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ABSTRACT

Dual-response surface methodology is a powerful tool for simultaneously
optimizing the mean and the variance of responses in quality engineering. In
this article, we suggest a weighted mean squared etror (MSE) approach to
improve the optimization procedure. In addition, we propose a data-driven
approach to determine the weights when the prior information is vague. This is
based on the idea of an “efficient curve.” Examples are given to illustrate the
superiority of the proposed method, as compared with other existing procedures.
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INTRODUCTION

Response surface methodology is an important
tool in modern quality engineering. The basic idea
is to fit a model for the response variable and
then explore various settings of interest for the
explanatory variables. The main emphasis has been
on maximizing (or minimizing) the mean value
(location) of the response Y. This approach works
well under the assumption of the homogeneous
variance. However, such an assumption may not
be valid in real-life applications. Taguchi (1986)
emphasized the need for developing statistical

methodology that can simultaneously optimize the
mean and the variance of the characteristic being
investigated (Phadke, 1989). Such a problem arises in
many industrial problems, which require simulta-
neously achieving a target value and keeping the
variance small.

For illustrative purposes, we consider the print-
ing process example given in Box and Draper (1987).
The experiment is a 3> full-factorial design that has
three experimental variables: speed (x;), pressure (x5),
and distance (x3) with three replicates at each design
combination. The experimental response (y) is a
printing machine’s ability to apply coloring inks on
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Table 1. The printing process data from Box and Draper (1987).

X X X3 Y, Y, Y3 Mean Standard deviation
-1 -1 -1 34 10 28 24 12.49
0 -1 -1 115 116 130 120.3 8.39
1 -1 -1 192 186 263 213.7 42.8
-1 0 -1 82 88 88 86 3.46
0 0 -1 44 178 188 136.7 80.41
1 0 -1 322 350 350 340 16.17
-1 1 -1 141 110 86 112.3 27.57
0 1 -1 259 251 259 256.3 4.62
1 1 -1 290 280 245 271.7 23.63
-1 -1 0 81 81 81 81 0
0 -1 0 90 122 93 101.7 17.67
1 -1 0 319 376 376 357 3291
-1 0 0 180 180 154 171.3 15.01
0 0 0 372 372 372 372 0
1 0 0 541 568 396 501.7 92.5
-1 1 0 288 192 312 264 63.5
0 1 0 432 336 513 427 88.61
1 1 0 713 725 754 730.7 21.08
-1 -1 1 364 99 199 220.7 133.8
0 -1 1 232 221 266 239.7 23.46
1 -1 1 408 415 443 422 18.52
-1 0 1 182 233 182 199 29.45
0 0 1 507 515 434 485.3 44.64
1 0 1 846 535 640 673.7 158.2
-1 1 1 236 126 168 176.7 55.51
0 1 1 660 440 403 501 138.9
1 1 1 878 991 1161 1010 142.5

package labels. The goal here is to determine the
“optimal” settings of experimental variables (x;’s)
such that the response (y) will be close to a target
value 7, while keeping the variance small. We will
later apply our proposed method on this example and
compare it with methods suggested by others. The
data is displayed in Table 1.

~ This article is organized as follows. After
reviewing popular dual-response surface optimization
methods for this problem, we discuss the weighted
average method and introduce the idea of “efficient
point” and “efficient curve.” It is shown that a good
solution for the dual-response problem must be
located on the efficient curve. We next propose a
method to determine proper weights for such a
weighted average method when the information on
weights is vague. The printing example above is then
used to demonstrate how to apply the proposed
method and its advantages over other existing
procedures. A general step-by-step procedure is
provided for practitioners, using a second example
for illustration. ’

LITERATURE REVIEW

Vining and Myers (1990) point out that the
goal of optimizing the mean and the variance
simultaneously can be realized via a dual-response
surface method. Specifically, suppose the response
variable is Y and the controllable experiment vari-
ables are x,,...,x; Vining and Myers (referred to as
VM) first fit second-order polynomial models for the
sample mean (w,) and the sample standard deviation
(w,) separately.
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Then the VM procedure optimizes the scheme:
(VM) (3)

subject to @, = T, where T is target value.

Minliymize Do

Note that VM also discusses the cases of ‘“the
larger, the better” and “the smaller, the better.”
Without loss of generality, we focus only on the case
of “the target is best.” As will be shown later, the
extensions to the other two cases are rather straight-
forward.

Lin and Tu (1995), denoted by LT, show that the
VM method above may rule out better conditions due
to the restriction that the estimate of the second
response is forced to a fixed value. They propose to
use the mean squared error (MSE) criterion, namely,

Minimize MSE = (&, - T)? 4+ & (LT) (4)
X

Copeland and Nelson (1996), denoted by CN,
comment that LT does not specify how far one would
be willing to allow w,, to deviate from T Instead, they
modify VM by adding restrictions on w,:

Minimize Do
* &)
subject to (&, —T)> < A? (CN)

Kim and Lin (1998), denoted by KL, introduce a
fuzzy modeling approach. The general idea is to
assign a membership function (or desirability func-
tion) m(.) for both ®, and &, to measure the
“desirability.” They suggest the use of an exponential
function of the form:

ed — ¢4l

ed—1
1—]z|

if d#0
ifd=0

where d is a chosen parameter.
They formulate the optimization problem as:

m(z) =

(©6)

Maximize A
X

subject to  m(d,) > A

m(wy) > A

xeQ (KL) 7

where © may include any restriction conditions as in
the CN method.

WEIGHTED AVERAGE METHOD

When optimizing two functions simultaneously,
say f1(x) > 0 and f5(x) > 0, we can combine them into
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a single objective function by taking the convex
combination of them, namely,

Mini)lcnize SX) =MX) + A = 0)AX)
subject to X € , (®)

where A € [0, 1] and Q is the region of interest.

One can choose different values of weight A
according to the relative importance of two response
functions. When A equals 0 or 1, this is called a
marginal optimization. This weighted method is very
flexible and can achieve a good balance between
marginal optimizations. While the method is compu-
tationally simple and often used in practice, a key
issue to be addressed, of course, is the choice of the
weight A.

When X is known, the optimal solution X* of
f(X) can be obtained by single-function optimiza-
tion. Note that the optimal solution X* is a function
of A. We can plot the point (f1(X™), f2(X™)) for such a
prespecified value of A, called an efficient point. If we
let the weight A vary from 0 to 1, as demonstrated in
Fig. 1, we will end up with a graph of f;(X™) vs fo(X™).
This is usually called an efficient curve or efficient
frontier in the optimization literature (see, e.g.,
Miettinen, 1999). It is the curve of all feasible
solutions obtained by different weights.

Note that any optimal solution, Xj, for simulta-
neously minimizing f;(X) and f5(X), must fall on the
efficient curve. To see this, first, X, cannot be above
the efficient curve. Consider any point of (f;(X™),
J2(X™)) represented by point A in Fig. 1. Points B and
C on the efficient curve will provide two better
solutions. For example, point B gives the identical
value of f>(X*) but a smaller fi(X*), and point C
gives the identical f;(X™) but a smaller f>(X™). Second,
Xy cannot be below the efficient curve. Suppose
it is below the efficient curve. Then by definition,
there exists a 0 <A* <1 and X*, where X* is the
solution of Eq. (8), and we have fi(Xp) =f;(X*) and
f2(Xo) <fo(X™). This implies A*f1(Xg)+ (1 —A1*) x
S2(Xo) < A*f1(X) + (1 — A*)f2(X™), which is a contra-
diction to the fact that X™* is the solution of Eq. (8).
So an optimal solution must fall on the efficient
curve.

All the solutions to the above scheme with
different weights are considered to be equally good
in some sense. It is usually up to the practitioners to
decide which value for A is the most appropriate. In
some situations, the practitioners may have a very
clear idea of the suitable values for A (based upon the
past experience, for example). More likely, clear




380

Efficient curve 3.3F

Ding, Lin, and Wei

Data-driven weight
solution D

H(X7)

Ideal point (p,q) ®

Figure 1. The illustration plot of f5(X™) vs. f1(X™).

information about A is not available and the
practitioners may have to make a wild guess or
simply place an equal weight using A =0.5 regardless.
Here, we provide a data-driven weighted average
(DDWA) approach, as follows. The basic idea here is
motivated by the concept of generalized distance in
Khuri and Colon (1981).

Suppose we have fitted dual responses f;(x) and
fo(x) with achieved marginal optimizations (p,gq),
that is, min, f1(X) = p and min, f2(X) = q. The ideal
point (p, q) represents the best optimization possible.
This is typically not obtainable, however. For any
specific feasible X*, we will usually have either
H(X)>p or f(X*)>q.

A data-driven weight is defined as the point on
the efficient curve that is closest to the ideal point
(p,q). As illustrated in Fig. 1, point D is the point on
the efficient curve, that is closest to the ideal point
(p,q), and thus is the solution from the proposed
method. The solution achieved by this data-driven
weighted average method has two advantages: (1)
among all feasible solution points on the efficient
curve, it is closest to the ideal point; and (2) it
achieves a balance in the sense that it is determined by
both marginal optimizations.

In summary, if one has prior. knowledge or
strong preference for the weight A, then the optimal
solution X* can be obtained by solving Eq. (8)
directly. Otherwise, all solutions on the efficient curve
are considered to be good. Among them, the data-
driven weight as described here seems to be a natural
choice. This is particularly important when a specific
optimal solution is required.

FORMULATION OF THE
DATA-DRIVEN WEIGHTED
MSE METHOD

Specifically, when applying the above idea to the
dual-response problem, it is desirable that the mean
be close to the target value T and the variance be
small. A natural choice is to let fi(x) = (&,(X) — T)?
and f(x) = @*(X). The optimization scheme is as
follows (denoting WMSE as the weighted MSE):

Minimize WMSE = A(@,,(x) — T)* + (1 = A)d,(x)?
X

subjectto X €
where L €[0,1] )]

Note that the LT method is a special case of
Eq. (9) by taking A =0.5. In general, the solution of X
for minimizing A(&, — T)> + (1 — A)@2 may not be
unique, although these Xs will result in one single
point in Fig. 1.

For the simplicity of the presentation, we define
p = &,(X7), where X} minimizes (@, (X) — T)? and
g = @(X3}), where X3 minimizes @2(X). The efficient
curve that represents the best simultaneous optimiza-
tions possible is plotted. We then find the data-driven
weight such that the distance between the efficient
curve and the idea point (p,q) is minimized. The
corresponding solution X* of Eq. (9), when A takes
the value of such a weight, is the optimal solution of
our proposed method.

For completeness sake, the special cases when
A=0 or 1 deserve special mention. For example,
when A =10, WMSE equals to (&,(X) — T)*. The
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solution of X is not unique. Each of them may result
in a different value of @,(X*) and thus produce more
than one point in Fig. 1. Note that if solutions for
(@.(X) — T)? = 0 (ideal point) exist, then among all
solutions, the solution X* with minimal @,(X*) will
be the solution of VM.

PRINTING PROCESS
EXAMPLE REVISITED

We now return to the printing process example in
Table 1. Vining and Myers (1990) fit a quadratic
model for the mean and standard deviation of the
variable within a cubic region as follows, where —1 <
x; <1 (i=1,2, 3) and the target value for w, is T'= 500:

@y = 327.6 + 177.0x; + 109.4x; + 131.5x;

+32.0x% — 22.4x2 — 29.1x% + 66.0xx;
+ 75.5x1x3 + 43.6x3x3
@0 = 34.9 + 11.5x) + 15.3x; +29.2x3 + 4.2x2
—1.3x3 + 16.8x3
+ 7.7JC1X2 + 5.1.X1.X3 + 14.1x2x3 (10)

Assuming the models have been correctly identi-
fied, we first solve marginal optimizations by taking
A=0 and 1, i.e., solving min (w,~T)* and min o?
separately. Let p and g be the obtained marginal
optimization values of w, and w,, respectively. We
have p=®,(X*)=500.000 when A=1.0 and
g = d,(X*)=14.758 when A=0. Thus, (p.g)=
(500, 14.758) is the ideal point. We next solve the
optimal solution X™ in Eq. (9) for various A ranging
from 0 to 1. We can use any nonlinear optimization
software to find X™. One possible software is the add-
on package for Mathematica, called Multiplier-
Method (Culioli and Skudlarek, 2000). Using these
X"s, we can plot the efficient curve @, (X*) vs. &5(X*).
We then find the point on the curve closest to point
(p.9), ie., a point among these (@, (X™*),0,(X*)) that
minimizes [&,(X*) — pF* + [@x(X*) — gF* = [, (X*)—
500]% + [@o(X*) — 14.758]. The corresponding weight
is the data-driven weight, and the corresponding
solution X* is the optimal design solution for this
dual-response problem.

Figure 2(a) illustrates the efficient curve and the
ideal optimization point (p, g). The solutions at A =0
and 1.0 (when minimizing only one response) are not
unique and thus produce more than one point. For
example, in the case of A =1.0, there are several X™s
that minimize (&,(X)— T)?, resulting in different
values of @,(X*) and thus several points of
(@u(X*), @6(X*)). The points shown in Fig. 2(a) are
the ones chosen by Mathematica. Note that VM
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performs a further step optimization of w, among
all such X*s. However, any point near the end of
the efficient curve can be a better solution than that
of VM.

The near-straight line for the efficient curve is due
to the fact that all the optimal X*s are on the
boundaries of x;=1 in this example. This is not
necessarily the case in general. The efficient point
closest to (p, q) is (@, (X™), ©s(X*) = (496.473,44.671).
This is obtained at X* = (1.000, 0.089, —0.255) with the
weight 1 =0.6, as shown in Fig. 2(b). Note that
Fig. 2(a) is not plotted in the same scale for both
responses. So the line between our solution and idea
point (p,q) does not look perpendicular to the
efficient curve, although, in fact, it is. The results of
several methods are clustered together in Fig. 2(a).
Figure 2(b) is the magnified local graph, so one can
better visualize the differences. Figure 2(b) shows that
the LT and KL methods result in solutions as a special
case of the proposed method with A =0.5 and 0.58,
respectively. While LT is always a special case of the
proposed method as previously discussed, whether KL
is always the case deserves further investigation.

A direct comparison of the various numerical
solutions is in general not possible, because each
alternative method seeks to optimize a different
criterion. As previously discussed, however, any
solution far away from the efficient curve is not
recommended. Figure 2(b) shows that better solu-
tions than those obtained by CN and VM methods
are the solutions with A=0.52 and 0.99 (or any
weight close to but not equal to 1), respectively.
While the solution of CN is quite close to the
efficient curve, the solution of VM is not, as
indicated below. Compared to the VM solution
(@, (X™*), Ds(X*)) = (500, 51.90), the solution on the
efficient curve (@,(X*), @,(X*)) = (499.265,45.01)
does not have its predicted mean equal to 500 (7)
exactly, but its predicted standard deviation is much
smaller (45.01, as compared to 51.90 in VM).
Furthermore, we can easily add any constraints to
Q in Eq. (9) to address the concern of Copeland and
Nelson (1996), i.e., how far one would be willing to
allow w, to deviate from T, if so desired.

Method @, (X*) We(X™*)
CN (p=1, A=5) 495.020 44.727
Weighted MSE with A =0.52* 495.088 44.510
VM 500.000 51.900
Weighted MSE with A =0.99* 499.265 45.010
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The comparison results with other approaches
(VM, LT, CN, and KL) are summarized in Table 2,
including the optimal solutions of X* and the
resulting @,(X™) and @,(X*). The parameters of KL
and CN methods are chosen to make a fair
comparison with the proposed model. All numerical
results are taken directly from the original articles. In
Table 2, the corresponding weights A of their results
(or the weights of a more efficient point on the curve)
are also listed in the last column.

GENERAL PROCEDURES FOR SOLVING
PRATICAL DUAL-RESPONSE PROBLEMS

Specifically, the following steps are proposed for
solving dual-response surface optimization problems:

1. Develop the experimental design, conduct
the experiments, and collect data.

B, (X")

(a) The overall plot of &,(X™*) vs. @.(X*) in example 1. (b) The local plot of the Fig. 2(a) with A >0.4.

2. Fit response surfaces for the mean, (w,) and
standard deviation (w,) responses separately.

3. Plot the efficient curve using the solutions of
Eq. (9) and determine the ideal optimization
point (p, ).

4. Choose a solution from the efficient curve
according to a prior weight A or select a data-
driven weight with the solution closest to the
ideal optimization (p, q).

We next demonstrate the step-by-step procedure
by an example with constraints.

A SECOND EXAMPLE

This example is from Luner (1994) and also
studied by Kim and Lin (1998). Three variables, x,
(arm length), x, (stop angle), and x; (pivot height),
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Table 2. Comparison with other methods.

Method Optimal Setting X™ @, (X*) @s(X*) A
VM (0.620, 0.230, 0.100) 500.000 51.900 0.99%
LT (1.000, 0.074, —0.252) 494.659 44 .463 0.50
KL (d,=-439, d,=0) (1.000, 0.086, —0.254) 496.111 44.632 0.58
CN (p=1, A=5) (0.975, 0.056, —0.214) 495.020 44.727 0.52%
Proposed method (1.000, 0.089, —0.255) 496.473 44.671 0.60

“The solution is not on the efficient curve. But by choosing an efficient point with such a weight, we can achieve the identical

(or near identical) @, (X*) with a smaller &,(X*).

are under consideration to predict the distance to the
point where a projectile landed from the base of the
Roman-style catapult. The experiment is a central
composite design with three replicates.

Here are the steps:

1. The experiment is conducted and the result is
displayed in Kim and Lin (1998).

2. Fit the second-order regression models for
the mean response and standard deviation
(see Kim and Lin (1998).

@, = 84.88 + 15.29x) + 0.24x, + 18.80x3
~0.52x7 — 11.80x3 + 0.39x7 + 0.22xx,
+ 3.60x1x3 — 4.42x7x3

and

@0 =4.53+ 1.84x; +4.28x, 4 3.73x3 + 1.16x?
+4.40x3 +0.94x + 1.20x1x3 4 0.73x X3
+ 3.49x2x3

3. The problem requires that the target value
for the mean be 80 with constraints
79 <@, <81 and &, <3.5. Equation (9)
now becomes

Minimize WMSE = A&, — T)* + (1 — \)é?
X

subject to 79 < @, < 81

Ws < 3.5
—-l1=<x;<1,i=1,2,3, where A € [0,]1] and
T =80 1)

We first run marginal optimizations, i.e.,
min(w, —7)* and min w? separately and
find p=w,(X*)=80 at X*=(-0.0074,
—0.0451, —0.2507), and g = @x(X*) =
3.04301 at X* = (0.0644, —0.2806, —0.2908).

Letting A evenly increase from 0 to 1 at a step

A *
@,(X")
3.12
»
79.2 79.4 796 79.8 80 a’>y (X )
3.08
o

Figure 3. The plot of &, (X*) vs. @:(X*) in example 2.

of 0.01, we can solve for the optimal solution
X" in Eq. (11) for each A with Mathematica.
Using these X™s, we plot the efficient curve
(@, (X*),0,(X*)) in the graph of @,Vs.@,.
.Note that the constraints in Eq. (11) result in
a bended line, as shown in Fig. 3.

4. The optimal solution suggested by our
method is the efficient point closest to (p, g),
which turns out to be @,(X™*) = 79.9813 and
@s(X*) = 3.1490 with the data-driven weight
A=095 and the optimal setting X*=
(0.1290, —0.2848, —0.2856).

CONCLUSION

Various methods have been proposed in the lite-
rature to obtain an optimal setting for dual-response
problems. This is typically done by minimizing the
cost. The cost (or loss in terms of out-of-specification
limits) is typically a function of (1) the deviance of
mean to the target (bias) and (2) variance. The
concept that any optimal solution must fall on the
efficient curve is proposed here. As previously
discussed, some existing methods may end up with
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their final solution away from the efficient curve. This
is not desirable at all.

If the relative importance between bias and
variance is known, either from the past experience or
as a priori, the value of A can be determined
accordingly. On the other hand, if the relative
importance between bias and variance is not so clear,
here we propose the idea of a data-driven weight,
following the generalized distance idea of Khuri and
Colon (1981) in a two-dimensional case. The proposed
method is easy to implement and interpret. Compared
to other existing methods, it can be adjusted to achieve
a good balance between bias and variance by selecting
different weights. We have shown that other existing
methods are either special cases of the proposed
method with a specific prior weight or inferior in the
sense that a better solution exists.

Further extensions of the proposed method are
considered below; while Euclidean distance is used
here, we can use other distance measures in general.
Any meaningful distance measure can be and should
be used in practice. It is also worthwhile to note that
we used the response surfaces derived from designs
with replicates in both of the two examples. The
proposed method can also be applied in situations in
which the response functions were estimated based on
inner-outer array of combined array designs.

We have focused on the case of “the target value
is the best” in the article so far. For the case of “the
larger the better,” we can modify the formulation of
Eq. (9) to:

Minimize WMSE = =1, (x)? + (1 — A)dg(x)?

subject to X € Q
where A € [0, 1] (12)

For the case of “the smaller the better,” since the
mean of the response in application is usually
positive, this case will be equivalent to letting T=0
in Eq. (9). We have:

Minimize WMSE = AD,(%)? + (1 — A)idg(x)?

subject to X € Q
where A € [0, 1] (13)

All computations in this article can be easily
performed by Mathematica (Culioli and Skudlarek,
2000). Computer codes for all the computations
involved are available from the authors.
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