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SUMMARY

Massive data sets are becoming popular in this information era. Due to the limitation of computer memory
space and the computing time, the kernel density estimation for massive data sets, although strongly
demanding, is rather challenging. In this paper, we propose a quick algorithm for multivariate density
estimation which is suitable for massive data sets. The term quick is referred to indicate the computing
ease. Theoretical properties of the proposed algorithm are developed. Its empirical performance is
demonstrated through a credit card example and numerous simulation studies. It is shown that in addition
to its computational ease, the proposed algorithm is as good as the traditional methods (for the situations
where these traditional methods are feasible). Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most statistical inferences heavily depend on distribution theory (the density function). A
density can give an intuitive picture of such characteristics as skewness of the distribution or the
number of modes. A further advantage of having an estimate of the density is ease of
interpretation for non-statisticians. Many statisticians would explain the normal distribution by
drawing the familiar bell-shaped curve rather than writing out the explicit formula for the
density of the normal distribution. Manku et al. [1] note that it is common in the database field
to keep summaries of the variables in the form of equi-depth histograms. Density estimation is
an important and long-studied problem. One application, for example, is in the area of network
routing. Network routing decisions, and hence quality of service for the network users (see
Kesidis [2]), could be improved by having more accurate summaries of the distributions of the
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historical traffic data, in particular the tails of these distributions. Another application is in the
area of Markov chain Monte Carlo (MCMC) analysis where simulations routinely generate
massive amounts of data. A further application is in the computation through simulation of
critical values and percentile points of new statistics whose distributions are unknown (see Dunn
[3]). However, creating and maintaining these histograms can be quite costly. This is especially
true for massive data sets.

In the past decade, we have witnessed a revolution in information technology. Routine
collection of systematically generated data is now commonplace. As a consequence, massive
data sets are becoming more and more common in modern society. Databases with hundreds of
fields, billions of records and terabytes of information are not unusual. They arise from sources
as diverse as large call centres, internet traffic data, sales transactional records, or satellite feeds.
Typical examples, as mentioned in Hand et al. [4], include, Barclaycard (U.K.) carries out 350
million transactions a year; Wal-mart makes over 7 billion transactions a year; and AT&T
carries over 70 billion long distance calls annually. This phenomenon presents a clear need to be
able to process the data accurately and efficiently so that current analyses may be performed
before becoming inundated by a continually growing store of data. It becomes very challenging
to extract useful features from a large data set because many statistics are difficult to compute by
standard algorithms or statistical packages when the data set is too large to be stored in primary
memory. As such, the classical methods for density estimation are not feasible for massive data
sets. In this paper, we propose a quick, low-storage and efficient approach for multivariate
density estimation.

This paper is organized as follows. In Section 2, we first review the ordinary kernel density
estimation method and then formally introduce the quick kernel density estimation method.
The term quick is used here to indicate the computational ease of the proposed method, in
addition to its high efficiency (as compared to the ordinary kernel density estimation). Section 3
discusses the proposed methods for marginal and conditional kernel estimation. Asymptotic
properties of the proposed method are discussed in Section 4. Section 5 gives a thorough
simulation study, followed by a case study of a credit card company. Final conclusions are given
in Section 6.

2. QUICK DENSITY ESTIMATION

Consider the data Xi ¼ ðXi;1; . . . ;Xi;dÞ; for i ¼ 1; . . . ; n; are independent and identically
distributed and have the density function f on Rd : The purpose of this study is to estimate
the value of f ðbJÞ; for each bJ 2 ½c0; c1�d : Here, c0 and c1 are taken such that all data points fall
inside the region ½c0; c1�d ; bJ ¼ ðbj1 ; . . . ; bjd Þ are equally spaced partition points of ½c0; c1�d ; J ¼
ðj1; . . . ; jdÞ 2 Zd ; bj ¼ j � b; and b ð¼ bnÞ tends to 0 as n!1: Of course, the smaller the value of
b; the finer the grid of bJ :

2.1. The ordinary kernel density estimators

Given the kernel function K as a probability density function supported on ½�1; 1� and the
bandwidth h ¼ hn tending to 0 as n!1; the ordinary kernel density estimator #f ORDðbJ Þ [5] for
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f ðbJÞ is defined by

#f ORDðbJÞ ¼ n�1h�d
Xn
i¼1

KJ;i

for each bJ 2 ½c0; c1�d ; where KJ ;i ¼
Qd

u¼1 Kfðbju � Xi;uÞ=hg:
It is well known that, in the sense of having smaller asymptotic mean square error, the

optimal kernel function K for #f ORD is the Epanechnikov kernel KðzÞ ¼ ð3
4
Þð1� z2ÞI½�1;1�ðzÞ [6]. In

practice, for automatically choosing the value of h; the least squares cross-validation criterion
[7, 8] is one of the most popular methods. Given the value of b; it is designated to take the
selected value #hORD of h as the minimizer of

LSCVORDðhÞ ¼ bd
X
J2C

#f ORDðbJÞ
2 � 2n�1

Xn
i¼1

#f ORD;iðbnJ ;iÞ

over h: Here #f ORD;i is #f ORD based on the sample with Xi deleted, b
n
J;i is the partition point bJ

closest to Xi; and C is the collection of the values of the subindex J with bJ 2 ½c0; c1�d :
To obtain the values of #f ORDðbJ Þ; for all bJ 2 ½c0; c1�d ; the number of values of Kð�Þ needed

to be computed is ðbd þ nÞ � d � n: Here and throughout this paper, b ¼ ½ðc1 � c0Þ=b�
and the notation ½u� denotes the integer part of u: The larger each value of b; d; and n;
the more the computation time needed by #f ORD: For a massive data set, this is typically
infeasible.

Take bivariate density estimation, as will be seen in Section 5.1, as a simple illustration. For
the specific case, we have b ¼ 1601; d ¼ 2; n ¼ 106; and 101 values of h: Given the
Epanechnikov kernel, each value of Kð�Þ is obtained by performing two subtractions and three
multiplications. Using the personal computer for evaluating 1601 values of #f ORDðbJÞ; as will be
described in Section 5.1, the computation time for 1601� 2� 106 values of Kð�Þ is about
832 s. Thus, the computation time for finding #hORD with that data set is estimated to be
832� 1601� 101=ð86 400� 365Þ þ 832� 106 � 101=ð1601� 86 400� 365Þ ¼ 5:93 years, where
the first quantity is the estimated computation time for

P
J2C

#f ORDðbJÞ
2; and the second one is

for
Pn

i¼1
#f ORD;iðbnJ;iÞ: This is clearly unacceptable.

2.2. Quick kernel density estimation

We now give the formulation of our proposed quick kernel density estimator. It is constructed
in two stages. In the first stage, the original data Xi are transformed into the equally spaced
pseudo-data #YðbJ Þ at bJ 2 Rd : Given the kernel function W as a probability density function
supported on ½�1; 1� and the bandwidth g ¼ rb=2; where r51; #YðbJÞ are defined by

#YðbJ Þ ¼ n�1g�d
Xn
i¼1

WJ;i

whereWJ ;i ¼
Qd

u¼1 Wfðbju � Xi;uÞ=gg: If r51; then there might be some Xi not used to construct
the pseudo-data #YðbJÞ:

In the second stage for producing our proposed estimator, the Nadaraya–Watson estimator
[9, 10] is applied to smooth the equally spaced pseudo-data fbJ ; #YðbJÞg: Given both the kernel
function K and the bandwidth h employed by #f ORD; our suggested quick estimator #f QCKðbJÞ for
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f ðbJÞ is defined by

#f QCKðbJ Þ ¼
X
I2CJ

KJ ;I
#YðbI Þ

,X
I2CJ

KJ;I

for each bJ 2 ½c0; c1�d : Here KJ;I ¼
Qd

u¼1 Kfðbju � biuÞ=hg and CJ denote the collection of the
values of the subindex I ¼ ði1; . . . ; idÞ 2 C with jbju � biu j4h; for each u ¼ 1; . . . ; d: By the
formulation, the value of #f QCKðbJ Þ converges to that of #f ORDðbJ Þ; for each bJ ; as the value of b
decreases. This is always true, regardless the size of the data set (either massive or non-massive).

As will be shown in Section 4, under some regularity conditions, both estimators #f ORD and
#f QCK for f have the same asymptotic mean square error. Thus, in the sense of having smaller
asymptotic mean square error, the optimal kernel function K for producing #f QCK is the
Epanechnikov kernel, the same as that for producing #f ORD: There are only two candidates for
the optimal kernel W ; that is, the uniform kernel WðzÞ ¼ ð1

2
ÞI½�1;1�ðzÞ and the triangle kernel

WðzÞ ¼ ð1� jzjÞI½�1;1�ðzÞ; in the class of two degree polynomials (see Remark 4.1). Also, the
value of g has to be taken as g ¼ rb=2 with r as a positive integer.

From the computational aspect, for producing #f QCK; we suggest using only W as the uniform
kernel and taking the value of g ¼ b=2: In this case, to compute the equally spaced pseudo-data
fbJ ; #YðbJ Þg; we only need to perform the numerical division 1� n� d times and the subtraction
1� n� d times, and the resulting pseudo-data fbJ ; #YðbJÞg are the d-dimensional histogram at
bJ : On the other hand, if W is taken as the triangle kernel, then we need to perform the
numerical division 2� n� d times and the subtraction 2� n� d times to produce the pseudo-
data fbJ ; #YðbJÞg: Thus, we do not suggest using the triangle kernel to generate fbJ ; #YðbJÞg:

After the pseudo-data fbJ ; #YðbJÞg are obtained, given a value of h and a partition point bJ ; in
order to compute the value of #f QCKðbJ Þ; there are ð2½h=b� þ 1Þd values of KJ ;I ¼Qd

u¼1 Kfðbju � biuÞ=hg that are needed to be calculated. Due to the fact that the partition
points fbJg are equally spaced, to compute these values of KJ;I ; we only need to compute
2½h=b� þ 1 values of Kðjb=hÞ; for j ¼ 0;�1; . . . ;�½h=b�: Further, the same values of KJ ;I can be
used to evaluate #f QCK at all partition points bJ : Thus, to compute #f QCKðbJ Þ at all bJ ; there are
only 2½h=b� þ 1 values of Kð�Þ needed to be evaluated. On the other hand, to compute the values
of #f ORDðbJ Þ at all bJ ; the total number of the values of Kð�Þ needed to be computed is bd � n� d:
Comparing the two discussed estimators on computation efficiency, we conclude that, in
practice, if 2½h=b� þ 15bd � n� d; then #f QCK has the computation advantage over #f ORD;
whether the given data set is of massive or non-massive size. The larger each value of b; d; and n;
or the smaller the value of ½h=b�; the more significant the computation advantage of our
proposed #f QCK over #f ORD:

In practice, for choosing the value of h for constructing #f QCK; the idea of cross-validation [11]
in the non-parametric regression field can be considered. Given the value of b and the equally
spaced pseudo-data fbJ ; #YðbJ Þg; the selected value of h is taken as the minimizer #hQCK of

CVQCKðhÞ ¼
X
J2C

f#f QCK;JðbJÞ
2 � #YðbJ Þg

2

over h: Here #f QCK;J is #f QCK with fbJ ; #YðbJÞg deleted.
In the case of d ¼ 1; there are some estimators related to our proposed #f QCK in the literature.

Considering computation efficiency, Fan and Marron [12] use g ¼ b and the triangle kernel to
produce the pseudo-data fbJ ; #YðbJÞg; and then apply the local linear estimator [13, 14] to
smooth the pseudo-data. Considering asymptotic properties, Wu and Chu [15] and Cheng [16]
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employ g ¼ b=2 and the uniform kernel to produce the pseudo-data fbJ ; #YðbJ Þg; and then apply,
respectively, the Gasser–Müller estimator [17, 18] and the local linear estimator to smooth the
pseudo-data. The Nadaraya–Watson, the Gasser–Müller, and the local linear estimators are
popular in the smoothing field. For characteristics of the three estimators, see, for example, Wu
and Chu [15] and Chu and Marron [19]. Note that the proposed #f QCK has the same asymptotic
mean square error as those related estimators. However, the proposed #f QCK has the
computation advantage over them, because each of the uniform kernel used in the first stage
and the Nadaraya–Watson estimator used in the second stage requires only the very least
computation burden. In this paper, we are able to further extend #f QCK to the multivariate cases.

3. QUICK MARGINAL AND CONDITIONAL KERNEL DENSITY ESTIMATORS

Recall that J ¼ ðj1; . . . ; jdÞ 2 Zd and bJ ¼ ðbj1 ; . . . ; bjd Þ 2 R
d : Given positive integers q and k with

14q; k4d and qþ k4d; set bJ;q ¼ ðbj1 ; . . . ; bjq Þ; bJ;k;q ¼ ðbjqþ1 ; . . . ; bjqþk Þ; fq as the density
function of ðXi;1; . . . ;Xi;qÞ; fkjq as the conditional density function of ðXi;qþ1; . . . ;Xi;qþkÞ given a
value of ðXi;1; . . . ;Xi;qÞ; and F1jq as the conditional distribution function of Xi;qþ1 given a value of
ðXi;1; . . . ;Xi;qÞ: Furthermore, given p 2 ð0; 1Þ and bJ ;q 2 ½c0; c1�q; let zp;q denote the conditional pth
quantile of F1jqðxjbJ;qÞ; that is, the root of F1jqðxjbJ;qÞ ¼ p: Assuming that fqðbJ ;qÞ > 0 and the root
is unique, one can estimate fqðbJ ;qÞ; fkjqðbJ ;k;qjbJ;qÞ; and zp;q by using the values of #f QCKðbJÞ:

The marginal kernel density estimate #f QCK;qðbJ ;qÞ for fqðbJ ;qÞ is then defined by

#f QCK;qðbJ ;qÞ ¼ bd�q
X

ðjqþ1;...;jd Þ:ðj1;...;jd Þ2C

#f QCKðbj1 ; . . . ; bjd Þ

for each bJ;q 2 ½c0; c1�q: Given the values of #f QCKðbJÞ; to obtain such #f QCK;qðbJ;qÞ for all bJ ;q 2
½c0; c1�q; the computation effort required is to perform numerical addition bðd�qÞðd�qþ1Þ=2 times.

Set #f QCKðbJ;qÞ and #f ORDðbJ;qÞ as the quick and the ordinary kernel density estimators applied
directly to the q-dimensional data ðXi;1; . . . ;Xi;qÞ: Through a straightforward calculation, the
value of #f QCK;qðbJ ;qÞ is the same as that of #f QCKðbJ;qÞ: Combining the result with the discussions
for both #f QCK and #f ORD given in Section 2, the estimator #f QCK;qðbJ;qÞ for fqðbJ;qÞ has the same
asymptotic mean square error as #f ORDðbJ;qÞ: But the former has the computation advantage,
since it is produced from #f QCKðbJÞ by only performing numerical addition.

The conditional density estimate #f QCK;kjqðbJ;k;qjbJ ;qÞ for fkjqðbJ;k;qjbJ ;qÞ is defined by

#f QCK;kjqðbJ;k;qjbJ ;qÞ ¼ #f QCK;qþkðbJ ;qþkÞ=#f QCK;qðbJ ;qÞ

for each bJ;k;q 2 ½c0; c1�k: If #f QCK;qðbJ;qÞ ¼ 0; then take #f QCK;kjqðbJ;k;qjbJ ;qÞ ¼ 0: To estimate the
conditional pth quantile zp;q; set

#FQCK;1jqðbj jbJ ;qÞ ¼ b
X
i:i4j

#f QCK;1jqðbijbJ;qÞ

as an estimate of F1jqðbj jbJ;qÞ: Our estimate #zQCK;p;q for zp;q is taken as the value of bj such that
the corresponding value #FQCK;1jqðbj jbJ ;qÞ is the closest to p over the subindex j: Similar
computation procedures can be applied to estimate the values of the marginal and the
conditional density functions, and the conditional quantiles for any selected dimension among
the d dimensions of the data.
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4. ASYMPTOTIC PROPERTIES

The asymptotic behaviours of our proposed quick kernel density estimators will be studied
under the following assumptions. These assumptions are commonly made in essentially all
classical density estimation literature [5].

(A1) The d-variate density function f is positive on Rd ; and each of its second order partial
derivatives is Lipschitz continuous on Rd :

(A2) The kernel functions K and W are Lipschitz continuous and symmetric probability
density functions with support ½�1; 1�:

(A3) The values of h and b satisfy h > b; and are selected on the interval Hn ¼ ½mn�1þd;m�1

n�d�: Here the positive constants m and d are arbitrarily small.
(A4) The total number of observations in this density estimation setting is n; with n!1:

The values of h and b satisfy h�2b! 0 and n�1h�d ! 0; as n!1:

Theorem 4.1 gives the asymptotic bias and variance of #f QCK;q; and those of #f QCK;kjq and
#zQCK;p;q: The proof is similar to the one given in Wu and Chu [15] and thus omitted here
(although it is available through the authors). To state Theorem 4.1, we introduce the following
notation. Set kS ¼

R 1
�1 KðuÞ

2 du;k2 ¼
R 1
�1 u

2KðuÞ du;bq ¼
Pq

i¼1 fq;ii;wr ¼ r�1
Pr

i¼�r W *Wði=rÞ;
for q ¼ 1; . . . ; d; where, fq;ii is the iith second order partial derivative of the density function fq; r
is the largest integer which is strictly less than 2r; and the notation * denotes convolution.

Theorem 4.1
Given the positive value r; if the assumptions given in Section 2 and (A1)–(A4) hold, then the
asymptotic bias and variance of #f QCK;q and those of #f QCK;kjq and #zQCK;p;q can be expressed,
respectively, as

Biasf#f QCK;qðbJ ;qÞg ¼ 1
2
h2k2bqðbJ ;qÞf1þ oð1Þg ð1Þ

Varf#f QCK;qðbJ;qÞg ¼ n�1h�qfqðbJ ;qÞk
q
Sw

q
rf1þ oð1Þg ð2Þ

Biasf#f QCK;kjqðbJ ;k;qjbJ;qÞg ¼ 1
2
h2k2ffqðbJ;qÞ

�1bqþkðbJ ;qþkÞ

� fqðbJ;qÞ
�2fqþkðbJ ;qþkÞbqðbJ;qÞgf1þ oð1Þg ð3Þ

Varf#f QCK;kjqðbJ ;k;qjbJ;qÞg ¼ n�1h�q�kkqþkS wqþk
r fqþkðbJ;qþkÞfqðbJ ;qÞ

�2f1þ oð1Þg ð4Þ

Biasð#zQCK;p;qÞ ¼ 1
2
h2k2ðF1jq=f1jqÞðzp;qjbJ ;qÞ fqðbJ ;qÞ

�1bqðbJ;qÞ
�

�
Z zp;q

�1
bqþ1ðbJ;q; uÞ du

�Z zp;q

�1
fqþ1ðbJ;q; uÞ du

�
f1þ oð1Þg ð5Þ
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Varð#zQCK;p;qÞ ¼ n�1h�qkqSw
q
r ðF1jq=f1jqÞ

2ðzp;qjbJ;qÞfqðbJ;qÞ
�1 1� wrf

þ wr

Z 1
zp;q

fqþ1ðbJ ;q; uÞ du

,Z zp;q

�1
fqþ1ðbJ ;q; uÞ du

)
f1þ oð1Þg ð6Þ

for 05p51; and 14q; k4d with qþ k4d:

Remark 4.1
A comparison between #f ORD and #f QCK on their asymptotic mean square error can be drawn by
comparing Equations (1)–(2) and Equations (9)–(10) of Silverman [5].

* Both estimators have the same asymptotic bias, but their asymptotic variances are not
comparable in magnitude since it is not known whether wr > 1 or wr51: When wr ¼ 1;
both estimators have the same asymptotic variance.

* If W is the uniform kernel for each positive integer r; or if W is the triangle kernel for each
even positive integer r; then wr ¼ 1:

* If W is taken as the other kernel in the class of two degree polynomials satisfying the
conditions in (A2), then, by numerical computation, we have wr > 1; for each positive
integer r:

* Using the Riemann sum approximation and the fact that W *W is a probability density
function, if r!1; then wr ! 1: Hence, both estimators could have the same asymptotic
mean square error.

Remark 4.2
A brief summary is made below for the practical choice of the kernel functions W and K and
that of the values of the smoothing parameters r; b; and h for constructing our quick estimators
#f QCK;q; #f QCK;kjq; and #zQCK;p;q: By the results in Remark 4.1 and by the consideration of potential
computational burden, we suggest only using W as the uniform kernel and the value of r as 1:
Furthermore, we suggest using the value of #hQCK for #f QCKðbJ Þ to compute all these quick
estimators.

5. EMPIRICAL STUDIES

In this section, we provide some empirical studies for the performance of the proposed method.
We first show some simulation studies, followed by a case study from commercial banking data.
The proposed method works very well in all cases.

5.1. Simulation study

The entire simulation study was performed via a personal computer under the operation system:
Microsoft Windows (Second edition), Genuine Intel x86 Family 15 Model 0 Stepping 10 with
1.4GHz and 100MB RAM. The software GAUSS was employed for all computations;
computer codes are available upon request through the authors. Both univariate and
multivariate cases were studied.
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5.1.1. Univariate simulation. For the univariate cases, three density functions were considered:
the standard normal Nð0; 1Þ; the mixture of two normals 9

10Nð0; 1Þ þ
1
10Nð10; 9Þ; and the heavy

tail Cauchy(0,1). The following steps were taken.

1. For each data set, a random sample of size n ¼ 106 were generated based on the pre-
specified density function.

2. Given the value of b ¼ 0:01; equally spaced pseudo-data were produced by using the
uniform kernel and the value r ¼ 1 on the equally spaced grid of 10 001 values of bj in
½�50; 50�: The density values were also estimated on the same grid of bj :

3. The cross-validated bandwidth #hQCK was chosen for constructing #f QCKðbjÞ; the values of
CVðhÞ were calculated on the equally spaced logarithmic grid of 101 values of h in ½0:01;
0:5�:

4. Likewise, the optimal value of bandwidth hISE was taken as the minimizer of integrated
squared error ISEðhÞ; defined by ISEðhÞ ¼

R 50
�50 f

#f QCKðzÞ � f ðzÞg2 dz: For each given value
of h; the value of ISEðhÞ was approximated by b�1

P
j:bj2½�50;50� f

#f QCKðbjÞ � f ðbjÞg
2:

5. After evaluation on the grid, the global minimizers hISE of ISEðhÞ and #hQCK of CVðhÞ were
taken on the grid.

6. Repeat Steps 1–5 for 100 times. After the values of hISE for each of the 100 data sets were
obtained, the sample average and standard deviation of the corresponding ISEðhISEÞ values
were calculated. The former measures the best performance of #f QCK: While the sample
average of ISEð#hQCKÞ over the 100 data sets measures the performance of #f QCK which can
also be obtained in practice by using the cross-validated bandwidth. The simulation results
for the univariate cases are summarized in Table I and Figure 1.

Displayed in Figure 1 are

(1a) Plot of the true Nð0; 1Þ density function (bold-faced dashed curve) and five density
estimates derived from five sets of the simulated data by #f QCK using #hQCK (solid curves).

(1b) Plot of the true Nð0; 1Þ cumulative distribution function (bold-faced dashed curve) and
five cumulative distribution estimates derived from the five data sets employed in (1a) by
#FQCK using #hQCK (solid curves).

(1c) Plot of the true Nð0; 1Þ quantile function (bold-faced dashed curve) and five quantile
estimates derived from the five data sets employed in (1a) by #zQCK using #hQCK (solid
curves).

The same description given in (1a)–(1c) for the Nð0; 1Þ density is then applied to the mixture
normal density and displayed in (1d)–(1f), respectively; while the same description given in
(1a)–(1c) for the Nð0; 1Þ density is applied to Cauchyð0; 1Þ density and displayed in (1g)–(1i),
respectively. Here, for a better visual comparison, the estimates in each (1a)–(1i) have been
vertically shifted. It is seen that the proposed method works very well in all cases.

5.1.2. Multivariate simulation. Consider a bivariate normal density with each marginal density
being Nð0; 1Þ density. The correlation coefficients r between two component of the bivariate
normal density were taken as 0; 0:3;�0:3; 0:9; and �0:9: For each given value of r; one million
random observations were generated. We then applied our procedure for density estimation.
Finally, we compare our results with the ‘true’ underlying densities.
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Table I. Mean (standard deviation) of univariate simulation results.

Nð0; 1Þ 0:9Nð0; 1Þ þ 0:1Nð10; 9Þ Cauchyð0; 1Þ

hISE hCV hISE hCV hISE hCV

f ðxÞ 0.1607 0.1374 0.1649 0.1465 0.1578 0.1377
(0.0179) (0.0284) (0.0179) (0.0269) (0.0151) (0.0181)

For integrated squared errors (multiplied by 10�6)
f ðxÞ 6.032 7.188 5.614 6.424 4.497 5.004

(1.811) (3.196) (1.576) (2.423) (1.241) (1.432)
FðxÞ 8.509 8.261 7.160 6.967 8.626 8.467

(3.030) (3.140) (2.560) (2.639) (3.727) (3.720)
F�1ðxÞ 32.50 30.82 50.11 48.67 2231.00 2228.00

(10.36) (11.24) (19.73) (20.29) (1656.00) (1655.00)

Running time (s) 277.6 287.2 286.2
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Figure 1. Simulation results: univariate cases.
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Specifically, for each bivariate data set, the density function values were computed on the
equally spaced grid of 1601� 1601 values of ðbi; bjÞ in ½�8; 8�2: The same grid of the values of h
for the univariate data set was also employed by the bivariate data set. The same computation
procedures used in the univariate case were also employed in the bivariate case. Note that there
is no way to compute #f ORD; since it costs too much computation time. The simulation results are
summarized in Figure 2. Displayed in Figure 2 are

(2a) Plot of conditional density for the bivariate density with r ¼ 0:
(2b) Conditional distribution for the bivariate density with r ¼ 0:
(2c) Conditional quantile estimates for the bivariate density with r ¼ 0:

The same descriptions given in Figures 2(a)–(c) with r ¼ 0 when applied to r ¼ 0:3 are
displayed in Figures 2(d)–(f); while the same descriptions given in Figures 2(a)–(c) applied to
r ¼ 0:9 are displayed in Figures 2(g)–(i). Note that for having better visual performance, all
estimates in Figures 2(a)–(i) were vertically shifted.
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Figure 2. Simulation results: multivariate cases.
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5.2. Credit card example

A commercial bank in Taiwan kindly offered the data set from one of its branches, which
contains n ¼ 739 654 records with more than 30 variables. Among them, four major variables
are of particular interest: age ðx1Þ; income ðx2Þ; expenditure ðx3Þ; and credit ðx4Þ: The proposed
procedure described in Section 2 is first used to estimate the (four-dimensional) joint density
distribution function. While the functional form of the density is rather complicated, some
graphical presentations are possible. Figure 3 shows all the pair-wise joint density estimates
using the cross-validated bandwidth; while Figure 4 shows all the (four) marginal distributions
as well as their corresponding conditional distributions. Figure 3 indicates some potential
interaction effects among all variables. This is helpful, as will be discussed below. Note that in
Figures 3 and 4, the measurement unit for the income variable is 103; for the expenditure
variable is 103; and for the credit variable is 104:

Figure 4(a) is the marginal distribution of age; its three quartiles (25, 50, and 75 percentile) are
marked, respectively, by dashed, long-dashed, and solid vertical lines. Figure 4(b) is the
conditional distribution of income, given that age is at its 25, 50, and 75 percentile values. Again
this is indicted via dashed, long-dashed, and solid vertical lines, respectively. Figure 4(c) is the
conditional distribution of expenditure, given that age is at its 25, 50, and 75 percentile values;
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while Figure 4(d) is the conditional distribution of credit, given that age is at its 25, 50, and 75
percentile values. These are, of course, examples for illustration. Once the joint density function
is obtained, we are able to (easily) estimate conditional distribution for any percentile. Similar
conditional distribution plots were made for income, expenditure and credit as the conditional
variables; Figures 4(e)–(h) for income, Figures 4(i)–(l) for expenditure, and Figure 4(m)–(p) for
credit, respectively.

The marginal distribution, as in Figures 4(a), (e), (i) and (m), provides a basic understanding
of each variable. For example, it is clear that age is near symmetric, while other variables are
rather skew, especially income. The high percentage in low income indicates some potential risk
issues for the policy of increasing the credit limits, and this is reflected in the current low credit
policy, as seen in Figure 4(m).

The conditional plots are also useful. Take Figures 4(b) and (d) as examples: Figure 4(b)
indicates that the distribution of income is somewhat irrelevant with age (all three curves are
nearly identical); while Figure 4(d) indicates that the distributions of credit for young, middle,
and old age group are quite different.

Furthermore, if the variable credit is under concern, we will focus on Figures 4(m), (d), (h)
and (l). The marginal distribution in Figure 4(m) shows a high portion of low credit and
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Figure 4. Credit card example: marginal and conditional distributions.
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relatively small portion for high credit, meaning a new policy on increasing the credit limits
should be considered. Conditional on credit, the conditional plot for other variables are
displayed in Figures 4(d), (h) and (l). It is shown that expenditure is somewhat irrelevant to
credit (all three curves are nearly identical), while age and income have interaction effects with
credit, especially for lower credit. Other observations can be made in a similar manner.

A discussion with the banking experts on these plots leads to the following conclusions (some
other conclusions are confidential and thus are omitted here). We identify three major targeted
groups and impose new policies for each group. These three main targeted groups are: (1) those
with young age, high income, middle expenditure and middle credit; (2) those with low middle
income, middle expenditure and low credit (age is insignificant here); and (3) those with middle
(to old) age, high income, middle expenditure and middle credit. Policy for group (1), for
example, is to increase their credit limits, provide more information and opportunities on
products, such as coupons, discount or free gifts. Policies for the other two groups were also
suggested accordingly.

6. CONCLUSION

While massive data sets are becoming popular, the conventional wisdom for density estimation
methods do not seem to be capable, mainly due to the limit of computing memory space and
computing times. A quick density estimation, based on the histogram approach, is proposed
here. It is shown, theoretically and empirically, that such a density estimation method works
well for both univariate and multivariate cases, and is extremely inexpensive, in terms of the
computational costs. A successful case study on banking data indicates the power of density
estimation. We anticipate more applications of this kind in the near future, especially for
multivariate massive data sets type problems.
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