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Ridge analysis in response surface methodology has received extensive discussion
in the literature, while little is known for ridge analysis in the multi-response case.
In this paper, the ridge path is investigated for multi-response surfaces and a large-
sample simultaneous confidence interval (confidence band) for the ridge path is
developed. Copyright (© 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

n important tool in response surface methodology (RSM) is the ridge analysis, originally introduced by

Hoerl! and Draper?. See also Hoerl® for a nice review. Suppose the true response function is f(x, 8),

where x is the vector of input variables and @ is the vector of model parameters, and suppose we
are interested in maximizing the response. Let g(6, r) = maxy,_,> f(x, #) be the constrained maximal mean
response, where r is the distance from the center of the experiment region. A ridge path is defined as the plot of
g(@, r) versus r. This is typically used to locate the optimal operating conditions.

In practice, we usually do not know the value of model parameters @ in advance and we have to use the
estimated value 6. The plot of g(é, r) versus r is not the true ridge path, merely an estimator. It is thus important
to find the confidence interval associated with the relevant estimator, to address the issue of the accuracy of the
estimation. Carter er al.* and Peterson® discussed such an issue for the single-response ridge analysis, but little
is known for the multiple-response case. Experimenters, however, often face the simultaneous optimization of
several response variables. In this paper, we construct an estimated ridge path for multiple response surfaces
and develop the corresponding confidence band.

This paper is organized as follows. We first define the ridge path in the case of multi-responses, based on
a desirability function approach. The confidence interval and confidence band about the ridge path are then
developed. Next, a real-life example is used for illustration and the empirical coverage rate of the confidence
band is validated via simulation. The conclusion and discussion are presented at the end. For simplicity of the
presentation, the theoretical derivation is given in Appendix A.
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RIDGE PATH WITH CONFIDENCE INTERVALS FOR MULTI-RESPONSE
SURFACES

Suppose there are m response variables with the ith true response function being

E(Y) = f(x,0;) (D
fori =1, ..., m, where Y; is the ith response, and x and @; are the vectors of input variables and model
parameters. Here, each f(x, 6;) is assumed to be a linear function of 6;. Let § = @, ...,8,,) be the vector

which includes all of the model parameters. One popular method in multiple response optimization is the
desirability function approach suggested by Harrington® and later modified by Derringer and Suich’, and
Del Castillo er al.3.

The basic idea is to use a group of functions d;(-), called desirability functions, to transform the expected
responses into values in [0, 1], showing how ‘desirable’ the optimization results are, the larger the better.
The overall desirability function can thus be defined as the geometric mean

m I/m
Dmm=(ﬂ¢wmﬂ (2)
i=1

A natural definition for a multi-response ridge path is thus the plot of g(#, r) versus radius r, where

(8, r)= max D(x, 0) (3)

X'x==p2

An estimator of the ridge path is the plot of g(é , r) versus r, where the estimator of the parameters 6 is obtained
by fitting multivariate linear regression models.

After taking a logistic transformation, as shown in Appendix A, we can construct a 100(1 — )% asymptotic
confidence interval of logit(g(@, r)) by the Delta method (e.g. Serﬂing9 (p. 118)) in the form of

[L, U] = logit(g(8, r)) = za2 - () (4)

where ¢(r) is the estimated standard error of logit(g(é , 1)) (see Appendix A for the formula) and z4/2 is the
upper a/2 critical value of N(O, 1). Thus a 100(1 — )% large-sample confidence interval for g(@, r), at each
fixed r, may take the form of

U

expt ex '
P P (5)
1 4expt 1-+exp

Since our ridge path plot involves all of the different radii, we need to construct a 100(1 — )% simultaneous
confidence band for g(@, r) or logit(g(@, r)). Namely,

p llogit(g (8, r)) — logit(g(@, )]
c(r)

§,oa,‘v’r>0)il—oz (6)

where p, is some critical value (e.g. Miller'? (p. 49)). Note that if py = zg/2, the above equation will be
equivalent to (4).

If the experimenter is only interested in several (say ¢, instead of infinitely many) discrete values of r, the
critical value of zq/» can be replaced by za/24 in (4), based on Bonferroni’s adjustment (e.g. Miller!'? (p- 8)).
For the case when r can take any values in an interval, Scheffé!! provided a simultaneous confidence band
for a linear response surface using the critical value (pFj ,_ p)l/ 2, where # is the number of observations and
p is the number of model parameters. Such a critical value can be very conservative. Peterson’s simulations
showed that (2F) 172 can be a good approximate critical value for a confidence band about a ridge trace

n—p
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Table 1. Specified values used in the SOVRING example

Response  Objective y;“i“ y g b; Vi
yi Maximize 200 600 400 54.592  0.025
¥y Maximize 400 1200 800 109.183  0.025

for a mean response surface. Peterson!? stated that, heuristically, this should be the case for a ridge trace and
associated x-coordinate plot having shallow curvature. This may also be true when the response curvature is
not too significant for a nonlinear response surface. The empirical simultaneous coverage rates using these two
critical values, zq 24 and ( ng, o)'/%, as the limit of 2Fy, _ p)l/ 2 can be obtained by simulations.

SOVRING EXAMPLE

Eriksson ez al.'3 (p. 335) described the following SOVRING example. An experiment was conducted to test the
effect of three input variables, raw material input Tonin (x;), magnetic grinder speed variables HS1 (x2) and
HS2 (x3), on the two response variables of product output in a mine, PAR (y;) and FAR (y2). Both responses
are larger-the-better. The desirability functions proposed by Gibb ez al.'* is used here for illustration:

N a\T!
di = [1 + exp (——“—-—-—E(y’; aﬂ

max __ yimin)

pred (yl
2In((1 = y)/vi)

Specific values involved are listed in Table I.

An obvious outlier (the original 62nd observation) has been deleted from the original data set, leading to
the final sample size of 229. The Web site http://www.smeal.psu.edu/faculty/dk1S/SOVRING.xls has coded data
available.

Assuming a quadratic model for both responses, the multivariate regression analysis results in the fitted
models

where ¢; = (y™" + y™*)/2 and

i

, ymin < M e (0, 1)

$1 =283.6516+ 116.1375x; + 6.8199x7 + 22.4611x3 + 13.7544x1x2 + 31.0183xx3

+ 18.6729x2x3 + 24.8719x7 — 7.5994x3 + 10.2035x3
T = 688.8352 + 244.0213x] + 29.3419x7 — 47.4965x3 + 1.1136x1x2 — 62.1298x)x3

— 56.7020x2x3 + 6.8384x% — 9.7295x3 — 35.8798x3

and the estimated covariance matrix

$ - 195.13 101.91
“\101.91 1063.4

Note that all input variables (x;) have been coded between —1 and 1.

A confidence band of the ridge path can be constructed via (5). We did this in three ways: using the critical
value of z¢ 2 (for each individual r), za/20 (for 10 different r) and ()(22’01)1/2 (for infinitely many r), respectively.
Figure 1(a) is the ridge path plot with individual 95% confidence intervals and two 95% simultaneous confidence
bands constructed using the critical values of ( Xzzg O,)1/ 2 and z4 ,20. The ridge path shows how the predicted
maximal desirability changes with the radius r. Although the differences among all the confidence bands are
rather limited, it is clear that the Bonferroni z, /20 band is wider than the ( Xzz, a)l/ 2 band and the unadjusted z4 /2
band.

Copyright © 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. In1. 2005; 21:669-675
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Figure 1. The SOVRING example: (a) ridge path, individual 95% confidence interval and confidence band; (b) constrained
optimal coordinate plot

For any specific radius r, the estimated optimal design level can be identified from Figure 1(b). Figure 1(b)
shows that the optimal level of x; changes dramatically with radius r, while x2 and x3 are less variable.
This implies that the production outputs (y; and y2) depend heavily on the amount of raw material (x1). If the
speeds of the two grinder machines (x; and x3) are calibrated to generate maximal output from small amounts
of raw material, the same calibration should be kept for larger amount of raw material. The graph also shows
that when x; is large, the optimal level of x3 goes down, which suggests that the speed of the second grinder
should be reduced. Note that all x; are between —1 and 1, thus the inference for radius r between /3 and 2 is
considered to be an extrapolation.

To verify the coverage rate of the constructed confidence bands, 1000 data sets are generated based on the
estimated models above. The empirical coverage rate is then obtained by checking whether the true maximal

Copyright © 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2005; 21:669-675
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desirability values are simultaneously inside the confidence intervals at 10 different r, ranging from 0 to 2.
For a nominal 95% confidence band, the empirical coverage rate is 95.2% for the x?-type confidence band and
98.4% for the Bonferroni-type confidence band. Both of these are reasonably close to the nominal rate, while
the Bonferroni-type confidence band is somewhat conservative, as expected.

CONCLUSIONS

The ridge analysis for the multi-response surfaces is investigated in this paper. A large sample confidence band
is developed. Simulation shows a close to nominal coverage rate for the confidence bands when sample size is
relatively large. Although we used the desirability functions suggested by Gibb et al.!4, the method discussed
here can be applied to other desirability functions (e.g. Kim and Lin'>16), provided that they are everywhere
differentiable. Note that our confidence interval is derived by applying delta method to logit(g(#, r)), not
directly to g(é , r). This is because such an approach can guarantee that the derived confidence interval is
contained by the interval [0, 1], which is the range of the function exp”/(1 + exp”). All the calculations and
simulations given in this paper were done with Matlab and the computer program is available from the first
author upon request.

In addition to the SOVRING example, we have also applied the proposed method to numerous examples:
including, texture characteristics example (Khuri and Conlon!” (Example 1)), whey protein example (Khuri and
Conlon!” (Example 2)), and tire tread example (Derringer and Suich’). The empirical coverage rates indicate
that the proposed large-sample band may even work well for sample sizes as small as 20.

As pointed out by one referee

‘... D can be defined in many different ways. The use of different D’s will certainly result in
different ridge paths for the same problem. . . . Perhaps, the (multiple) ridge paths for the individual
responses might provide more direct and useful insights, especially to the engineers in practice’.

We think that this is a very sensible comment. Derringer'® stressed the importance of having an expert panel
construct a desirability function to link various values of the overall desirability function to product quality.
However, we also believe that if the model is correctly identified and sufficiently efficient, any reasonable
measurement of the desirability D should lead to similar ridge paths. The ridge path for each individual
(univariate) response can be a good reference indeed. How to compromise different ridge paths (from each
response) remains a non-trivial issue to be addressed, however.
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APPENDIX A. DERIVATION OF THE CONFIDENCE INTERVALS

By Lemma 2 in Peterson®, g(@, r) is continuously differentiable in @, as long as D(X, #) is continuously
differentiable in (x, #) and

80(0, r) = Dg(x0, )
where xg = X(#, ) is assumed to be the unique optimal input value such that

D(xg, 8) = max D(x, )

x'x=r2

Dg (x¢, 8) is the gradient vector of D(x, #) with respect to 6, then evaluated at (xg, ). Note that usually we do
not know the explicit form of xg = xo(@, r), but its value can by found by a nonlinear optimization routine or a
grid search method, once @ is known.

Next, we can estimate the parameters by fitting the standard multivariate regression model in the matrix
normal form (see, e.g., Arnold'? (p. 349)),

Y ~ Nn,m (Xev 1, Z) (Al)

where 7 is the number of independent experiment runs, m is the number of response variables in each run with a
fixed covariance matrix X. The matrices Y, X and © are the observation matrix (n x m), design matrix (n X p)
and parameter matrix (p x m), respectively. This is equivalent to

Vec(Y) ~ Ny (Vec(X0), TR 1)

where ® is the Kronecker product.
Provided that the Jurekova—Noether (JN) condition holds (namely (1/ n)X'X 272 A where matrix A is
positive definite), we have

6=xx""'xXY5% 0
$=(Y-XO)Y-XO)/(n—p) > T
and
S —8) 5N, (0, T@A")
where 6 = Vec(O), 0 = Vec(@), Since g(#, r) is continuously differentiable in 6, by the Delta method we have
Jndlogit(g (@, r)) — logit(g (8. 1)) > N(O, d(r))
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where

d(r)? = gg(0. 1) (Z® A Nge(8, r)/(D(x0, 0)(1 — D(xg, 0)))*
= Dy(x0. 0) (E ® A" YDy (x0, 8)/(D (X0, 0)(1 — D(x0, 6)))*

Define
&r)* = Do, 6) (2 @ (X'X) ™) Dy (K. )/(D(%, H)(1 = DKo, 0))°
where %) = x0(8. r), we have
né(ry? LN d(r)?

since gg(0, r) = Dg(xo(0, r), 0) is continuous in @ for each fixed r (Lemma | of Peterson'?), the continuous
function theorem can be applied here. Thus, by Slutsky’s theorem,

&) Qlogit(g @, ) — logit(g(8, 1)) = N(©, )
So an approximate 100(1 — «)% confidence interval for logit(g(@, r)) is

logit(g(é, r) £ zg/2 - €(r)
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