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ABSTRACT

As products and processes become more and more complex, there is an increasing

need in the industry to perform experiments with a large number of factors and a

large number of levels for each factor. For such experiments, application of

traditional designs such as factorial designs or orthogonal arrays is impractical

because of the large number of runs required. As an alternative, a type of design,

called the uniform design, can be used to solve such problems. The uniform

design has been intensively studied by theoreticians for several decades and has

many successful examples of application in industry. In this article, we report a

successful application of uniform design in product formation in the cement

manufacturing industry. Specifically, we investigate the effects of additives on

bleeding and compressive strength of a cement mixture. This example illustrates

how an experiment of 16 runs was performed to study three factors with 16 levels,

8 levels, and 8 levels, respectively.
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1. DESIGN OF CEMENT MIXTURE

Cement matrix grouting material is commonly

used in the construction industry, since it has high

durability and high strength; also, the material is

nontoxic, nonpolluting, and relatively low in cost.

However, the disadvantages of ordinary cement

matrix grouting material are its relatively low

stability, low workability, and low water retentivity.

This is especially true when the water/cement ratio

is high, making it more prone to segregation and

bleeding. These disadvantages hinder widespread use

of this grouting material.
Experience shows that the presence of appro-

priate additives can improve the quality of this

grouting material. Inorganic materials such as silica

fume will increase the strength, water retentivity, and

stickiness of the mixture, and reduce segregation;

organic materials such as carboxyl methyl cellulose

(CMC) will increase the stickiness of the mixture and

thus reduce segregation; fly ash will increase the

workability of the mixture. As fly ash is an industrial

waste from thermal power stations, making use of it

will help protect the environment. However, how

much should each of these additives be added so that

a cost-effective grouting material of good quality can

be formed is a major concern to the manufacturer.
A project was conducted in a factory in

Northeast China to find an optimal composition so

that the cement grouting material formed has the

desired properties. The objectives were to minimize

the coefficient of bleeding BL (at water/cement ratio

of 0.6) and maximize the compressive strength R28 (at

water/cement ratio 0.8) which is measured twenty-

eight days after the cement mixture has set. Four

controllable variables were considered: percentages of

fly ash, silica fume, CMC and cement, denoted by x1,

x2, x3 and x4 respectively. It was decided to perform

an experiment and to use the result obtained to

construct regression models for BL and R28 in order

to locate the optimal points. Since the factory had

tight production schedules, very little resources were

available for this project, and altogether only about

20 runs could be performed in the experiment.
Experience showed that ranges of x1, x2, x3 in

percentages should lie within the following ranges:

5 � x1 � 20, 1� x2 � 2:4, 0:3 � x3 � 1:0; ð1Þ

otherwise, either BL might be too large or R28 might

be too low. Because of the constraint x1þ x2þ

x3þ x4¼ 100; the amount of cement x4 should

therefore lie within the range:

76:6 � x4 � 93:7 ð2Þ

and any design layout can be expressed in terms of
the variables x1, x2, x3. An experiment with such a
setup is referred to as an experiment with mixtures.
For a review and a monograph of experiments with
mixtures, see Chan (2000) and Cornell (2002). The
design space of this experiment, which is a subregion
of the following simplex,

S4�1
100 ¼fðx1,x2,x3Þ

0 :x1,x2,x3�0,x1þx2þx3�100g

is represented as the tetrahedron with vertices O, A,
B, C in Fig. 1.

Experience shows that even slight changes of x1,
x2, x3, especially x1, might have large effects on R28

and BL. In order to scrutinize the effects of these
factors, designs of two or three levels were clearly
insufficient. It was decided that the experiment
should be performed with the following fine scales
of division on x1, x2, x3:

x1: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20;

x2: 1:0, 1:2, 1:4, 1:6, 1:8, 2:0, 2:2, 2:4;

x3: 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9, 1:0:

Since x1, x2, x3 are constrained by Eq. (1), only a
small part of S4�1

100 is the admissible region for the
experiment. In Fig. 1, the coordinates of O, A, B, and
C are (x1, x2, x3)

0 ¼ (0, 0, 0)0, (100, 0, 0)0, (0, 100, 0)0,
and (0, 0, 100)0, respectively. The five triangular
planes A1B1C1, A2B2C2, A3B3C3, A4B4C4, and
A5B5C5, which are parallel to triangle ABC, corre-
spond to x4¼ 79.0, 82.0, 85.0, 88.0 and 91.0,
respectively. The admissible regions of x1, x2, and
x3 on these triangles are the parallelograms marked 1,
2, 3, 4, 5, respectively. The parallelogram marked i
lies on the plane of triangle AiBiCi (i¼ 1, 2, 3, 4, 5).
The positions of the points Ai,Bi,Ci (i¼ 1, . . . , 5) in
Fig. 1 are not to scale on the axes, nor are the
positions and sizes of the five parallelograms.

2. UNIFORM DESIGN

Traditional designs such as fractional designs
have been widely used in the industry (Dehnad, 1989;
Montgomery, 2001). Designs of low levels (such as
two or three levels) can be conveniently used to
identify factors that have significant effects on the
outcome. However, a restriction of such designs is
their small number of levels on the factors, which
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does not provide reliable estimates of the slight
changes on the response caused by fine variations in
the design factors. If a larger number of levels is used,
the experiment can be performed with better coverage
of the design space but at the expense of a large
number of runs. For example, the number of runs n
of an Lnðs

r1
1 � sr22 Þ orthogonal array must be at least a

multiple of s21s
2
2 when r1, r2� 2. Even if s1 and s2 are of

moderate sizes, say, s1¼ 4 and s2¼ 5, s21s
2
2 will

be as large as 400, and such a number of runs
usually cannot be realized in an actual industrial
experiment.

The theoretical results in Fang and Mukerjee
(2000) reveal that the success of factorial designs in
exploration of the response surface is due to their
uniformity in coverage of the whole design space,
rather than their combinatorial or orthogonal prop-
erty. If wide coverage of the design space is of primary

importance, even when the number of levels of factors
is large, designs with smaller numbers of runs can be
constructed by sacrificing combinatorial properties
of the design. A design without nice combinatorial
properties can certainly serve the purpose of response
surface analysis in industrial experiments, although
such designs may not be desirable for ANOVA in
some situations, for example, in surveys in social
sciences research. The uniform design is such a design,
which was first suggested in Wang and Fang (1981)
and has been studied theoretically by many authors in
the past several decades (Fang and Mukerjee, 2000;
Hickernell, 1998, 1999; Liu and Hickernell, 2000;
Wang and Fang, 1995). The uniform design can be
easily adopted in practice, even if the number of
levels of some factors is very large, say 20 or more.
Readers are referred to Fang and Wang (1994) as
a text reference; Fang et al. (2000) for a brief

Figure 1. The tetrahedron with vertices A,B,C,O represents the region S4�1
¼ {(x1, x2, x3, x4) : x1þ x2þ x3þ x4¼ 1;

xi� 0 (i¼ 1, 2, 3, 4)}.
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introduction to the basic theory, recent results, and an
example; and Lee et al. (1997), Zhang et al. (1998),
and Selected Papers (1997) for more examples of
applications. Tables of uniform designs are available
from the web site www.math.hkbu.edu.hk/Uniform
Design/. This article reports a successful application
of the uniform design in cement mixture formation,
which cannot otherwise be carried out satisfactorily
using traditional designs.

3. THE EXPERIMENT

The present experiment was performed with 16
levels in x1 and 8 levels in each of x2 and x3, as shown
in Sec. 1. An orthogonal array for this setup requires
at least 16� 82¼ 156 runs, which is too large to be
practical. A uniform design U16(16� 82) with 16 runs
was used. The setup and the observed responses are
shown in the first 6 columns and the first 16 rows of
numbers in Table 1. The column BL contains the
observed values of the coefficient of bleeding (in %)
before the grouting process. The column R28 contains
the observed compressive strength (in MPa) of the
mixture 28 days after the cement has set. In Table 1,
the numbers in parentheses (1), (2), etc., are the

numbers representing the levels of factors in the

U16(16� 82) uniform design table.
These data were fitted with the following Scheffé

quadratic model (Scheffé, 1958):

�2ðxÞ ¼
Xq

i¼1

�ixi þ
X

1�i<j�q

�ijxixj ð3Þ

where x ¼ ðx1, . . . , xqÞ
0
2 S

q�1
100 , and x is under the

constant sum constraint x1þ � � � þ xq¼ 100 (q¼ 4). By

the substitution xq¼ 100� x1� � � � � xq� 1, the model

�2(x) in Eq. (3) can be equivalently expressed in terms

of q� 1 regressor variables x1, . . . , xq� 1 as follows:

�2ðxÞ ¼
Xq�1

i¼1

�ixi þ �qð100� x1 � � � � � xq�1Þ

þ
X

1�i<j�q�1

�ijxixj

þ
Xq�1

i¼1

�i,qxið100� x1 � � � � � xq�1Þ

¼ �0 þ
Xq�1

i¼1

�ixi þ
X

1�i�j�q�1

�ijxixj ð4Þ

Table 1. Results of the experiment.

Run number x1 x2 x3 BL R28 [BL] [R28] eBL eR28

1 5 (1) 2.2 (7) 0.9 (7) 9.92 27.65 9.96 27.46 0.40 �0.69

2 6 (2) 1.8 (5) 0.8 (6) 11.26 26.58 11.35 26.24 0.80 �1.29

3 7 (3) 1.4 (3) 0.6 (4) 14.40 24.82 14.18 25.41 �1.55 2.39

4 8 (4) 1.0 (1) 0.5 (3) 16.03 23.15 16.02 23.62 �0.06 2.04

5 9 (5) 2.2 (7) 0.3 (1) 12.46 22.49 12.57 21.92 0.88 �2.52

6 10 (6) 1.8 (5) 1.0 (8) 4.85 26.06 4.87 26.01 0.41 �0.20

7 11 (7) 1.4 (3) 0.9 (7) 6.80 25.19 6.67 25.75 �1.91 2.24

8 12 (8) 1.0 (1) 0.7 (5) 9.95 28.02 10.21 26.45 2.61 �5.60

9 13 (9) 2.4 (8) 0.6 (4) 6.90 28.43 6.81 29.89 �1.30 5.14

10 14 (10) 2.0 (6) 0.4 (2) 10.34 22.08 10.13 21.95 �2.03 �0.57

11 15 (11) 1.6 (4) 0.3 (1) 12.40 17.15 12.51 17.07 0.089 �0.49

12 16 (12) 1.2 (2) 1.0 (8) 3.03 24.18 2.97 24.64 �1.98 1.91

13 17 (13) 2.4 (8) 0.8 (6) 3.51 30.56 3.51 29.78 0.00 �2.54

14 18 (14) 2.0 (6) 0.7 (5) 5.78 26.44 5.86 26.44 1.38 �0.01

15 19 (15) 1.6 (4) 0.5 (3) 9.73 20.35 9.88 20.01 1.54 �1.63

16 20 (16) 1.2 (2) 0.4 (2) 12.83 15.63 12.68 16.10 �1.17 3.04

1 5 1.0 0.4 19.62 20.6 20.31 19.83 3.52 �3.75

2 10 1.6 0.5 11.23 28.1 12.17 26.69 8.37 �1.47

3 15 1.8 0.8 4.91 28.7 5.20 29.59 5.90 �2.32

4 15 2.0 0.6 7.63 28.4 7.46 27.47 �2.23 �1.75

5 20 1.8 0.7 6.61 24.6 6.58 23.83 �0.45 �3.12

464 Tang et al.



ORDER                        REPRINTS

where the �’s and �’s are related by a one-to-one
transformation. See Cornell (2002). A regression
model selection procedure in the software package
SAS was used to fit the data for BL and R28 in Table 1
using the form of �2(x) in Eq. (4). The results are
expressed in the form of Eq. (3) as follows:

BL ¼ 3:3366x1 � 341:32x3 þ 0:36548x4

þ 2:9980x1x3 � 0:045752x1x4 þ 5:5116x2x3

� 0:056074x2x4 þ 3:3229x3x4 ð5Þ

R28 ¼ �6:6942x1 þ 3:4349x2 � 4824:1x3

� 0:58536x1x2 þ 50:485x1x3 þ 0:085773x1x4

þ 61:285x2x3 þ 48:526x3x4 ð6Þ

Here the form in Eq. (3) was used, since it
contains all the variables x1, x2, x3, x4 and is more
convenient for the purpose of contour line plotting.
In Eq. (5) and Eq. (6), all terms are significant at
the 0.1 level. The values of R2 and C(p) of the
regression equation in Eq. (5) are 0.999983 and
6.15525 and those in Eq. (6) are 0.999263 and
6.08415, respectively. The analysis of variance is
shown in Table 2.

Equation (5) and Eq. (6) were verified by
comparing the predicted values of BL and R28

with the observed values. The predicted values
are in the columns under [BL] and [R28] in Table 1,
and the relative errors eBL¼ (BL� [BL])/BL and
eR28

¼ ðR28 � ½R28�Þ=R28, in percentages, are shown
in the last two columns in Table 1. Five additional
runs were performed to validate the regression Eqs.
(5) and (6), and the results obtained are shown in the
last five rows in Table 1. Values of eBL and eR28

in
Table 1 show that the empirical models Eqs. (5) and
(6) represent BL and R28 well.

4. BEHAVIOR OF BL AND R28

In order to understand how BL and R28 change
as x changes, contour lines are plotted on parts of the
triangles A1B1C1, . . . ,A5B5C5 containing the admis-
sible regions, which are the parallelograms marked
1, . . . , 5 in Fig. 1. Figures 2(a) through (e) show
the contour plots of BL, and Figs. 3(a) through (e)
show those of R28.

Putting x4¼ 100� x1� x2� x3, BL in Eq. (5) will
be represented as:

BL ¼ 36:548� 1:604x1 þ 0:045752x21 � 5:97288x2

þ 0:101826x1x2 þ 0:056074x22 � 9:3954x3

� 0:279148x1x3 þ 2:24477x2x3 � 3:3229x23

ð7Þ

where x1, x2, x3 are free to vary in the region
{(x1, x2, x3)

0: 5� x1� 20, 1� x2� 2.4, 0.3� x3� 1.0}.
Since it follows from Eq. (7) that @BL=@x2 ¼
�5:97288 þ 0:101826x1 þ 0:112148x2 þ 2:24477x3 �

�5:97288þ 0.101826� 20þ 0.112148� 2.4þ 2.24477�
1< 0 and @BL=@x3 ¼ �9:3954 � 0:279148x1þ
2:24477x2 � 6:6458x3< �9:3954 � 0:279148 � 1 þ

2:24477 � 2:4 � 6:6458 � 0:3 < 0 in the region
{(x1, x2, x3)

0: 5� x1� 20, 1� x2� 2.4, 0.3� x3� 1.0},
the minimum value of BL in this region is attained
when x2¼ 2.4, x3¼ 1.0. Setting x2¼ 2.4 and x3¼ 1.0
in Eq. (7) and minimizing BL shows that BL has a
minimum value 0.5292 at x1¼ 17.910. Hence, up to
two decimal places in the design region constrained
by Eqs. (1) and (2), min(BL)¼ 0.52 is attained at
(x1, x2, x3, x4)¼ (17.9, 2.4, 1.0, 78.7). The contour
plots in Figs. 2(a) through (d) show how BL,
represented by Eq. (7), changes as the variables as
x1, . . . , x4 change. These figures show that when

Table 2a. The ANOVA for BL in (3.5).

Source of

variation

Sum of

square

Degree of

freedom

Mean

square F-ratio Probability

Regression 1635.73 8 204.466 5168.85 1.69065� 10�12

Error 0.276902 7 0.0395574

Total 1636.01 15

Table 2b. The ANOVA for R28 in (3.6).

Regression 9686.41 8 1210.80 1187.09 2.9027� 10�10

Error 7.13981 7 1.01997

Total 9693.55 15
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Figure 2. (a) Counter plots of BL on triangle A1B1C1 (x4¼ 79.0); (b) counter plots of BL on triangle A2B2C2 (x4¼ 82.0); (c)

counter plots of BL on triangle A3B3C3 (x4¼ 85.0); (d) counter plots of BL on triangle A 4B4C4 (x4¼ 88.0); (e) counter plots of

BL on triangle A5B5C5 (x4¼ 91.0).
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x4¼ 79, 82, 85, 88, and 91, the minimum of BL is on
the boundary of the design region where x2¼ 2.4 and
x3¼ 1.0 (indicated by small circles in the figures), and
this minimum increases as x4 increases.

Putting x4¼ 100� x1� x2� x3, R28 in Eq. (6) will
be represented as:

R28 ¼ 1:8831x1 � 0:085773x21 þ 3:4349x2

� 0:671133x1x2 þ 24:491x3 þ 1:87323x1x3

þ 12:759x2x3 � 48:526x23 ð8Þ

where x1, x2, x3 are free to vary in the region {(x1, x2,
x3)

0: 5� x1� 20, 1� x2� 2.4, 0.3� x3� 1.0}.FromEq.

(8), putting @R28=@x1¼@R28=@x2¼@R28=@x3¼0 gives

(x1, x2, x3)¼ (16.6327, 0.244961, 0.605678), which is

outside the admissible region {(x1, x2, x3):

5� x1� 20, 1� x2� 2.4, 0.3� x3� 1.0}. Hence, the

maximum of R28 in this region must be attained on

the boundary of the region. Finding the maximums of

R28 on each of the faces, edges, and vertices of

this region shows that the global maximum of R28

in this region is 33.6301, which is attained on the

face x2¼ 2.4 at (x1, x3)¼ (10.4302, 0.81068). Hence,

up to two decimal places in the design region con-

strained by Eqs. (1) and (2), max(R28)¼ 33.63 is

attained at (x1, x2, x3)¼ (10.43, 2.40, 0.81). The con-

tour plots in Figs. 3(a) through (d) show how R28

represented by Eq. (8) changes as the variables

Figure 2. Continued.
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Figure 3. (a) Counter plots of R28 on triangle A1B1C1 (x4¼ 79.0); (b) counter plots of R28 on triangle A2B2C2 (x4¼ 82.0); (c)

counter plots of R28 on triangle A3B3C3 (x4¼ 85.0); (d) counter plots of R28 on triangle A4B4C4 (x4¼ 88.0); (e) counter plots of

R28 on triangle A5B5C5 (x4¼ 91.0).
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x1, ... , x4 change. These figures show that when
x4¼ 79, 82, 85, 88, and 91, the maximums of R28

occur when x2¼ 2.4 (indicated by small circles in the
figures).

5. OPTIMIZATION

Analysis in the last section shows that in
the admission region constrained by Eqs. (1) and (2),
BL has a predicted minimum of 0.52 at
(x1, x2, x3)¼ (17.9, 2.4, 1.0), while R28 has a predicted
maximum of 33.63 at (x1, x2, x3)¼ (10.43, 2.4, 0.81),
which is different from the minimum point of BL. As
a trade-off, optimal compositions of the cement

grouting mixture can be obtained by considering the
material cost as well as the magnitudes of BL and R28.

The material costs of fly ash, silica fume, CMC, and

cement are $500, $4000, $5000, and $320 per tonne
(prices have been scaled here for confidentiality

reason). The material cost per tonne for a mixture of
composition x¼ (x1, x2, x3, x4)

0 is:

cost¼ 5x1þ 40x2þ 50x3þ 3:2x4

¼ 5ð100�x2�x3�x4Þþ 40x2þ 50x3þ 3:2x4

ð9Þ

The last equality follows from the constraint

x1þ x2þ x3þ x4¼ 100. Figures 3(a) through (e) show

that within the range of experimentation, setting the

Figure 3. Continued.
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amounts of silica fume and CMC at their maximums

(x2¼ 2.4, x3¼ 1.0) gives the best values of BL, while

setting x2 at the maximum value 2.4 and setting

x3¼ 0.8 (near the maximum value 1.0) yields the best

value of R28. However, these two additives are the

most expensive among all ingredients. Optimal

combinations of the amounts x1, x2, x3, x4 of the

four ingredients—fly ash, silica fume, CMC, and

cement—can be obtained by minimizing the cost in

Eq. (4) under some conditions on BL and R28, say

BL� 1, 2, 3 and R28� 30, 25, 20. This optimization

can be performed with the aid of software such as

MATLAB or Mathematica or done graphically as

follows.

1. Substitute x1 in Eq. (5) by x1¼ 100� x2�

x 3� x4, simplify the result, and express x2 in

terms of x3, x4, and BL:

x2 ¼ ð�333:66þ BLþ 44:8566x3 þ 2:998x23

þ 7:54632x4 � 0:370752x3x4 � 0:045752x24Þ

� ð�3:3366þ 2:5136x3 � 0:010322x4Þ ð10Þ

2. Substitute x2 in Eq. (10) into Eq. (9) to
express cost in terms of x3, x4, and BL.

3. Substitute x2 in Eq. (10) into Eq. (6) to

express R28 in terms of x3, x4, and BL.
4. Use the result obtained in step 2 to plot

contour maps of cost on the x3x4-plane for
BL¼ 1, 2, 3, 4. These are shown in Figs. 4(a)

through (d).
5. Use the result obtained in step 3 to obtain

contour lines of R28¼ 20, 25, 30 on the

x3x4-plane and plot these contour line on

Figure 4. (a) Counter plots of cost for BL¼ 1; (b) counter plots of cost for BL¼ 2; (c) counter plots of cost for BL¼ 3; (d)

counter plots of cost for BL¼ 4.
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the contour maps of cost in Figs. 4(a)

through 4(d). Locate the points on these

contour maps with minimum values of cost

that correspond to R28� 20, 25, 30. These

minimum points are indicated by small

circles in Fig. 4(a) through 4(d). The results

are shown in Table 3.

From Table 3, the following three grades of

cements grouting material can be suggested:

Grade I: (x1, x2, x3, x4)¼ (16.29, 2.21, 1.00, 80.50),

BL¼ 1.00,R28¼ 30.007, cost¼ $477.31 (per

tonne).

Grade II: (x1, x2, x3, x4)¼ (17.87, 1.17, 0.99,

81.30), BL¼ 3.00,R28¼ 25.001, cost¼ $440.46

(per tonne).

Grade III: (x1, x2, x3, x4)¼ (19.32, 0.30, 1.00,

79.38), BL¼ 4.00,R28¼ 21.499, cost¼ $412.62

(per tonne).

The contour plots in the figures suggest that some

other values of the compositions (x1, x2, x3, x4) could

give better values of BL and R28 than those of grade I

mixture. As seen from Figs. 2(a) through 3(e), further

decrease of BL and increase of R28 will force x2 and x3
to increase beyond their experimental limits of x2�

2.4 and x3� 1.0, respectively. However, extrapolating

the empirical expression Eq. (7) for x2> 2.4 and

x3> 1.0 will result in negative values of BL, which is

physically impossible. This suggests that further

experiments can be done to investigate how the

cement mixture behaves when x2> 2.4 and x3> 1.

By adopting segmented empirical models that take

Figure 4. Continued.
(continued)
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the zero value (not negative value) over a region in
the simplex and take positive values elsewhere
in the simplex, a cement grouting material with
BL¼ 0 and R28 � 30 may be obtained. Such a
grouting mixture can be expected to contain higher
proportions of silica fume and CMC and hence be
more costly.

6. CONCLUSION

Factorial designs and orthogonal arrays have
been widely used in design of industrial experiments.
When the number of factors is large or the numbers
of levels of the factors are large, these designs require
a large number of runs, which may not be possible to
achieve in practice because of various constraints. In
such a case, the uniform design is an excellent
alternative that can be used for the experiments.

The uniform design has been studied extensively by
mathematicians and statisticians for more than two
decades, but its application in industries worldwide
still has to be promoted. However, there have already
been many successful applications of uniform designs
in industry, especially in petroleum engineering,
quality engineering, and system engineering. See
Uniform Design Association of China (Selected
Papers in Uniform Design, 1997) for a collection of
published works.

This article gives a case study to illustrate how a
uniform design is used in an experiment with 16 runs
and 3 variables each having 16, 8, and 8 levels,
respectively, in an experiment for cement mixture
formation. In this case study, we provided a complete
procedure for applying uniform design in product
formation in industry—from design of experiment, to
data analysis, to optimization. This can be easily
extended and applied to other situations.

Figure 4. Continued.
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Figure 4. Continued.

Table 3. Minimum costs that correspond to BL¼ 1, 2, 3, 4 and R28� 30, 25, 20.

BL Region of optimization Optimal point (x1, x2, x3, x4) Value of R28 Value of cost (minimum)

1.00 R28� 30 A¼ (16.29, 2.21, 1.00, 80.50) 30.007 477.31

1.00 R28� 25 B¼ (17.28, 2.14, 1.00, 79.58) 29.105 476.51

1.00 R28� 20 B¼ (17.28, 2.14, 1.00, 79.58) 29.105 476.51

2.00 R28� 30 C¼ (14.12, 2.08, 0.99, 82.81) 30.003 468.12

2.00 R28� 25 D¼ (17.96, 1.52, 1.00, 79.52) 26.083 455.22

2.00 R28� 20 D¼ (17.96, 1.52, 1.00, 79.52) 26.083 455.22

3.00 R28� 30 E¼ (14.08, 1.97, 0.94, 83.01) 30.002 461.88

3.00 R28� 25 F¼ (16.50, 1.21, 0.99, 81.30) 25.001 440.46

3.00 R28� 20 G¼ (18.64, 0.91, 1.00, 79.45) 23.551 433.92

4.00 R28� 30 H¼ (13.93, 1.89, 0.89, 83.29) 30.008 456.18

4.00 R28� 25 I¼ (16.82, 1.03, 0.95, 81.20) 25.002 432.52

4.00 R28� 20 J¼ (19.32, 0.30, 1.00, 79.38) 21.499 412.62
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