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Abstract

When the number of the experimental variables is large, the first andmost critical step is to identify
the (few) active factors among those (many) candidate factors. Supersaturated design is shown to be
helpful for such a critical first step. A general construction method for mixed-level supersaturated
design is proposed. The newly constructed design has several advantages, including the flexibility for
the number of runs and the assurance of upper bound of the (pairwise) dependency among all design
columns. Specific applications to the construction of two-level and three-level mixed-level designs
are discussed in detail.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Quality Engineers are constantly faced with distinguishing between the effects that are
caused by particular factors and those that are due to random noise. In variation reduction

∗ Corresponding author. Tel.: +81-3-3942-6871, Fax:+81-3-3942-6829.
E-mail address:shu@gssm.otsuka.tsukuba.ac.jp(S. Yamada).

0167-9473/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2004.07.018

http://www.elsevier.com/locate/csda
mailto:shu@gssm.otsuka.tsukuba.ac.jp


S. Yamada et al. / Computational Statistics & Data Analysis 50 (2006) 254–265 255

of quality characteristics, for example, the conventional approaches is to reduce variation
for the factors that affect the quality characteristics. In such experimental studies, the first
step aims to find active factors from many candidate factors in order to conduct additional
experiments based on these selected factors. Supersaturated design works well for finding
active factors from many candidate factors by only a small number of experimental runs.
Supersaturated design was originated bySatterthwaite (1959)and has received a great

deal of attention in the recent literature. This includes construction methods inLin (1991,
1993, 1995), Wu (1993), Iida (1994), Nguyen (1996)andLi and Wu (1997); theoretical
justifications inDeng et al. (1994), Cheng (1997), Tang and Wu (1997), andYamada and
Lin (1997); data analysis methods inWestfall et al. (1998), Abraham et al. (1999), Beattie
et al. (2002), andLi and Lin (2002, 2003). Recently, some extensions to multi-level and
mixed-level supersaturated designs have been proposed. See, for example,Yamada and Lin
(1999), Yamada et al. (1999), Fang et al. (2000), andYamada and Matsui (2002).
In this paper, we show a general construction method for mixed-level supersaturated

design which allows flexibility of the number of runs, as opposed to the previous methods
which generate designs with only some particular numbers of runs. A special feature of the
proposed method is that the maximum dependency among all pairs of design columns can
be specified. An example of constructionwith two- and three-level designs is given in details
for illustration. For the simplicity of presentation, all proofs are given in the Appendix.

2. Preliminaries

Let Cn
l be the set ofn-dimensional column vectors such that each vectorc ∈ Cn

l

consists of an equal number of 1s, 2s,. . ., ls; andDn
m be the set ofn-dimensional col-

umn vectorsd ∈ Dn consists of an equal numbers of 1s, 2s,. . ., ms. An n × (p +
q) matrix (c1, . . . , cp, d1, . . . , dq), with ci ∈ Cn

l and dj ∈ Dn
m, is called a mixed-

level design consisting ofl-level andm-level columns. Ann-dimensional design matrix
(c1, . . . , cp, d1, . . . , dq) is called supersaturated when a degree of saturation defined by

v = (l − 1)p + (m − 1)q

n − 1
(1)

is greater than 1 (Yamada and Matsui, 2002). We are interested in constructing a method of
mixed-level supersaturated designs withn = lmt runs, wheret is a positive integer.
Let nab(c, d) be the number rows in then × 2 matrix(c, d), c ∈ Cn

l andd ∈ Dn
m, whose

values are(a, b). It is clear that

∑
a∈{1,...,l}

∑
b∈{1,...,m}

nab(c, d) = n.

A design is calledorthogonal if nab(c, d) is a constant for all(a, b) ∈ {1, . . . , l} ×
{1, . . . , m}. For a two-level design, the orthogonality implies that the inner product of any
two design columns is zero. In other words, a uniform frequency onnab(c, d) is preferable
in terms of estimation of factor effects, namelynab(c, d) = n/(lm) for all combinations



256 S. Yamada et al. / Computational Statistics & Data Analysis 50 (2006) 254–265

of (a, b) ∈ {1, . . . , l} × {1, . . . , m}. Some measures for non-orthogonality (dependency)
based onnab(c, d) have been proposed; for example,Yamada and Lin (1999)proposed the
�2 statistic criterion

�2(c, d) =
∑

a∈{1,...,l}

∑
b∈{1,...,m}

(nab(c, d) − n/(lm))2

n/(lm)
; (2)

Fang et al. (2000)defines∑
a∈{1,...,l}

∑
b∈{1,...,m}

|nab(c, d) − n/(lm)|. (3)

These measures are defined based on the differences between the actual frequency from
the expected frequency, namely a function of the quantity:nab(c, d) − n/(lm). Note that
Eq. (3) is equal to zero if and only if�2 value in Eq. (2) is equal to 0.
Motivated by the popular criterion ofE(s2) proposed byBooth and Cox (1962), we

use the average of�2 values as the criterion for the overall design optimality. Consider a
mixed-level supersaturated design(c1, . . . , cp, d1, . . . , dq), whereci ∈ Cn

l anddj ∈ Dn
m.

The average�2 values over all pairs of twol-level columns, all pairs of onel-level and one
m-level column and all pairs of twom-level columns are defined by

ave�2l,l =
∑

1� i<j �p

�2(ci , cj )/

(
p

2

)
, (4)

ave�2l,m =
∑

1� i �p

∑
1� j �q

�2(ci , dj )/(pq), (5)

ave�2m,m =
∑

1� i<j �q

�2(di , dj )/

(
q

2

)
, (6)

respectively. A lower bound of the sum of�2 values for any level of mixed-level supersat-
urated design obtained byYamada and Matsui (2002), can be shown to be

1
2v(v − 1)n(n − 1). (7)

Furthermore, the measurement

�2eff =
v(v − 1)n(n − 1)/2

�2sum
(8)

is utilized to evaluate the efficiency for an attainment of�2-optimality, where�2sumis the
sum of all the�2 values in Eqs. (4)–(6).
Another design optimality criterion under consideration is the maximum�2 value over

all pairs, defined by

max�2l,l =max{�2(ci , cj ) | ci , cj ∈ Cn
l , i �= j}, (9)

max�2l,m =max{�2(ci , dj ) | di ∈ Cn
l , dj ∈ Dn

m}, (10)
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max�2m,m =max{�2(di , dj ) | di , dj ∈ Dn
m, i �= j}. (11)

We will deal with a constructing problem of mixed-level supersaturated design consisting
of l-level andm-level columns, that is a generation of the columns from the setsCl

n and
Dm

n while maintaining low dependency, i.e., keeping a small value of max�2l,l , max�
2
l,m,

max�2m,m, ave�
2
l,l , ave�

2
l,m and ave�2m,m.

3. The construction of supersaturated design

An initial design matrix withn = lm rows is constructed, say(Cl , Dm) = (c1, . . . , cp,

d1, . . . , dq), whereci ∈ Clm
l anddj ∈ Dlm

m . Next, letTt
l andTt

m be(t × rl) and(t × rm)

matrices whose elements are 0, 1, . . . , l − 1 (l levels) and 0, 1, . . . , m − 1 (m levels),
respectively. Ann-run design can be generated by

C = Tt
l ⊕ Cl , (12)

D = Tt
m ⊕ Dm. (13)

where, the operator⊕ determines the((i − 1)lm + u, (j − 1)p + v) element in the matrix
Cbymod(tij +cuv −1, l)+1, andtij andcuv denote the(i, j) and(u, v) elements inTt

l and
Cl , respectively. The location of elements is determined based on the original elements in
the sameway as the “Kronecker Product,” while the calculation at each element is different.
Eq. (12) generates anlmt × prl design matrixC from anlm × p initial matrixCl and a

t × rl generating matrixTt
l . In the same manner, Eq. (13) generates anlmt × qrm design

matrixD from anlm×q initial matrixDm and at × rm generating matrixTt
m. The resulting

design is then(C, D). Theorem 1 below gives a theoretical justification of this constructing
method. We first provide an example.
As an illustrative example, consider the following matrices:

T2
2 =

(
0 0
0 1

)
, T2

3 =
(
0 0
1 2

)
, C2 =




1 1 1 2
1 1 2 1
1 2 1 1
2 2 2 1
2 2 1 2
2 1 2 2




and

D3 =




1 1 1
2 2 2
3 3 3
1 2 3
2 3 1
3 1 2




.

The(9,5) element at the generatedmatrixT2
2⊕C2, for example, is determined by the(2,2)

element atT2
2 and(3,1) atC2 by mod(t22 + c31 − 1, l) + 1= 2. In the same manner, all
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elements inT2
2 ⊕ C2 andT2

3 ⊕ D3 are generated as follows:

C = T2
2 ⊕ C2 =




1 1 1 2 1 1 1 2
1 1 2 1 1 1 2 1
1 2 1 1 1 2 1 1
2 2 2 1 2 2 2 1
2 2 1 2 2 2 1 2
2 1 2 2 2 1 2 2
1 1 1 2 2 2 2 1
1 1 2 1 2 2 1 2
1 2 1 1 2 1 2 2
2 2 2 1 1 1 1 2
2 2 1 2 1 1 2 1
2 1 2 2 1 2 1 1




,

D = T2
3 ⊕ D3 =




1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
1 2 3 1 2 3
2 3 1 2 3 1
3 1 2 3 1 2
2 2 2 3 3 3
3 3 3 1 1 1
1 1 1 2 2 2
2 3 1 3 1 2
3 1 2 1 2 3
1 2 3 2 3 1




. (14)

Theorem 1. Consider the supersaturated design(C, D) generated by initial matricesCl =
(c1, . . . , cp) andDm = (d1, . . . , dq) and generating matricesTt

l andTt
m, as in Eqs.(12)

and(13).For all 1�k1, k2� t , we have the following:

(a) �2(c∗
i∗ , c∗

j∗)� t �2(ci , cj ), i∗ = (k1 − 1)p + i, j∗ = (k2 − 1)p + j,

1� i�j �p, i∗ �= j∗,
(b) �2(c∗

i∗ , d∗
j∗)� t �2(ci , dj ) i∗ = (k1 − 1)p + i, j∗ = (k2 − 1)q + j,

1� i�p, 1�j �q,

(c) �2(d∗
i∗ , d∗

j∗)� t �2(di , dj ), i∗ = (k1 − 1)q + i, j∗ = (k2 − 1)q + j,

1� i�j �q, i∗ �= j∗.

(15)

Theorem 1 provides the property of assuring the maximum�2 values in the resulting
designs. This is convenient for design construction. Specifically, the maximum�2(c∗

i∗ , c∗
j∗)

satisfies

max{�2(c∗
i∗ , c∗

j∗)}�
{

t max{�2(ci , cj )}, (i �= j),

tml(l − 1), (i = j),
(16)

wherei∗=(k1−1)p+i, j∗=(k2−1)p+j , and 1�k1�k2� t . This suggests the importance
of selecting initial matrices as well as generating matricesTt

l andTt
m.
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Inequality (16) implies that a small value of the maximum�2 value in the initial design
matrix implies a small value of the maximum�2 value in the resulting design matrix. It also
implies the possibility to generate a design matrix whose maximum�2 value is lower than
the level specified by the right-hand side of Inequality (16). For example, forl = 2,m = 3,

t = 2, c = (1,1,1,2,2,2), andT2
2 =

(
0
0

0
1

)
, the�2 value between the two constructed

vectors byT2
2⊕c is 0; while the upper bound specified by Inequality (16) is 12. Although the

above is a case of twol-level (orm-level) columns, similar properties hold on the maximum
�2 value between onel-level and onem-level columns.

4. Two-level and three-level designs

We first consider the case oft =1. For anyc ∈ C6
2 andd ∈ D6

3, �
2 value varies as follows:

�2(ci , cj ) ∈ {23,6}, �2(ci , dj ) ∈ {0,4} and�2(di , dj ) ∈ {3,6,12}. It is desirable to explore
designs which maintain low level of�2 values, such as�2(ci , cj ) = 2

3 and�2(di , dj ) = 3.
Mixed two- and three- level supersaturated design can thus be constructed as follows:

C2 =




1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2 2 2
1 2 2 2 1 1 1 2 2 2
2 1 2 2 1 2 2 1 1 2
2 2 1 2 2 1 2 1 2 1
2 2 2 1 2 2 1 2 1 1




, D3 =




1 1 1 1 1
2 1 2 3 3
3 2 3 3 1
1 2 2 2 2
2 3 3 1 2
3 3 1 2 3




(17)

The designsC2, D3 were constructed by a lexicographical enumeration and a computer
search, respectively. These designs are justified by the following properties:

• Amixed-level supersaturated design(C2, D3) satisfies�2(ci , cj )= 2
3 and�

2(di , dj )=3.
• A two-level supersaturated designC2 and a three-level supersaturated designD3 are op-
timal in terms of�2 efficiency, respectively. Thus the mixed-level supersaturated design
(C2, D3) is also optimal in terms of�2 efficiency.

The following Lemma implies the difficulty to construct supersaturated designs with the
property of�2(ci , cj ) = 2

3 and�2(ci , dj ) = 0. Specifically,�2 values between a two-level
column and any three-level column in the setD6 must consist of four 0s and six 4s. This
implies the impossibility of keeping�2(ci , dj ) = 0 with more than four two-level columns.

Lemma 1. Let S = {c1, . . . , c10} be a set of two-level columns from the setC6
2 satisfy-

ing �2(ci , cj ) = 2
3 (i �= j). For any pair of three-level columnsd, d′ ∈ D6

3, we have∑10
i=1�

2(ci , d) = 24 for each vectord ∈ D6
3.

This Lemma can be regarded as an extension from the results in two-level and mixed-
level supersaturated design including orthogonal designs (Yamada and Lin, 1997; Yamada
and Matsui, 2002). The proof is given in the Appendix.
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For the case oft �2, we apply a computer search to obtain the generating matrices
Tt
2 andTt

3, while C2 andD3 in Eq. (17) are treated as initial design matrices. Further-
more, we only consider designs forrm = rl = t . The outline of searching algorithm is as
follows:

• Step1: A pair of generatingmatricesTt
2 andTt

3 are constructed by using uniform random
numbers.When thematrices have at least one pair of equivalent columns, another pair of
generatingmatrices is constructed.Without loss of generality, the first row in thematrices
are all zeros. The pair of generatingmatrices is dealt with a candidatemixed-level design.

• Step2: We update a mixed-level supersaturated design using the candidate design in the
previous step.

◦ If the value of max�22,2 in the candidate mixed-level design is lower than the
value in the tentative design, then the tentative design is replaced by the candidate
design.

◦ If the value of max�22,2 in the candidate mixed-level design is higher than the value
in the tentative design, then the examination of the candidate design is terminated.
Return to Step 1.

◦ If the value of max�22,2 in the candidate mixed-level design is equal to the value in
the tentative design, the candidate design is compared to tentative design matrix in
terms of max�22,3.

• Step3: The update procedure compares the candidate design to the tentative design in
terms of max�22,2, max�

2
2,3, max�

2
3,3, ave�

2
2,2, ave�

2
2,3 and ave�23,3, sequentially. We

have investigated other orders of sequence, the resulting designs are rather similar, and
thus are not reported here.

• The above algorithm is iterated 100,000 times.

The resulting (generating)matricesare shown inTable 1. Thesedesignsare thenevaluated
in termsof the number of columns,maximumandaverage�2 values and�2eff. The summary
of evaluation is displayed inTable 2.
For a mixed two- and three-level design, the run size must be a multiple of six. As

seen in Table 2, the proposed construction method is able to generate all these mixed-level
supersaturated designs, whereas, all previous studies can only generate design with some
specific run sizes, such asn = 12,24. As such, the proposed method has an advantage
of flexibility of number of columns. Furthermore, a straightforward comparison with the
previous studies is difficult because the previous study only involves specific number of
runs/columns and the numbers of columns are different from the resulting designs in this
paper. In terms of the maximum�2 value, however, the resulting designs are better than or
equal to the previous designs.
The proposed construction method works well for relatively small numbers of runs.

This can be seen from Table 2, along with Lemma 1. For larger numbers of runs, the
decreasing�2eff along with the number of runs is an evidence for potential improvement.
Moreover, some of the maximum values in the resulting designs fort �2 are rather small
(as compared to the bound specified in Theorem 1). This fact indicates that the random
search for generating matricesTt

2 andTt
3 works well.
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Table 1
The generating matrices(t = 2,3, . . . ,8)

t Tt
2 Tt

3

2

(
0 0
0 1

) (
0 0
1 2

)

3


0 0 0
0 1 1
1 0 1





0 0 0
0 1 2
0 2 1




4



0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1






0 0 0 0
0 1 2 2
2 0 0 2
2 1 2 0




5




0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0







0 0 0 0 0
0 0 1 1 1
0 1 0 0 2
2 1 0 0 1
2 0 1 2 2




6




0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 1
0 0 0 1 1 0
0 0 1 0 0 0
0 1 1 1 1 1







0 0 0 0 0 0
0 1 1 2 2 2
1 0 1 0 2 2
1 2 1 0 1 2
1 2 2 1 1 0
2 2 1 1 1 1




7




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 0 1 1
0 1 1 1 1 0 1
0 1 1 0 1 1 0
0 1 0 0 0 0 1







0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 2 0 1 1 1 2
1 2 1 1 1 2 0
0 2 2 0 1 2 0
2 1 0 0 2 1 2
1 0 1 1 0 1 0




8




0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 1 1 1 0 0 1
1 1 1 1 1 0 1 0
0 1 1 1 0 1 1 1
0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 0







0 0 0 0 0 0 0 0
0 0 1 1 2 2 2 2
1 2 0 2 1 1 2 2
0 2 1 1 0 2 0 1
2 2 1 2 1 2 0 1
0 0 2 2 2 2 1 0
1 1 0 1 2 2 0 2
0 1 0 1 1 1 2 0




5. Concluding remarks

In this paper, we proposed a general construction method for mixed-level supersaturated
design. The proposed method has three major advantages: (1) this procedure does not
require iterative computation to generate mixed-level design; (2) the maximum�2 values
are under control, and (3) this procedure allows various levels combination. We also apply
the method to construct two-level and three-level supersaturated designs. The essences of
such an application are the selection of initial design matrices and the generating matrices.
The theoretical justification of the design optimality (on�2 efficiency) with the optimal
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Table 2
The properties of the resulting designs

�222 �233 �223 Full design

t n p D.s. Max Ave �2eff Q D.s. Max Ave �2eff Max Ave D.s. �2eff

1 6 10 2.00 0.67 0.67 1.00 5 2.00 3.00 3.00 1.00 4.00 2.40 4.00 1.00
2 12 20 1.82 1.33 0.63 0.82 10 1.82 6.00 3.60 0.61 6.00 2.40 3.64 0.83
3 18 30 1.76 2.00 0.90 0.53 15 1.76 9.00 2.57 0.77 5.33 2.40 3.53 0.79
4 24 40 1.74 2.67 0.62 0.74 20 1.74 12.00 3.57 0.52 4.00 2.40 3.48 0.77
5 30 50 1.72 3.33 0.81 0.55 25 1.72 31.20 4.57 0.40 5.60 2.23 3.45 0.71
6 36 60 1.71 4.00 1.03 0.42 30 1.71 42.00 6.21 0.29 14.00 2.29 3.43 0.61
7 42 70 1.71 7.71 1.09 0.40 35 1.71 53.14 6.97 0.25 16.00 2.52 3.41 0.55
8 48 80 1.70 12.00 1.09 0.39 40 1.70 96.00 6.78 0.26 18.50 2.57 3.40 0.55

d.s.= degree of saturation
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initial designs forn = 6 is given (see Lemma 1). For other cases, the random search for
generating matrices works well, although improvement in the efficiencies seem possible.
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Appendix. Proofs

Proof of Theorem 1. First, consider Case (i). Obviously,�2(c∗
i∗ , c∗

j∗) has a maximum�2

value among possible paired columnswhenc∗
i∗ =(c�

i , . . . , c�
i )� andc∗

j∗ =(c�
j , . . . , c�

j )�.
Under this condition,�2 value betweenc∗

i∗ andc∗
j∗ is

∑
(a,b)∈P2

(tnab(c∗
i∗ , c∗

j∗) − t lm/l2)2

t lm/l2

= t
∑

(a,b)∈P2

(nab(ci , cj ) − lm/l2)2

lm/l2
= t�2(ci , cj ). (18)

The above equation implies the inequality given in the theorem. In the same manner,
Case (ii) onel-level column and onem-level column and Case (iii) twom-level columns
are obtained. �

Proof of Lemma 1. Let � be a permutation defined on the set of numbers{1,2, . . . , l}.
For any columnc ∈ Cn

l , �(c) denotes the vector inCn
l satisfying thatjth element of�(c)

is equivalent to�(cj ), wherecj is thejth element ofc. Then it is easy to see that∀(c, d) ∈
Cn

l × Dn
m, �

2(c, d) = �2(�(c), d). We introduce a relation∼ on the setCn
l satisfying that

c ∼ c′ if and only if there exists a permutation� satisfying�(c) = c′. It is clear that the
relation∼ is an equivalence relation.

Whenl = 2, each equivalence class of the system(Cn
2, ∼) consists of 2 columns. Addi-

tionaly, forn=6,c ∼ c′ if and only if�2(c, c′)=6 and thusc /∼ c′ if and only if�2(c, c′)= 2
3.

Since the setC6
2 contains 20 columns, the system(C

6
2, ∼) has 10 equivalence classes. From

the assumption, the setS = {c1, . . . , c10} satisfies thati �= j implies�2(ci , cj ) = 2
3 i.e.,

ci /∼ cj . Thus, the setSof 10 columns is a set of class representatives.
Next, we consider a permutation� defined on the set of indices{1,2, . . . , n}. For any

column vectorx ∈ Cn
l ∪ Dn

m, �(x) denotes the column vector obtained by changing the
indices of elements ofx by the permutation�. Clearly,c ∼ c′ if and only if�(c) ∼ �(c′) for
any pair of vectorsc, c′ ∈ Cn

l . SinceSis a set of class representatives of the system(C6
2, ∼),

for any permutation� on {1,2, . . . ,6}, there exists a bijectionf : S → S satisfying that
c ∼ f (�(c)) for eachc ∈ S.
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Lastly, we show the desired equality. Letd andd′ be a pair of vectors inD6
m. Then

there exists a permutation� on {1,2, . . . ,6}, satisfying that�(d) = d′. From the previous
discussion, there exists a bijectionf : S → S satisfying∀c ∈ S, c ∼ f (�(c)). Thus, we
have the following result:

10∑
i=1

�2(ci , d)=
10∑
i=1

�2(�(ci ), �(d)) =
10∑
i=1

�2(f (�(ci )), �(d))

=
10∑
i=1

�2(ci , �(d)) =
10∑
i=1

�2(ci , d′).

The desired result can be shown form = 3 by a straightforward calculation.�
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