while C; and D3 in Eq. (17) are treated as initial design matrices. Further-
more, we only consider designs fof = r; = ¢. The outline of searching algorithm is as
follows:

e Stepl: A pair of generating matricé§, andT} are constructed by using uniform random
numbers. When the matrices have at least one pair of equivalent columns, another pair of
generating matrices is constructed. Without loss of generality, the first row in the matrices
are all zeros. The pair of generating matrices is dealt with a candidate mixed-level design.

e Step2: We update a mixed-level supersaturated design using the candidate design in the
previous step.

o If the value of max;/22 in the candidate mixed-level design is lower than the
value in the tentative design, then the tentative design is replaced by the candidate
design.

o If the value of mew2 » in the candidate mixed-level design is higher than the value
in the tentative design, then the examination of the candidate design is terminated.
Return to Step 1.

o If the value of ma>9g2 , in the candidate mixed-level design is equal to the value in
the tentative deS|gn the candidate design is compared to tentative design matrix in
terms of may2_3.

e Step3: The update procedure compares the candidate design to the tentative design in
terms of ma>§{2 2 max,{23, maXy3 3 ave/2 2 ave(23 and ave3 3, Sequentially. We
have investigated other orders of sequence, the resulting designs are rather similar, and
thus are not reported here.

e The above algorithm is iterated 100,000 times.

The resulting (generating) matrices are showrahle 1 These designs are then evaluated
in terms of the number of columns, maximum and avejdgelues ang2eff. The summary
of evaluation is displayed ifable 2

For a mixed two- and three-level design, the run size must be a multiple of six. As
seen in Table 2, the proposed construction method is able to generate all these mixed-level
supersaturated designs, whereas, all previous studies can only generate design with some
specific run sizes, such as= 12 24. As such, the proposed method has an advantage
of flexibility of number of columns. Furthermore, a straightforward comparison with the
previous studies is difficult because the previous study only involves specific number of
runs/columns and the numbers of columns are different from the resulting designs in this
paper. In terms of the maximup? value, however, the resulting designs are better than or
equal to the previous designs.

The proposed construction method works well for relatively small nhumbers of runs.
This can be seen from Table 2, along with Lemma 1. For larger numbers of runs, the
decreasinggéﬁ along with the number of runs is an evidence for potential improvement.
Moreover, some of the maximum values in the resulting designs#@& are rather small
(as compared to the bound specified in Theorem 1). This fact indicates that the random
search for generating matrics and T works well.
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Table 1

The generating matricés=2,3,...,8)

t T T

2 00 00

0 1 1 2

00O 0 0O
011 01 2
101 021

0 0 00

4 (011 (122
1 01 0 0 2

00 120

00 0O 00 00O

00111 00111

5 01011 0100 2
01101 21 001

0111 2 01 2

00 00O 00 0 OO

0 0O0O011 0112 2 2

6 001101 1010 2 2
000110 1 21012

00 10O0O0 122110

01111 2 2111

0 00 O0O0O O 0 0 0 O0 OO
00 0O0OO0OOTO O 0011111
0001111 0201112
7 0010011 1211120
0111101 0220120
0110110 21 00 2 1 2

010000 1 011001

0 0 O0O0O0OO OO 0 00 O0OOTPO
00001111 0011222 2
00110111 12021122
8 00111001 02110201
11111010 22121201
01110111 00222210
01001011 1101220 2
0001111 0101112

5. Concluding remarks

In this paper, we proposed a general construction method for mixed-level supersaturated
design. The proposed method has three major advantages: (1) this procedure does not
require iterative computation to generate mixed-level design; (2) the maxirdwalues
are under control, and (3) this procedure allows various levels combination. We also apply
the method to construct two-level and three-level supersaturated designs. The essences of
such an application are the selection of initial design matrices and the generating matrices.
The theoretical justification of the design optimality (gh efficiency) with the optimal



29¢

Table 2
The properties of the resulting designs
73, e 133 Full design
t n p D.s. Max Ave g D.s. Max Ave P Max Ave D.s. g
1 6 10 2.00 0.67 0.67 1.00 5 2.00 3.00 3.00 1.00 4.00 2.40 4.00
2 12 20 1.82 1.33 0.63 0.82 10 1.82 6.00 3.60 0.61 6.00 2.40 3.64
3 18 30 1.76 2.00 0.90 0.53 15 1.76 9.00 2.57 0.77 5.33 2.40 3.53
4 24 40 1.74 2.67 0.62 0.74 20 1.74 12.00 3.57 0.52 4.00 2.40 3.48
5 30 50 1.72 3.33 0.81 0.55 25 1.72 31.20 4.57 0.40 5.60 2.23 3.45
6 36 60 171 4.00 1.03 0.42 30 1.71 42.00 6.21 0.29 14.00 2.29 3.43
7 42 70 171 7.71 1.09 0.40 35 1.71 53.14 6.97 0.25 16.00 2.52 3.41
8 48 80 1.70 12.00 1.09 0.39 40 1.70 96.00 6.78 0.26 18.50 2.57 3.40

cor
S ®9
SSiélers jeuoneIndwo) / *fe 19 epeweA 'S

O O ¢
o ~
d

d.s.= degree of saturation

o O o
Rl ~
5925z (9002) 05 sisketfy Bren 3
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initial designs form = 6 is given (see Lemma 1). For other cases, the random search for
generating matrices works well, although improvement in the efficiencies seem possible.
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Appendix. Proofs

Proof of Theorem 1. First, consider Case (j). Obviously;(cj., ct.) has a maximuny?
value among possible paired columns whgr=(c', ..., ¢/)" andc’. =(!, ..., ch)T.
Under this conditiony? value betweei’. andcj* is

2

(tn“(ct., €) — tlm /1%)?

2
ape? tim/1
(n(ci. ;) — Im/1%)?
=t Z llj 2 =1X2(Ci,Cj)- (18)
(a,b)eP? m/

The above equation implies the inequality given in the theorem. In the same manner,
Case (ii) ond-level column and onetlevel column and Case (iii) tworlevel columns
are obtained. O

Proof of Lemma 1. Let ¢ be a permutation defined on the set of numiér®, ..., [}.
For any columrc € %}, o(c) denotes the vector itf} satisfying thajth element ofs(c)
is equivalent tas(c;), wherec; is thejth element ot. Then it is easy to see th¥tc, d) €
€ x Dy, 72(c, d) = y°(a(c), d). We introduce a relatior- on the sets} satisfying that
¢ ~ ¢ if and only if there exists a permutatiensatisfyings(c) = c'. It is clear that the
relation~ is an equivalence relation.

When! = 2, each equivalence class of the systéff, ~) consists of 2 columns. Addi-
tionaly, forn=6,c ~ ¢ ifand only if (c, ¢) =6 and thug ¢ ifand only if 2(c, ¢) = 2.
Since the set’$ contains 20 columns, the systef, ~) has 10 equivalence classes. From

the assumption, the sét= {cy, ..., c1o} satisfies that # j implies 2(c;, Cj) = % ie.,
C; 7 ¢;. Thus, the seSof 10 columns is a set of class representatives.
Next, we consider a permutationdefined on the set of indicdg, 2, ..., n}. For any

column vectorx € %} U Z;,, n(x) denotes the column vector obtained by changing the
indices of elements of by the permutatiom. Clearly,c ~ ¢’ if and only if n(c) ~ n(c’) for

any pair of vectors, ¢’ € %} . SinceSis a set of class representatives of the sys(lfégn ~),

for any permutatiorr on {1, 2, ..., 6}, there exists a bijectiorf : § — S satisfying that
c~ f(n(c)) foreachc € S.
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Lastly, we show the desired equality. Leéttandd’ be a pair of vectors ir@,?,. Then
there exists a permutationon {1, 2, ..., 6}, satisfying thatz(d) = d'. From the previous
discussion, there exists a bijectign: S — S satisfyingvc € S, ¢ ~ f(n(c)). Thus, we
have the following result:

10 10 10
Y A A=) A, nd) =Y P (rE)), n(d)

i=1 i=1 i=1

10 10
= > AC.nd) =) G, d).
i=1 i=1

The desired result can be shown foe= 3 by a straightforward calculation.]
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