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Summary. Computer models can describe complicated physical phenomena. To
use these models for scientific investigation, however, their generally long running
times and mostly deterministic nature require a specially designed experiment.
Standard factorial designs are inadequate; in the absence of one or more main
effects, their replication cannot be used to estimate error but instead produces
redundancy. A number of alternative designs have been proposed, but many can
be burdensome computationally. This paper presents a class of Latin hypercube
designs developed from the rotation of factorial designs. These rotated factorial
designs are easy to construct and preserve many of the attractive properties of
standard factorial designs: they have equally-spaced projections to univariate di-
mensions and yield uncorrelated regression effect estimates (orthogonality). They
also rate comparably to maximin Latin hypercube designs by the minimum in-
terpoint distance criterion used in the latter’s construction.
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rotated factorial design

1 Introduction

Computer models are often used to describe complicated physical phenomena
encountered in science and engineering. These phenomena are often governed by
a set of equations, including linear, nonlinear, ordinary, and partial differential
equations. The equations are often too difficult to be solved simultaneously by
any person, but can be by a computer modeling program. These programs, due
to the number and complexity of the equations, may have long running times,
making their use difficult for comprehensive scientific investigation.
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The SOLA-PTS algorithm described in Daly & Torrey (1984), for example,
has been developed at the Los Alamos National Laboratory for modeling the
rapid cooling of a nuclear reactor wall as a result of cold water injected into
the reactor’s downcomer for containment during a nuclear accident. The authors’
three-pronged goal is to study the response of the reactor, to study the turbulent
mixture of the cold water and the warm fluid already in the downcomer, and to
predict the onset and growth of cracks in the reactor wall as a result of the rapid
cooling. This algorithm simultaneously solves eight partial differential equations
with eight inputs and takes approximately 90 minutes on a Cray supercomputer
to run. It solves a large number of differential equations, is very computationally
expensive in running time, and has a “black box” quality — one does not know
in advance which factors have large effects and one would like to examine the
response over a wide range of input combinations. This algorithm is typical of
computer models needing designed experiments.

One goal in this setting is to build an approximating program which, al-
though not as precise as the computer model, would run fast enough to study
the phenomenon in detail. Construction of an adequate approximating function
(or program) to the computer model requires the selection of design points (a
designed experiment) at which the computer model will be run to build an ap-
proximating function. Because the computer models are mostly deterministic,
these computer experiments require special designs. In physical experiments, if
certain factors have no effect on the response and are taken out of the approxi-
mation function (linear model), then the replicated design points in the reduced
design space can be used to estimate the random error present in the system.
However, with computer experiments, there is no random error — only lack of fit.
Replication of classical factorial designs cannot be used to estimate this error,
but instead produces redundancy. That is, they are hindered by their non-unique
projections to lower dimensions.

This paper presents a new and simple strategy for designs for computer ex-
periments, developed from the rotation of the standard factorial design to yield
a Latin hypercube. Section 2 discusses a number of alternative designs that have
been proposed. The following sections develop the rationale for these new de-
signs, using the two-dimensional case for illustration (Section 3), and compare
them to other previously proposed designs (Section 4). Section 5 shows the high-
dimensional rotation theorems and the concluding remarks are given in Section

6.

2 Design Criteria and Related Work

Selection of an appropriate designed experiment depends to an extent on the
experimental region, the model to be fit, and the method of analysis. This paper
assumes the following: the experimental region is cuboidal (each factor is bound
between values of interest), the true model is unknown to the experimenter and
that he will approximate it by a polynomial of some degree a priori unknown
to him, and the method of analysis will be ordinary least squares regression,
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although alternative methods are available (see Haaland, McMillan, Nychka &
Welch (1994)).

In order to assess design criteria for computer experiments, it is valuable to
study the progression of proposed designs. Koehler & Owen (1996) provide an
overview of past and current approaches. The two main geometric designs are the
standard (full or fractional) factorial designs and the Latin hypercube designs,
but also include other traditional designs for physical experiments, such as central
composite designs. Easterling (1989) points out that standard factorial designs
have many attractive properties for physical experiments: balance (factor levels
used an equal number of times), symmetry (permutation of design matrix columns
yields same design), orthogonality (separability of main effects), collapsibility
(projects to lower subspace as factorial design, sometimes redundantly), equally-
spaced projections to each dimension, and straightforward measurability of main
effects.

McKay, Beckman & Conover (1979) introduced the use of the Latin hypercube
(LH) in computer experiments. A n-point LH design matrix is constructed by
randomly permuting the integers {1,2,...,n} for each factor and rescaling to the
experimental region, so that the points project uniquely and equally-spaced to
each dimension. The unique projections of LHs allow for great flexibility in model
fitting. Box & Draper (1959) showed that when the true model is a polynomial
of unknown degree, the best design (in the sense of various criteria discussed in
their paper) places its points evenly spaced over the design region. Thus, equally-
spaced projections are also of value. For these reasons, the LH has become the
standard for computer experiments. However, random LHs are susceptible to high
correlations between factors, even complete confounding, and to omitting regions
of the design space.

Computer-generated designs include those of Sacks, Schiller & Welch (1989)
and Sacks, Welch, Mitchell & Wynn (1989) that try to minimize the integrated
mean square error (IMSE) of prediction when prediction errors are taken as a
realization of a spatial stochastic process. Johnson, Moore & Ylvisaker (1990)
proposed similar designs to minimize the correlations between observations when
responses are taken as a realization of a spatial stochastic process. The latter
authors’ design D* they call a maximin distance design if

xl’rwnziélD* d(z1,22) = mgxxlr,rwliléD d(z1,z2), (1)

where d is a distance measure and ming, z,ep d(z1, 2) is the minimum interpoint
distance (MID) of design D; that is, its points are moved as far apart from one
another as possible.

Attempts have been made to bridge the gap between geometric designs
and computer-generated designs. Tang (1993) and Owen (1992) introduced
orthogonal-array based LHs to guarantee coverage of all regions for every subset
of r factors. Morris & Mitchell (1992) and Tang (1994) proposed LHs that attain
the largest MID among all LHs, called maximin Latin hypercubes. Park (1994)
tried to construct LHs that optimize the IMSE criterion. Owen (1994) attempted
to control the correlations between design matrix columns of random LHs. These
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methods are a step forward in merging the good properties of Latin hypercubes
with the optimization of computer-generated designs. However, being themselves
computer-generated designs leaves many susceptible to the aforementioned prob-
lems.

With this in mind, we seek a new design for computer experiments with
these properties: the unique and equally-spaced projections to each dimension
and flexibility in model selection provided by Latin hypercube designs and the
orthogonality and ease of construction provided by standard factorial designs.
In addition, these new designs should perform reasonably well in terms of other
criteria mentioned, such as MID, correlation, and coverage of the design space.

3 Rotated Factorial Designs in Two Dimensions

The strategy taken here is to modify the standard factorial design by rotation so
as to yield a Latin hypercube. To see how this is done, first consider the standard
32 factorial design, represented by the 3 x 3 square of points and how it can be
rotated to yield equally-spaced projections (see Figure 1). The key to finding all
such rotations is in the relationship between points A-D. We focus on nontrivial
angles between 0 and 45 degrees clockwise due to the symmetry of the rotation

problem.

ZT2
3 eD ® ®
2+ e B ° °
1+ e A e C ®
1 l | -

2 3
Fig. 1. Standard1 3? factorial design before rotation

The matrix equation to rotate a set of points clockwise by an angle w about

the origin is

sin(w) cos(w)

[ 22 {COS(“’) “Sin(“’)} , (2)
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so that if (x1,z2) are the coordinates of a design point in the standard factorial
design, then the rotation moves the point to (z; cos(w) + z2 sin(w), —z1 sin(w) +
x2 cos(w)).

Notice first that as the points are rotated clockwise about the origin that A
will have the smallest x;-coordinate for any angle between 0° and 45°. (A 45°
rotation will place A directly on the zi-axis and A is the closest point to the
origin.) Also notice that the z;-projections of points with the same initial z;-
coordinate (like A, B, and D) will be equally spaced, by sin(w), regardless of
the rotation angle. Likewise, the z;-projections of points with the same initial
zg-coordinate (like A and C) will be equally spaced, by cos(w), regardless of the
rotation angle. It suffices to find all angles that make the x;-projections of points
A-D equally spaced. For the z;-coordinates of A-D, see the table below.

point zj-coordinate

A cos(w) + sin(w)
B cos(w) + 2sin(w)
C  2cos(w) + sin(w)
D  cos{w) + 3sin(w)

Between 0° and 45°, sin(w) < cos(w), so the point with the next smallest
z1-coordinate will always be B (although C will tie B when w = 45°) and the
distance between the smallest two x1-projections will always be sin(w). To achieve
equally-spaced zi-projections, the distance between all z;-projections must equal
sin(w). We’ve already seen that this is true when w = 45° (equivalently, tan™ (1))
and both C and B have the second smallest z1-coordinate (see Figures 2(b) and
2(c), for example).

Another possibility is that C will have the third smallest x;-coordinate, and
that the “x;-distance” between B and C will be sin(w). However, the “z;-
distance” between B and D is always sin(w). In this case, C and D will have

the same z;-coordinate, hence
cos(w) = 2sin(w) = w = tan"(1/2).

Continuing in this manner, consider the case where C has the fourth smallest
x1-coordinate — after A, B, and D — and the “z;-distance” between D and C is

sin(w). Then
cos(w) — 2sin(w) = sin(w) = w = tan" ' (1/3).

Point C cannot have the fifth smallest x1-coordinate, so these three rotations
are the only ones (again, among nontrivial angles between 0° and 45°) that yield
equally-spaced z1-projections from the 3% design. It is easily verified that these
also yield equally-spaced x2-projections. '

Figure 2 displays the standard 3? factorial design, shown in open circles, and
the designs that result from these rotations, shown in solid circles. Boxes are
drawn around the rotated designs to identify the design regions. In practice, one
would then scale this design (by subtraction and division) to the experimental
region of interest. Along each axis, we have provided dot plots of the projections
from which it is plain to see the equally-spaced property.
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Fig. 2. Three rotations of a standard 3? factorial design:

(a) w = tan"'(1), (b) w = tan~1(1/2), (c) w = tan™*(1/3)
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Following the argument above, a general result for factorial designs can be
stated. (The proofs of Theorems 1 and 2 are straightforward and are thus omitted

here.)

Theorem 1. For nontrivial rotations between 0° and 45°, a rotated standard p?
factorial design will produce equally-spaced projections to each dimension if and
only if the rotation angle is tan™'(1/k), where k € {1,...,p}.

Among the rotated standard p? factorial designs with equally-spaced projec-
tions, only those obtained from rotation angles of tan™*(1/p) contain no redun-
dant projections. Therefore we define a p®-point rotated full factorial design to
be a rotated standard p? factorial design with unique, equally-spaced projections
to each dimension (which is a Latin hypercube).

Theorem 2. For a linear first-order regression model, any two-dimensional ro-
tated factorial design has uncorrelated regression effects estimates.

4 Two-Dimensional Subset Designs and Design
Comparisons

Two-dimensional rotated full factorial designs can be easily modified to accomo-
date many design sizes other than p?. After rotating the standard factorial design,
remove the four most extreme points - two for each factor - to get a new design.
This process can be repeated to get any design with the number of points equal
to p? —4j for j € {0,1,...,maz(p—2,0)}. When points are removed through this
deletion process, the resulting design will no longer have the equally-spaced pro-
jection property, although it will have unique projections. We will refer to designs
created by applying the deletion process to a rotated full factorial design as Type
U rotated factorial designs, where U emphasizes these unigue projections. Figure
3 shows the 12-point Type U rotated factorial design that is created by removing
the four most extreme design points of the 16-point rotated full factorial design.

After the deletion process, these new designs can be given equally-spaced
projections by adjusting the angle of rotation, although this may have the simul-
taneous effect of creating some redundant projections. We will refer to designs
created by modifying the rotation angle of a Type U design to yield the greatest
number of unique, equally-spaced projections as Type E rotated factorial designs,
where E emphasizes the equally-spaced projections. Figure 4 shows the 12-point
Type E rotated factorial design which has been given equally-spaced projections
by adjusting the rotation angle to tan™ 1(2/3). Our preference is for Type E de-
signs because of the equally-spaced projections, but others may choose Type U
designs because of the unique projections. A complete illustration for the exact
construction of n = 16, n = 12 Type U and Type E designs is given in the
Appendix.

Table 1 presents the minimum interpoint distances calculated by scaling the
designs to the unit square [0,1]? and using Euclidean distance for these same
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designs. Johnson, Moore & Ylvisaker (1990) gave ranges for the MIDs of maximin
distance designs. These are listed merely as a reference for the other designs; no
direct comparison will be made since maximin distance designs aren’t necessarily
appropriate for computer experiments (see, for example, Koehler & Owen (1996)).
A few maximin distance designs were published in Johnson, Moore & Ylvisaker
(1990) and in Koehler & Owen (1996) and the exact MIDs are listed for those

designs.

Table 1. Minimum Interpoint Distance (MID) Comparisons for d = 2 Dimen-
sional Designs E

No. Maximin f Maximin ¢ Rotated Factorial <

of Distance Latin Design
Pts. Design  Hypercube Type U Type E
4  1.0000 7454 .7454 .7454
5 7071 .5590 5270 .5590
8 .5000-1.0000  .4041 .3748 4472
9 .5000 .3953 .3953 3953
12 .3333-.5000 .3278 3172 3278
13 .3333-.5000 .3005 .2833 3162
16 .3333 .2749 .2749 .2749
17 .2500-.3333 .2652 .2550 25877
20 .2500-.3333 2233 .2253 .2425

T Obtained via Johnson, Moore and Ylvisaker (1991).
o Obtained via Koehler and Owen (1996).
< Obtained by authors’ algorithm.

In certain cases, the minimum interpoint distances of maximin LH and rotated
factorial designs are equal — most notably when there are p? design points, but
also when n = 5,12. For n = 8,13,20, the MIDs are better for RFDs, while
maximin LH designs are superior in the other listed case (n = 17). Maximin
LH designs were constructed to have large MIDs while preserving the unique,
equally-spaced projections of LHs, while RFDs were constructed to be LHs with
a factorial design structure. The gains in MID from using maximin LH designs
over rotated factorial designs, despite the significant increase in computer effort,
are never very large when compared alongside maximin distance designs, the ideal

according to minimum interpoint distance.

5 High-Dimensional Rotation Theory

Consider a standard full factorial design consisting of d factors, each with p levels.
The goal is to rotate this design to convert it into a LH design, so that the p?
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points create unique and equally-spaced projections to each individual factor. For
certain values of d (notably when d is a power of 2) such a rotation exists, but
not for general d. The following proof proceeds in three parts: identification of
the required form of the rotation matrix, construction of the power-of-2 rotation
matrix, and failure of the transformation matrix to be a rotation matrix when d
is not a power of two. \

A p-level, d-factor standard full factorial design can be represented by a p? x d
matrix, D, with entries from {1,2,..., p} and all p? combinations represented.

11 1---pp p1”

D=1": : :

A rotation of this matrix is accomplished by post-multiplication by a d x d matrix
R with the property that RTR = I; where I4 is the d x d identity matrix. (In
this section, we relax the definition of rotation to be a matrix R that satisfies
RTR = kI, for some scalar k, since the true rotation can be obtained as (1/ \/E)R)
Let the multiplication matrix R have entries denoted as r(;,5), which is the entry
from the ith row and jth column. Lemma 1 below will not be concerned with
whether the multiplication matrix is indeed a rotation matrix, but with how such
a matrix would yield unique and equally-spaced projections to each dimension.

Lemma 1. The entries of each column of the transformation matrizc R must be
unique from the set {p'|t = 0,1,...,d — 1} in order to yield unique and equally-
spaced projections.

The proof of Lemma 1 and all following lemmas and theorems are given in the

Appendix.
The previous lemma shows that every column of the transformation matrix
must be a permutation of the set {1,p,..., p®~1} (allowing sign changes to ele-

ments and multiplication of entire columns by a constant). However, every rota-
tion matrix R satisfies RTR = klg4, so that the sum of squares for all columns
of R must be equal. Then, WLOG, every column of the transformation matrix
must be a permutation of the set {1,p,..., p?~ '} (allowing only sign changes to

elements).
It is obvious that the columns of the transformation matrix cannot be identi-

cal, for otherwise the columns of the transformed matrix would be identical. The
following lemma shows that the ith entries for the d columns must be unique in
magnitude in order for the transformation to be a rotation.

Lemma 2. For a rotation matriz R, the ith entries of the d columns are unique

in magnitude for all 1.

Lemmas 1 and 2 proved that all the rows and columns of the transformation

matrix must be permutations of the set {1,p,... ,p27} (up to sign changes).
However, this is not sufficient to guarantee that the matrix will also be a rotation.
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Another requirement implied by the rotation condition RTR = kI, is that the
columns of R must be orthogonal. Any matrix satisfying the requirements of the
lemmas and this last condition will rotate factorial designs into Latin hypercubes.
The remainder of this section shows how to create these matrices for d that are
powers of two and illustrates why other choices of d, in general, have no such
rotation matrix. :

Let d be a power of 2. Let ¢ = log, d. Let

Vie[or v = [1'; :fl’] . (3)

Now, for ¢ > 1, let V, be defined inductively from V._; as follows:

v | Ver —0FT Ve
Y4

N (Ve ; (4)

where the operator ()" works on any matrix with an even number of rows by
multiplying the entries in the top half of the matrix by -1 and leaving those in
the bottom half unchanged.

Theorem 3. The matriz V. is a rotation of the d-factor (d = 2°), p-level standard
full factorial design which yields unique and equally-spaced projections to each
dimension.

Reviewing the two-dimensional result from section 3, when d = 2 = 2!, equa-
tion (2) with w = tan™'(1/p) can be re-expressed as

_ [cos(tan™'(1/p)) —sin(tan"(1/p))] _ 1 +1 —p
Vi= [sin(tan"l(l/p)) cos(tan™1(1/p)) } N V1+p? [*HD +1} ’ (5)

which is the correctly scaled rotation matrix V; given in equation (3).
Other scaled rotation matrices for cases of interest (d = 4,8 corresponding to
c=2,3) are ’
+1 —p +p* —p°
pr—1|+p +1 —p® —p’ (6)

V -
2 P o1 [4p? —p® —1 4p
+p° +p° +p +1
and r 2 3 4 5 6 7
+1 —=p +p° —p” +p” —p” +p” —p
+p +1 —p® —p® +p° +p* —p" —p°
+p? —p® 1 +p —p° +p’ +p* —p°
Vi [ P2 1 40P 4 4p 41 —p” —p® —p° —p! .
5 = 4 s 2 (7)

pe—1 |+p' —p® +p° —p" —1 +p —p? +p*|°
+p° +pt —p" —p° —p —1 +p® +p?
+p° —p” —p* +p° +p* —p® —1 +p
+p" +p® +p° +p* +p° +p° 4+p +1

respectively.
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The choice of rotation matrices for higher dimensions (d > 2) is not unique.
Other inductive definitions for V. in equation (4) are possible, namely
Veer  —p% Ve -
c—1 .

P2 - Veaa Ve—a
However, the point is still clear, such rotations do exist.

Owen (1994) showed why orthogonality of design matrix columns is important
in the estimation of Monte Carlo integrals and attempted to control the column
correlations within Latin hypercubes. Theorem 4 will prove that all designs ob-
tained by rotation of standard factorial designs, specifically rotated full factorial
designs, will also be orthogonal. Let k be the sum of squares of the first column
of X. As X is an orthogonal matrix with equal sum of squares for every column,
XTX = kly. So (XR)T(XR) = R*XTXR = RTkI4R = kR"R = klg, a diagonal
matrix. Therefore, the rotated design matrix X R is.an orthogonal design.

Theorem 4. Let X be an orthogonal design matriz of n rows and d columns in
which the sums of squares for columns are equal. Let R be a d X d rotation matriz.
The design resulting from the matriz product X R 1s also an orthogonal design.

Since computation of Monte Carlo integrals is, in effect, a computer experi-
ment, it is beneficial for designs for computer experiments to have uncorrelated
regression estimates of main effects. The following theorem shows this to be true
for all designs obtained by rotation of standard full factorial designs, specifically

rotated factorial designs.

Theorem 5. Any p®-point rotated factorial design has uncorrelated regression

estimates of main effects.

Recall that Johnson et al. (1990) introduced the use of minimum interpoint
distance (MID) as an important design criterion (see equation (1)). It can be
shown that the MID using Euclidean distance for a p®-point rotated factorial
désign scaled to the unit hypercube, [0, 104, is /14 p2 + -, +pit1/(p— 1) =
V(P —1)/((p? — 1)(p — 1)?). Additionally, it can be shown this is the maximal
MID for d = 2. We are unable to obtain a formal proof for higher dimensions,

however.
Table 2 lists the MIDs for several of the four-dimensional RFDs requiring

fewer than 100 points and for the respective MmLH and MmU designs. Due to
the computational requirements of obtaining designs from other methods, some
were results not available (N/A). It is clear that the easily-constructed RFDs have
similar (if not equal) MIDs to other computing-extensive constructed designs.

6 Concluding Remarks

This paper has presented a new class of experimental designs for computer exper-
iments: the rotated factorial designs. Developed from a rotation of the standard
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Table 2. MID Comparisons of Four-Dimensional MmLH, RFD, and MmU De-

signs

No. Maximin Rotated Factorial Maximin
of Latin Design U
Pts H-cube Type U Type E# Design
8 0.9258 1 0.8692 0.7071 (3) 0.7954
9 0.8101 1 0.5762 1.0000 (3) 0.6960

A A

10 0.7857 * * *

11 0.7416 * * *

12 0.7216 t * * *

16 0.6218 o 0.6146 0.6146 (16) 0.5292 <«
24 0.5325 o 0.3963 0.3963 (24) N/A

28 N/A  0.3951 0.4167 (7)  *

36 N/A  0.3725 0.3725 (36) N/A
40 N/A 05192 0.5192 (40) N/A
41 0.4507 o 0.5062 0.5062 (41)  *

54 NJA  0.3641 0.3641 (54) N/A

67 N/A  0.3825 0.3825 (67) =
68 N/A  0.3751 0.3751 (68) =
81 N/A  0.3579 0.3579 (81) N/A

# The number in parenthesis means
the number of unique projected points.
* No design can be constructed as defined.
T Published in Morris & Mitchell (1992).
¢ Obtained via Morris & Mitchell (1992)
algorithm by the author.
< Obtained by author’s algorithm.

factorial design to produce a Latin hypercube, these designs have qualities that
make them excellent candidates for use in today’s computer experiments. The ro-
tated full factorial designs possess the orthogonality of factorial designs and the
unique and equally-spaced projections of Latin hypercubes, while maintaining a
high spatial dispersion according to minimum interpoint distance. The Type U
and E RFDs possess the orthogonality of factorial designs and either the unique
or equally-spaced projections of Latin hypercubes, again while maintaining high
spatial dispersion. All of the rotated factorial designs are extremely simple to
construct, in contrast to the computer-intensive nature of most other recent de-
signs, and perform well in terms of the minimum interpoint distance criterion
used in the construction of a competing design. In terms of orthogonality, these
RFDs perform even better. We have developed software to construct the rotated
factorial designs presented in this paper. Users of S-Plus or C who are interested

in obtaining this, please contact the authors.
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Directions for future research in this area include finding alternative proce-
dures for dimensions that are not powers of two, considering rotation of fractional
factorial designs (or some other method to reduce the number of required points
as d increases), and investigating the possibility of rotating mixed-level designs
(perhaps as an alternative for the other dimensions). Johnson et al. (1990) also
defined the index of a design - the number of pairs separated by the MID - as a
second criterion to distinguish among several designs with identical MIDs. The
performance of these designs may be investigated or modifications suggested, if
and when this criterion becomes relevant. Some related recent work can be found

in Bursztyn and Steinberg (2001, 2002).
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Appendices

6.1 A Sample Construction

(1) A 4*=16-run rotated factorial design.
Start with a 42 standard factorial design.

1111222233334444]7
1234123412341234

Rotate by tan™!(1/4). This yields a 16-point rotated factorial design.
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[1cos(tan™'(1/4)) + 1sin(tan™*(1/4)) —1sin(tan™?(1/4)) + 1 cos(tan™*(1/4))]
1cos(tan™"(1/4)) + 2sin(tan™'(1/4)) —1sin(tan"'(1/4)) + 2 cos(tan™1(1/4))
1cos(tan™'(1/4)) + 3sin(tan™"(1/4)) —1sin(tan™*(1/4)) + 3 cos(tan™1(1/4))
1cos(tan™'(1/4)) + 4sin(tan™'(1/4)) —1sin(tan™'(1/4)) + 4 cos(tan™1(1/4))
2 cos(tan”(1/4)) + 1sin(tan™'(1/4)) —2sin(tan™'(1/4)) + 1 cos(tan~*(1/4))
2cos(tan™'(1/4)) + 2sin(tan™'(1/4)) —2sin(tan™'(1/4)) + 2 cos(tan~1(1/4))
2 cos(tan™'(1/4)) + 3sin(tan™'(1/4)) —2sin(tan™'(1/4)) + 3 cos(tan"1(1/4))
2cos(tan™'(1/4)) + 4sin(tan™"(1/4)) —2sin(tan™'(1/4)) + 4 cos(tan™*(1/4))
3cos(tan™'(1/4)) + 1sin(tan™'(1/4)) —3sin(tan™'(1/4)) + 1 cos(tan~1(1/4))
3cos(tan™'(1/4)) + 2sin(tan™"'(1/4)) —3sin(tan™'(1/4)) + 2 cos(tan"*(1/4))
3cos(tan™'(1/4)) + 3sin(tan™"(1/4)) —3sin(tan™'(1/4)) + 3 cos(tan"1(1/4))
3cos(tan™'(1/4)) + 4sin(tan™'(1/4)) —3sin(tan™'(1/4)) + 4 cos(tan~1(1/4))
4cos(tan”!(1/4)) + Isin(tan™'(1/4)) —4sin(tan™'(1/4)) + 1 cos(tan~1(1/4))
4cos(tan™'(1/4)) + 2sin(tan™'(1/4)) —4sin(tan™(1/4)) + 2 cos(tan™'(1/4))
4cos(tan™*(1/4)) + 3sin(tan™'(1/4)) —4sin(tan™(1/4)) + 3 cos(tan~1(1/4))
|4 cos(tan™1(1/4)) + 4sin(tan"'(1/4)) -—4sin(tan_1(1/4)) + 4 cos(tan™1(1/4)) |

[1.21 0.73]
1.46 1.70
1.70 2.67
1.94 3.64
2.18 0.49
2.43 1.46
2.67 2.43
2.91 3.40
3.15 0.24
3.40 1.21
3.64 2.18
3.88 3.15
4.12 0.00
4.37 0.97
4.61 1.94
4.85 2.91

This can be rescaled to be a 16-point Latin hypercube by multiplying by 15/3.64
then subtracting 3.99 from the first column and adding 1.00 to the second column.

123 4567 891011121314 1516]7
4812163711152 6 1014 1 5 9 13

(2) A 12-run Type U design.
To constuct a 12-point Type U design, remove the 4 most extreme design points
(from the prescaled matrix): the 1st, 4th, 13th, and 16th.

(3) A 12-run Type E.design.
To get a 12-point Type E rotated factorial design, adjust the rotation angle to
tan™'(2/3). Figuring out the correct rotation angle is easy. If the original design
has p? points, then the angle is unadjusted if O points are removed and is adjusted
to tan™'(1/(p— 1)) if {2,4,...,2p~— 2} points are removed or to tan™ ' (1/(p — 2))
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if {2p,2p+2,...,4p — 8} points are removed. However, there is one exception to
this rule: if the new design has an even number of points which exceed a square by
3, then the angle is adjusted to tan™!(2/(p—1)). (Note that 12 is such a number,
making the rotation angle tan™'(2/3).)

(1 cos(tan™1(2/3)) + 2sin(tan™'(2/3)) —1sin(tan™'(2/3)) + 2 cos(tan™'(2/3))
1cos(tan™(2/3)) + 3sin(tan™*(2/3)) —1sin(tan™'(2/3)) + 3 cos(tan™*(2/3))
2 cos(tan™*(2/3)) + 1sin(tan™'(2/3)) —2sin(tan™'(2/3)) + 1 cos(tan™'(2/3))
2 cos(tan~(2/3)) + 2sin(tan™'(2/3)) —2sin(tan™'(2/3)) + 2 cos(tan™'(2/3))
2 cos(tan™?(2/3)) + 3sin(tan™1(2/3)) ~2sin(tan™'(2/3)) + 3 cos(tan™*(2/3))
2 cos(tan~(2/3)) + 4sin(tan™!(2/3)) —2sin(tan™"(2/3)) + 4 cos(tan™*(2/3))
3cos(tan™*(2/3)) 4 1sin(tan™!(2/3)) —3sin(tan™"(2/3)) + 1 cos(tan™*(2/3))
3cos(tan™1(2/3)) + 2sin(tan~!(2/3)) —3sin(tan™'(2/3)) + 2 cos(tan~1(2/3))
3cos(tan™*(2/3)) + 3sin(tan™!(2/3)) —3sin(tan™'(2/3)) + 3 cos(tan™'(2/3))
3cos(tan™?(2/3)) + 4sin(tan™'(2/3)) —3sin(tan™'(2/3)) + 4 cos(tan"'(2/3))
4 cos(tan™*(2/3)) + 2sin(tan™1(2/3)) —4sin(tan™"(2/3)) + 2 cos(tan"*(2/3))
| 4 cos(tan™?(2/3)) + 3sin(tan~!(2/3)) —4sin(tan™*(2/3)) + 3 cos(tan™1(2/3))

[1.94 1.11
2.50 1.94
2.22 —0.28
2.77 0.55
3.33 1.39
3.88 2.22
3.05 —0.83
3.61 0.00
4.16 0.83
4.71 1.66
4.44 —0.55
14.99 0.28 |

Once constructed, these designs can be rescaled to the experimental region. For
example, to convert the 12-point Type E design matrix to LH notation, multiply
by 11/3.05 then subtract 6.00 from the first column and add 3.99 to the second

column. .
F 23456 789101112

8113691214710 2 5

6.2 Proofs
Lemma 1: The entries of each column of the transformation matrix R must be
unique from the set {p‘|t = 0,1,1...,d— 1} in order to yield unique and equally-

spaced projections.
Proof: The multiplication of the factorial design by R yields a new p® x d

matrix X with entries labeled z; j;:

X=DxR
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Note that the values of the jth column of X depend on the jth column of ma-
trix R, but on none of its other columns. Without loss of generality (WLOG),
consider only the first column of these matrices and examine how the choices of
T(1,1] - - - T[d,1] affect the values of z[1 1), . . CTppd 1)

The rows of the factorial design matrix can be arranged into p®~? groups of
rows where the rows in each group are identical in d — 1 columns but unique
in one column. They can be arranged, WLOG, as above with the first d — 1
columns identical and the last column unique. Within each group the transformed
coordinates differ only in respect to the value of 74, 1):

(i —1)pd =14 (1= 1)pd =24+ (ig_ 1~ Dp+1,2] = T3] F227(2,0) + - - dd-1T(d-1,1]
+17(4,1

TY(5; —1)pd—14(ig=1)pd=2 44 (ig_1 —DDp+2,1] = 417[1,1) T 2272, + -+ Ld—1T[d—1,1]
+2T[d)1]

1171 22Tz, o td—1T[d—1,1]

+Pria,1)

Tl(i1—1)pd= 1+ (iz~1)p?= 2+ +(ig_1—Dp+p,1]

where 41,...,74-1 € {1,...,p}. For these points to be unique and equally-spaced
requires only that 7[g,1) # 0. Let r(g,1; = 1 (or -1), WLOG, so that the transformed
points within any group differ by one unit and there are p?~ ! such groups.

Now arrange the factorial design matrix into p®~2 groups of p® rows so that
the rows within each group are identical in the first d — 2 columns,subgrouped as
before by the last column, and unique (by subgroups) in the (d — 1)th column.
For any group, examine the jth transformed point within each subgroup. Then
their transformed coordinates differ only in respect to the value of rjg_; 1:

By )pt—T 4o (g g—Dp2+3,1] = T+ ta-2Ta-2,0) F 1Te-1,
+JI7(d,1]

T((iy - 1)pd=1 4 h (ig_ o~ Vp24pts1] = L1T[1,) + - ld—2T[d—2,1] + 27(d—1,1]

+I7(d,1)

(i ~1)pd= 14+ (ig2 = Dp2 H(p—Dpti1] = AT[1,1) + d-2T(a-2,1] + PTid-1,1

+77(a,1]

where i1,...,14-2,7 € {1,...,p}. For these p points to be unique and equally-
spaced requires only that rig_1,,) # 0. However, for all p? points within the group
to be unique and equally-spaced requires that rjg_1 1) = Zp, since each of the
p listed points represents one subgroup of p points differing by one unit. (Note
that rjg_1,1 = +1/p also satisfies the requirement; but then the entire matrix R
could be multiplied by p to obtain rg_1,; = #1 and r(41) = *p, essentially the
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same transformation.) This strategy yields pd"2 groups of p? points where the

transformed points within any group differ by one unit.
Continuing in this manner, it is clear that to yield unique and equally-spaced

points in the transformed space, the values of r(y 1), . . ., 7[4,1) Must be unique from
the set {1,p,... ,p*~1} (up to sign changes and multiplication by a constant). As
the choice of columns to examine was arbitrary, so must the entries from each
column of the transformation matrix be of this form.

O

Lemma 2: For a rotation matriz R, the ith entries of the d columns are

unique in magnitude for all 1.
Proof: Assume that R is a rotation matrix. Then RT R = kI, which implies

that RRT = kI,. This says that the sum of squares for all rows (in addition to
columns) of R must be equal to

Q.

-1

p = - 1)/(p" - 1).

.
Il

Suppose that one row has two (or more) entries with magnitude equal to ptt.

Then its sum of squares is greater than
2p* 4 > (200 - 1)/P)((P* - 1)/ (" — 1))

Note that, since p > 2, we have 2(p* — 1) /p*> > 1. Thus its sum of squares is
greater than (p°¢ — 1)/(p® — 1), and this row has greater sum of squares than is
possible. Thus each row has exactly one entry with magnitude equal to pi L.

Now, suppose that one row has two (or more) entries with magnitude equal
to p®~2. Examining the sum of squares of that row shows that it too is larger
than is possible. Therefore each row has exactly one entry with magnitude equal
to p?~2. Continuing in this manner, since d is finite, proves the lemma.

0l

Theorem 1: The matriz V. is a rotation of the d-factor (d = 2°), p-level
standard full factorial design which yields unique and equally-spaced projections

to each dimenston.
Proof: It suffices to show for each ¢ > 1 that V. is comprised of rows and

columns of permutations of the set {1,p,p%,... ,p“" 1} (up to sign changes) and
that the columns are all orthogonal. The proof proceeds by induction.

First, consider the simplest case where d = 2 and ¢ = 1. Clearly V1 meets
these criteria and is therefore a rotation satisfying the projection criteria.

Suppose now that V,._; is a rotation satisfying the projection criteria. If this
implies that V, is also such a rotation, the proof is completed.

Note these observations:

1. V._, is comprised of rows and columns of permutations of
c—1
{1,p,9%,...,p° '} (up to sign changes).
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c—1
2. VI Vo1 =K' Ior, where k' = 14p*+ ... +p°
c--1 . .
3. The rows and columns of p?>° ~ V._; are permutations (up to sign changes) of

c—1 c—1 ¢ __ )
T PR ¢
4. The operator (-)* does not affect the magnitudes of entries in a matrix, only

their signs.

From these 4 observations it follows that V. is comprised of rows and columns
of permutations of {1,p,p%,...,p* "'} (up to sign changes). All that remains to

show is that the columns of V. are orthogonal.
Recall that for an arbitrary matrix subdivided into 4 submatrices A (n1 X p1),

B (n2 x p1), C (n1 X p2), and D (nz X pa2),
AclT[Ac] _[AT BT [AC] _[ATA+BTB ATC+B™D ©
BD| |BD| |cTDT||BD| |cC*A+DTBC*C+D'D|"
Letting A = Voe1, B = p* Vo1, C = —(p* Vee1)*, and D = (Veu1)™, it
suffices to show that ATA + BTB = CTC + DTD = kI,.-1 for some k and that
ATC+ BT™D=0.

First,

ATA=VE Vi1 = KT (10)

and c—1 c—1 c Pel
BTB = p2 ‘/C’I;L‘pg Vc-—l = p2 VCT_‘1V—-1 = p2 kllzc—l- (11)
Thus ATA+ B™B = (1 + pzc)kllzc—l. Now for simplicity let for any matrix M

with even number of rows
" —MD

(M) = [M(z) ] ) (12)

where M and M@ are the top and bottom half of M, respectively. Then

DD =(Vo_ 1) (Veu1)”
o
T T
Vela Ve

&)

-~V
_ (1T 2)T c—-
- [MVC—-I Vc(——l ] [ V(z) 1]

c—1

VTV + VTV,

o (13)
_ [yor p@r] Ve
c—1 c—1 V(z)
c—1
1 1
e
Vc-—l Vc—l
:Vcrl-ll‘/c—l
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and
CTC = [~(* 7 Verr) ][~ (0* Veu1)']
= p* [(Vee1)"] T (Verr)”
= p* k' Ipeo1. (14)

Thus CTC + DTD = (1 + p* )k'Iye-1 = AT A+ BT B. Finally,

<

-1 * c—1 *
ATC = VI -0 Vee) ) = —pF ViEi(Veor) (15)

and '

c—1 « c—1 *
B™D = [ VerrF(Veer)” = 9% VEL(Vern)". (16)
Thus ATC + BTD = 0, and the columns of V. are orthogonal. By the principle
of mathematical induction, for all ¢ > 1, V, is a rotation of the d-factor (d =
2¢), p-level standard full factorial design which yields unique and equally-spaced
projections to each dimension. That is, V. turns standard factorial designs into

Latin hypercubes.

Theorem 5: Any p®-point rotated factorial design has uncorrelated regression
estimates of main effects.

Proof: Let N be the model matrix with p? rows and d + 1 columns: a first
column (o) of 1s for an intercept and d centered and scaled columns (z1,. .., zq)
representing the standard p? full factorial design. The columns are centered so
that z2 @; = ?il =0foralli=1,...,d and scaled so that =} z; = fil a:fj =
p®. Since each level of any one factor is used in combination with all other levels of
any other factor, we have z¥ = 0 for all i # k. That is the matrix X7 X = p®l4.1.

Let R be the D x d rotation matrix which transforms the factorial design into
a rotated factorial design. Since the rotation matrix does not affect the intercept,

the associated tranformation matrix on the model matrix X is the (d+1) x (d+1)
matrix
. _[to
e-[31]
10

Then
(XR)T(XR") = p?R*TR" = p® [o Id} plapt.

It follows that the regression estimates of the main effects are uncorrelated.
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