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is proposed for the analysis of data obtained from uniform designs. This new
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simultaneously deletes insignificant variables and estimates the coefficients of
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1 Introduction

Design of experiments is a statistical tool that has been widely used in the industry in
product design, process design, quality improvement, and productivity improvement.
This method is proved to be a powerful means for identifying active effects and screening
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out unimportant effects. Many challenging questions are arising from practice and
various designs are to be proposed to meet practical needs, which makes design of
experiments an active area of research in statistics. In this article, we will introduce the
uniform design proposed by Fang [1], and discuss a data analysis method for such
designs.

A uniform design (UD) is a design in which the design points scatter uniformly on the
experimental domain. Such a design has the advantages that: ‘

1 within a small number of experimental runs, a significant amount of information can
be obtained for exploring the relationships between the response and the contributing
factors; and

2  itis robust to the underlying model assumption, which means that it performs well
even if the form of the regression model is not known.

Because of these advantages, the UD has been applied successfully in many industrial
and scientific experiments. See [2] and references therein. Fang, Lin, Winker and
Zhang [3] is excellent review on the theory and application of the UD. Also see [4] and
[5] for some recent applications.

Unlike the fractional factorial design, a UD is usually not orthogonal. This poses a
challenge in data analysis. Via a nonconvex penalised least squares approach [6], in this
paper we propose an effective screening procedure for identification of active effects
from an experiment performed using a UD. This screening procedure possesses an oracle
property, a property desirable for model selection, and has a theoretical backup from a
statistical consideration. See [7] and [6] for a systematic study of variable selection via
penalised least squares and penalised likelihood. In this paper, we will use a real example
to illustrate in detail how to implement the proposed screening procedure.

This paper is organised as follows. In Section 2, we discuss the background and the
fundamental idea of the UD, and discuss issues related to the construction of UD’s.
Section 3 presents the data obtained in an industrial experiment performed using a
uniform design for manufacture of liquid crystal displays (LCD’s). A new screening
procedure is proposed and discussed in Section 4. Section 5 shows application of
the proposed data analysis procedure on the LCD example. Conclusions are drawn in
Section 6.

2 Uniform designs

2.1 Factorial design and optimal design

An objective for ‘designing an experiment is to effectively explore the relationship
between a response variable and the relevant contributing factors. Such a relationship
may be formulated as the regression model

output = f(inputs) + random error, _ 2.1)

where f(*) is the response function. Different functional forms of f(*) may require
different designs. A classical approach in design of experiments is based on analysis of
variance (ANOVA). A two-way full ANOVA model with factors A and B, which
contains the main effects, the interaction and the random error, can be represented by
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Yu =u+a +p, +7, €

where Y is the response variable, 4 is the grand mean, a; and f§; are main effects for the
two factors, and y; is the interaction between the two factors, and & is the random error.
The purpose of an experiment is to estimate all the parameters involved with sufficient
accuracy. Design of experiments aims at obtaining sufficient information for this
estimation in a reasonable number of runs. When the number of factors increases, the
ANOVA model with all possible interactions will become very complex, and the number
of parameters to estimate increases exponentially. This requires the number of
experimental runs to increase exponentially. A commonly used method to get over this
problem is to ignore the high-order interactions. A fractional factorial design allows
estimation of all main effects and low-order interactions, which can significantly reduce
the number of experimental runs.

An optimal design is a design which is constructed for optimising the estimates of
a certain parameters in a prespecified statistical model. An example of such a model is
the multiple linear regression model

Y=8+Bx +---+Bx +&,

where x;’s are input variable, 8;’s are unknown parameters of interest, and ¢ is the random
error. Different criteria of optimality may yield different designs even for the same
model. Readers may refer to [8] for more discussions on optimal designs.

2.2 Space filling design

Fractional factorial design and optimal design can be used as a screening mechanism for
identifying the potentially active factors in a statistical model. When these designs are
used, the design points usually depend on the functional form of f-). In reality, however,
the regression function f{*) is unknown, and for such case the uniform design which has a
good spread of design points over the entire design space has been proved to be a very
suitable candidate for exploring the relationship between the output variable and input
variables.

2.2.1 Theoretical background

The theoretical backup of uniform design rests on the theory of numbers and quasi-Monte
Carlo method. Related methods for studying uniform designs are therefore called number
theoretic methods [9]. Suppose that we need to evaluating the integral

[D h(x)dx, 2.2)

where x is an s-dimensional vector, A(x) is a known function, and D is the domain of
integration. When the integral cannot be expressed in a closed form, numerical methods
have to be used for evaluation of the integral. The integral in equation (2.2) is in fact the

expected value of h(x) times the volume |[D] of D, when x has a uniform distribution over
D. That is,

E{hx)} = [ hx)dv/|D].
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A numerical method that can be used to evaluate the integral is the Monte Carlo Method

to generate n points IT = {x,,....X,} that are independently and identically distributed
(i.i.d.) over D with uniform distribution.

Bt > h(x)
Nyer
as an estimate of E{h(x)}.

The Central Limit Theorem (CLT) in statistics shows that the rate of convergence of
Monte Carlo method is n, more precisely,

|\ — E{h(x)} |=0,(n™").

The rate of convergence n " can be improved by choosing IT in other ways. In this
paper, our attention will focus on the case in which D is the unit cube C. McKay et al.
[10] proposed a method of generating a set of points I1 over C', called Latin hypercube
sampling (LHS), which provides a more accurate estimate of E{k(x)} than the average on
a set of i.i.d. points with uniform distribution on C'. Replacing the random sample by a
set of deterministic points, quasi-Monte Carlo method provides a set of points IT that
estimates E{h(x)} in a much more efficient way. Based on the principal of quasi-Monte
Carlo method, Fang [1] and Wang and Fang [11] proposed the uniform design, which
allocates experimental points uniformly on the experimental domain. The first successful
application of the UD was provided a solution to a challenging experimental design
problem with 31 runs and five factors each having 31 levels [1].

Both the LHS and the UD are ‘spacing filling’ experimental designs.
The fundamental difference between them is that when the experimental domain is
continuous, points in the LHS designs are selected at random from the cells, whereas
points in the UD are selected from the centre of the cells. Thus, the LHS can be viewed as
a space filling design in randomly uniform manner, while the UD in deterministically
uniform manner. Furthermore, an LHS design requires one-dimensional balance of all
levels for each factor, but a UD requires one-dimensional balance and s-dimensional

uniformity. Thus, these designs are similar in one dimension but can be very different in
higher dimensions.

2.2.2 Measure of uniformity

The rationale for construction of a good UD is based on the following Koksma-Hlawka
inequality

| - E {h(x)} | < D(P)V (h),

where V(h) is a measure of the variation of h, and D(IT) is the discrepancy of IT which is
a measure of the uniformity of I1. See below for definition of D(IT). The quantity V(h) is
defined in the sense of Hardy and Krause ([12], p. 19), which is independent of the
design points. The Koksma-Hlawka inequality show that given a bounded V(h), the more
uniform a set I1 of points distributes over the experimental region C°, the more accurate

% is as an estimate of E{h(x)}. Therefore, given the number of factors and the number of
experimental runs, one should choose a set of experimental points with the smallest
discrenancy. This is the motivation for the quest of UD’s. Since V(h) does not depend on
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the set I'l, a UD is robust against change of the function A. Thus, given the number of
points and the class of functions with bounded ¥(h), a UD can be used for obtaining the
‘most accurate’ estimate of E {h(x)}.

Measures of uniformity are closely related to goodness-of-fit statistics. Let F,(x) be
the empirical distribution function of I, = {x;,...,x,}:

F.(x)= n"i I(x, £x),

where I(*) is the indicator function and the last inequality is defined according to
componentwise order in R’. The L, discrepancy (0 < p < ) on C’ is defined as

p,(R)={[IF®-F@) &},

where F(-) is the uniform distribution function on C°. When p = w, the corresponding
L(p) discrepancy is

D(F,) = sup | F (x) - F(x)|,

xeC’

which is a commonly used measure of uniformity in the literature of quasi-Monte Carlo
method. From the definition of D,(I1,), Dy(Il,) is the Cramer—von Mises statistic for
goodness-of-fit test, and the D(I1,) is the Kolmogorov—Smirnov goodness-of-fit statistic.
Hickernell [13] proposed other discrepancies that have some desirable properties, and
less computational load is required for construction of UD’s using those discrepancies.
Section 5.1 of [3] has a detailed discussion on measures of uniformity.

For a given measure of uniformity, to construct a UD on C’ is to find a set of n points
in C° that has the smallest discrepancy — which is a formidable combinatorial
optimisation problem even for a moderate value of n. Algorithms such as threshold
accepting (TA) can be used for solving the problem numerically, but no algorithm will
guarantee that a global optimal solution can be obtained. Using the TA algorithm, UD’s
with different s and n have been constructed and tabulated on the website
www.math.hkbu.edu.hk/UniformDesign for convenient use.

Results that reveal the relationship between uniformity and orthogonality have been
obtained. Fang and Mukerjee [14] first established a connection between uniformity and
aberration in regular fractions of two-level factorials. This result has been extended to
multi-level factorials in [15]. Such results allow one to construct orthogonal designs from
uniform designs.

Uniform designs on constraint experimental domains have also been investigated.
An example is UD’s constructed in the simplex

T, ={(x,....x,) %, +-+x, =Lx, 20,j=1,...,5}

for experiments with mixtures [16,17]. Readers may refer to [18] and [19] for expositions
on experiments with mixtures. Wang and Fang [17] and Fang and Yang [20] proposed
algorithms to generate sets of points uniformly scattered over the domain

T {(a,--a), ...} ={(x,....x,) €T,,0<a, < x, <b <1, j =1,...,5}
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which is a generalisation of T;, and such a generation is useful in practice and poses
challenge questions in constructing a UD over constraint domains.
There are other examples of uniform designs constructed on constraint domains.

One is uniform designs constructed for directional data. The experimental domain for
directional data is the unit sphere

s ={(Jcl,...,xd):xl2 +---+x: =1}.

An efficient algorithm to generate UD’s over S is available in [9]. Fang and Li [21]
propose an algorithm to generate a UD over a Stiefel manifold

O@,)={rer™:1rr=1},

the collection of all possible dx k column-orthogonal matrices. It is clear that S
coincides with O(d, k) with k= 1.

3 The LCD example

An industrial case study on process design for quality improvement in the manufacturer
of liquid crystal displays (LCD’s) is extracted from [22] to illustrate application of the
uniform design and analysis of the data obtained.

The experiment has five contributing factor, ¥V, F, T, L, S, and the response variable ¥
is the number of acceptable LCD’s produced in a tray of 66 units. Each of the factors ¥,

F, T, S has five settings, while the factor L has only three settings. The values of the
settings of these factors are shown in Table 1.

Table 1 Settings of factors

Levels
Factor 1 2 3 4 5
4 16 18 20 2 24
F 9 11 13 15 17
T 4 5 6 7 8
L 2 1 23 - -
S 1 1.5 2 2.5 3

It was decided to perform an experiment of 15 runs. The procedure for the design of this
experiment started with a U,5(15%) UD extracted from {2], which has 15 runs, five factors
each having 15 levels, and is shown in the first five columns from the left in Table 2.
(In all tables, column numbers are counted from the left.) Using quasi-level technique,
adjacent levels in each columns of the Uy5(15%) UD were combined to give a Uy5(5* x 3")
UD. In the first, second, third and fifth columns of Table 2, levels 1, 2, 3 were combined
to give a new level 1, levels 4, 5, 6 were combined to give a new level 2, ... In the fourth
column of Table 2, levels 1, 2, 3, 4, 5 were combined to give a new level 1, levels 6, 7, 8,
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9, 10 were combined to give a new level 2, etc. The U, s(5* x 3') UD constructed is shown
in columns 6-10.

Table2  Uniform design U,5(15%) and Uys(5* x 3"

v F T L S Vv F T L S
1 4 7 11 13 1 2 3 3 5
2 8 14 7 11 1 3 5 2 4
3 12 6 3 9 1 4 2 1 3
4 13 14 7 2 1 5 3 3
5 5 5 10 5 2 2 2. 2 2
6 12 6 3 2 3 4 2 1
7 13 4 2 1 3 5 2 1 1
8 2 i1 13 14 3 1 4 3 5
9 6 3 9 12 3 2 1 2 4
10 10 10 5 10 4 4 4 1 4
11 14 2 1 8 4 5 1 1 3
12 3 9 12 4 1 3 3 2
13 7 8 4 5 3 1 2 2
14 11 8 4 2 h) 4 3 1 1
15 15 15 15 15 5 5 5 3 5

For each of the 15 runs of the experiment, five replicates were performed. Columns 2-6
of Table 3 show the actual values of the settings of the factors, and columns 7-11 show
the numbers of acceptable LCD’s from trays of 66. Table 3 shows that the output is
strongly related to the input factors. For instance, Run 7 produces very low numbers of
accepted LCD’s, while Run 1 yields the best result among the 15 runs. Runs 8 and 12
also produce reasonably good results. Browsing through Table 3, one may guess that the
best choice for factor L is 23, but interactions among the factors may exist. Regression
analysis will be performed in Section 5.

4 Data analysis of uniform design

When an orthogonal design (such as factorial design) is applied in an experiment for
estimation of coefficients in a linear regression model, it is well-known that the
coefficients can be independently estimated and tested [23], which makes screening of
variables a relatively straightforward task. When a UD or LHS is used, the screening task
will not be so straightforward as these designs are not orthogonal. In this section, we shall
use the LCD data to explain how screening can be carried out when UD’s are used.
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Table 3 Design and responses for the LCD experiment

No. 14 F T L S y? 2 ) 4 ) 4 y®
1 16 11 6 23 3 66 66 66 66 66
2 16 13 8 11 2.5 33 36 36 36 51
3 16 15 5 2 2 36 36 45 39 45
4 18 9 8 23 2 45 54 51 60 54
5 18 11 5 11 1.5 45 54 54 51 54
6 18 13 7 11 1 33 36 33 36 36
7 20 17 5 2 1 0 6 6 12 9
8 20 9 7 23 3 54 66 63 66 66
9 20 11 4 11 25 30 30 54 45 45
10 22 15 7 2 25 33 45 57 54 57
11 22 17 4 2 2 21 30 33 36 33
12 22 9 6 23 1.5 60 60 66 66 66
13 24 13 4 11 1.5 21 45 45 42 45
14 24 15 6 2 1 18 21 27 27 30
15 24 17 8 23 3 30 36 33 42 48

4.1 Statistical formulation

Consider the regression model in (2.1). Suppose that s factors u;,...,u, contribute to the
output, but functional form of f-) is unknown and is approximated by the regression
model

y=pBx +-+Bx, +¢,

where xi,...,x; are power functions of uy,...,us, E(§)=0 and var(e)=o’. In order to
attenuate modelling bias at the initial stage of modelling, it is desirable to include the
linear terms in wy,...,4, in the model at the initial stage, and incorporate other terms such
as quadratic and interaction terms as appropriate, in order to give a full potential model.
For example, one may set x; =1 to give the constant term, and set x, =u;, x3= ul,
X4 = uuy, etc. It is therefore possible that the number of regression coefficients 4 in the
model will be much larger than s. The insignificant x’s (j=1,...,d) will be finally
excluded from the model.

4.2 Variable selection via penalised least squares

Some matrix notation will be defined. Denote by y; the response from the run of the
experiment at which x; assumes the value x; (j = 1,...,d), and let x; = (x;,.. .,x,d)T. Define
Y=’ and X=(x,...,X,)". Many variable selection criteria for the linear
regression model are based on the penalised least squares

1 P
o8) =-2-;lly—Xﬂ F+2p, 080D, @4.1)

=1




Uniform design: design, analysis and applications 109

where ||a|| = (a"a)'?, p 2 () is a penalty function, and A, is a tuning parameter which

controls the complexity of the model and is chosen by a data-driven method such as
generalised cross validation (GCV, [24]).

The family of L, penalty p, (|6]) = A, p~ |6 has been used for the penalised least

squares. The L, penalty results in a ridge regression estimator. The L, penalty yields the
LASSO [25]. The L, (0 <p <1) penalty yields the bridge regression [26]. The entropy

penalty, namely, p, (|18))= -;-A:I (161#0), where /() is an indicator function,
corresponds to the Ly penalty. Note that

d
z I1(| B, | # 0) = the number of nonzero components of 8.

J=t

Many variable selection criteria can be derived from the penalised least squares (4.1) by
setting different values for 4,. For instance, the AIC [27] (L,, [28]) and BIC [29]

correspond to A = \/5 (cr / \/r_z ) and +flogn (0'/ \/; ) , respectively, although these two

criteria were motivated from different principles. The entropy penalty function is
discontinuous, and requires searching over all possible subsets for finding the solution of
this penalised least squares which makes very expensive in terms of computational cost.
Furthermore, it produces unstable models [30].

To achieve the purpose of variable selection, the penalty function must satisfy certain
conditions. Fan and Li [7] advocate that a good penaity function should have the
following three properties.

Sparsity: The resulting estimator may automatically set the small estimated
coefficients to be zero in order to reduce model complexity. In other words, the resulting
estimator should have a thresholding rule.

Unbiasedness: The resulting estimator is nearly unbiased when the true unknown
coefficient is large. This will avoid unnecessary modeling bias.

Continuity: The resulting estimator should be continuous in some sense in order to
avoid instability in model prediction.

Unfortunately, from a mathematical consideration, the L, penalty (0 <p <) does not
possess the above three properties. Fan and Li [7] suggest to use the smoothly clipped
absolute deviation (SCAD) penalty, which is given by

2a1)|0|-¢6’
pl(e)=A|0|I(|0|Sl)+—?———l—|——1(}l,sw|<a/1)
' 2(a-1)

242
ai

2(a-1)

-+

I{6|2al) forsomea>2, (4.2)

which satisfies all the above three conditions mathematically. In what follows, SCAD
will mean any procedure derived using the SCAD penalty. The SCAD involves two
unknown parameters 4 and a, where A is a regularisation parameter chosen by the
generalised cross validation (GCV), a data-driven method. Fan and Li [7] suggested using




110 R Lietal

a=3.7 based on a Bayesian argument, and this value will be used throughout in this
paper.

4.3 Oracle property
Suppose that in the following model, the errors ¢ are i.i.d.:
y=Xp8+Xp. +e¢.

Suppose that X is partitioned as X = (X|, X,). Without loss of generality, assume that all
components in X, are active, while those in X, are not active. An ideal estimator is the
oracle estimator:

B =XX)'Xy, ad jB=o,
which correctly specifies the true model and provides estimates of the regression
coefficient associated with X,. This is a desired property in variable selection. With a

proper selection of A,, Li and Lin [6] showed the SCAD satisfies this oracle property
asymptotically, which makes it an ideal variable selector in many cases.

4.4 An algorithm

Solving a nonconvex penalised least squares problem is a challenging task, simply
because the target function is nonconvex and the problem could be high-dimensional.
The penalised least squares function of the SCAD do not have the second derivative
at some points, due to the form of the penalty function. In order to apply the
Newton-Raphson algorithm to solve the penalised least squares problem for the SCAD,
the following local approximation method will be used.

When 8 is not very close to 0, given an initial value S that is close to the true alue
of B, approximate the penalty Pi({B) locally by the quadratic function as follows:

0 1 ’ 0] >° A 2 0)2
p;_(lﬂ,l)zp,_(lﬂ,"l)+;{p4,(lﬂ,“I)/Iﬂ,”l}(ﬂ, -B8,", (4.3)

otherwise, delete the corresponding term from the model. With this local quadratic
approximation, the solution for the penalised least squares problem can be found by
iteratively computing the following ridge regression with an initial vatue £

B ={X'X+nz,(8 ") }Xy, (44)
where

Z,(8) = diag{p,( B D/ B |... B0 B D/ | B 1}.

4.5 Choice of tuning parameter A,

From the iterative ridge regression equation (4.4), the fitted value of y is

¥=X{X"X+nZ, (8)}'Xy.
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Although ¥ is not a linear in term of y since ﬁ may be associated with y,
P, {8 (M)} = X{X'X +nZ, (B} X

can be regarded as a projection matrix. Thus, a given A,
e(4) = [P, {4 (1)}]

can be regarded as effective number of parameters. The generalised cross-validation
statistics can be defined by

ly-xpf
{n-e(A))’

and 4, is estimated by A = arg min {GCV(4)}.

GCV(A) = (4.5)

4.6 A variable selection procedure

For a given value of 4, and an initial value of S, we iteratively compute the ridge
regression (4.4) with updating local quadratic approximation (4.3) at each step during the
iteration. This can be easily implemented in many statistical packages. Some components
of the resulting estimate will be exactly 0, and such components correspond to the
coefficient of inactive effects. In other words, nonzero components of the resulting
estimate are correspondent to the active effects in the SSD.

S Analysis of the LCD example

We now demonstrate how to implement the SCAD screening active effects for the LCD
data. The means and standard deviations of the five controllable variables are listed in
Table 4.

Table 4 Mean and standard deviation of controllable variables

1 4 F T L S
Mean 20 13 6 12 2
SD 2.8475 2.8475 1.4237 8.6603 0.7119

To avoid numerical instability, all controllable variables are standardised.
The standardised variables are denoted by V., F,, T, L,, S..

Using the GCV to estimate the tuning parameter A, we obtain A =0.6099. With this
value of A, the estimated coefficients of the selected model, their standard error and the
corresponding P-value are shown in Table 5. From Table 5, all selected terms are
significant at the 0.05 significance level, and the resulting model for £°) is
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[ =52.5231-9.6258 F, +9.94335, ~2.1342 L, ~9.5534 T*
+7.9921T,x L ~2.6838¥,x L —2.5289 ¥, xT.

The last equation shows that in order to have large f » the controllable variable F should

be set at small values. This is consistent with the outputs of Runs 1, 8 and 12. Factor S
should be set at high value. This is also consistent with the outputs of Runs 1 and 8.
The final model shows that there exists a strong two-order interactions among ¥V, T'and L.
To find an optimal setting for the controllable variables V, T and L, we have to maximise
f with respect to ¥, T and L over the experimental domain, which will not be pursued
here.

Table5  Estimates, standard errors and P-value

X-variable Estimate Standard error P-value
Intercept 52.5231 1.5146 0.0000
F, -9.6258 0.8790 0.0000

- S, 9.9433 1.0042 0.0000
L, —2.1342 0.8296 0.0123

T, ~9.5534 1.3683 0.0000
T,xL, 7.9921 1.0267 0.0000
V.xL, —2.6838 0.9715 0.0074
V.xT, -2.5289 1.1491 0.0312

Note that the standard deviations of outputs among the five replicates for each run vary
quite significantly. This indicates that the i.i.d. assumption on the random error might not
be valid. Testing of the homogeneous assumption and further statistical analysis will be
dealt elsewhere and will not be presented here.

6 Conclusion

In this paper, the background, the fundamental idea and the construction of the uniform
design are introduced. A screening procedure, SCAD, for regression analysis is
explained. A real example is used to illustrate application of the uniform design in
solving an industrial problem, and analysis of data using SCAD is presented. This paper
serves a reference for practitioners who wish to apply the uniform design to solve real
industrial problems.
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