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A goal attainment approach to optimize multiresponse systems is presented. This approach aims to identify the settings of control
factors to minimize the overall weighted maximal distance measure with respect to individual response targets. Based on a nonlinear
programming technique, a sequential quadratic programming algorithm, the method is proved to be robust and can achieve good
performance for multiresponse optimization problems with multiple conflicting goals. Moreover, the optimization formulation may
include some prior work as special cases by assigning proper response targets and weights. Fewer assumptions are needed when
using the approach as compared to other techniques. Furthermore, the decision-maker’s preference and the model’s predictive ability
can easily be incorporated into the weights’ adjustment schemes with explicit physical interpretation. The proposed approach is
investigated and compared with other techniques through various classical examples in the literature.

1. Introduction

Response Surface Methodology (RSM) (Box and Draper,
1987; Khuri and Cornell, 1996; Myers and Montgomery,
2002) is increasingly being used in various industries (semi-
conductor, chemical, food industry, etc.) for quality im-
provement and process optimization. The general analysis
scheme of RSM encompasses the following: (i) a Design
of Experiment (DoE) is performed to obtain reliable mea-
surements of the response; (ii) a first- or second-order
polynomial model is fitted using least-squares regression;
and (iii) the optimal settings of the input parameters are
determined.

Most early work in RSM only considers single response
variables. There is a growing interest focusing on MultiRe-
sponse Systems (MR Ss), which is prevalent across various
application areas. The Dual Response Surface (DRS) ap-
proach, simultaneously modeling variance and mean of the
quality feature associated with a process, can be viewed as
the simplest form in MRSs. It has been widely explored
(for example by the work of Vining and Myers (1990),
Del Castillo and Montgomery (1993), Lin and Tu (1995),
Copeland and Nelson (1996), Semple (1997), Kim and Lin
(1998), Del Castillo et al. (1999), and Tang and Xu (2002)).
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‘When more responses are to be investigated, however, the
existing optimal formulations for DRS might not be ap-
propriate. Although conventional experimental design and
model fitting techniques are still useful, the challenge is how
to simultaneously determine the optimum factor settings
for multiple responses and hence attain the overall desired
quality.

One difficulty in MRS optimization lies in the differ-
ent properties of multiple responses. For example, the
various responses may have different types of optimality,
such as “Nominal-The-Best” (NTB), “Larger-The-Better”
(LTB) or “Smaller-The-Better” (STB), and may be mea-
sured in different units with substantially different magni-
tudes. Moreover, the multiple responses might not increase
or decrease simultaneously and hence a complex trade-off
or compromise may be necessary. With the increasing de-
mand from customers for overall quality, a systematic and
robust strategy to optimize all responses simultaneously is
crucial,

This paper is organized as follows. A comprehensive lit-
erature review on MRS optimization is given in Section 2.
The proposed goal attainment optimization approachis de-
scribed in Section 3. A modified approach to accommodate
the predictive ability of a response model is also included
in this section. Three examples in the literature are inves-
tigated in Section 4. Conclusions and discussions on the
comparisons among various techniques are presented in
Section 5.
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2. Literature review

A simple and straightforward approach for MRS optimiza-
tion is to superimpose the response contour plots and de-
termine an optimal point by visual inspection (Lind et al.,
1960). However, this can only be useful when the dimen-
sions of the inputs and response variable are low. The MRS
optimization is a typical multiobjective optimization prob-
lem. The Multiobjective Optimization (MO) is concerned
with the minimization of a vector of objectives F(x) that
may be subject to a series of constraints or bounds:

F() = {11(x), 2(x), .. ., fa®)},

Minimize

subject to

where X = [x1, X2, ..., x,]7 is the set of inputs (a denotes
the number of control factors) and X is the feasible set. In
general, no solution minimizes all of the objectives simul-
taneously. The concept of a Pareto-optimality also called
noninferiority, efficient, or compromise etc., solution has
been widely used to characterize optimal solutions for the
MO problem (Censor, 1977). The definition of noninferior
solution is as follows:

x* is said to be a noninferior solution of the MO problem if
there exists no other feasible x (i.e., x € X)) such that F(x) <
F(x)*, i.e, no other feasible x such that fy(x) < f5(x)* for all
J =1, ..., nwith strict inequality for at least one j.

Intuitively a noninferior solution is one in which an im-
provement in one objective function requires a degradation
of at least one other objective function. A general solution
approach is to change the multiobjective problem with var-
ious constraints into a single scalar measure and solve it as
a single objective problem:

Minimize p(x) x € X.

The single measure p(x) has conventionally been de-
fined as the following: the distance from the ideal design
point “p” (Khuri and Conlon, 1981; Vining, 1998), a de-
sirability function “D” (Harrington, 1965; Derringer and
Suich, 1980; Del Castillo ez al., 1996; Kim and Lin, 2000);
the weighted sum of response objective functions (Mont-
gomery et al., 1972); a quality loss function (Pignatiello,
1993; Leon, 1996; Ames et al., 1997; Plante, 1999); a stan-
dardized performance index (Barton and Tsui, 1991); or a
process ability criterion (Plante, 2001). However, it is usu-
ally difficult to select the weights that measure the relative
importance associated with each objective in the weighted
sum method. Moreover, the weighted sum method or qual-
ity loss function method may not find Pareto optimal points
that lie upon a nonconvex boundary of attainable sets
(Papalambros and Wilde, 2000).
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Other improvements in MRS optimization involve
optimizing the multiresponse process via constrained

‘confidence regions (Del Castillo, 1996) and the interac-

tive multicriteria method (Boyle and Shin, 1996). For a
review on MRS optimization related problems, see Myers
(1999) and the discussion therein. The following subsec-
tions briefly review two main approaches in this field,
namely the generalized distance approach and the desir-
ability function approach.

2.1. The generalized distance approach

The generalized distance approach developed by Khuri and
Conlon (1981) (hereafter referred to as the KC approach)
can be considered a two-step process. First the individual
optima of the estimated responses over the experimental
region are obtained. Next, the compromise optimum is ob-
tained by minimizing the distance function p, the distance
from the ideal optimum. The variances and covariance of
the responses are used in determining the weights of a dis-
tance function as (Khuri and Conlon, 1981):

p =0 - ) (varfOl ' - O, (1)

where §(x) is the vector of predicted responses at location x,
var[§(x)] is the variance-covariance matrix for the predicted
responses at this location, and @ is the response targets’ vec-
tor. The approach considers the deviation from the response
targets and accounts for the variances and correlations of
the responses. However, the method is limited because it
requires that all predicted response functions are identical
with respect to the set of input variables and the functional
form of these input variables. Moreover, all responses are
assumed to be of the same importance and no preference
of the Decision-Maker (DM) or economical implications
of the process are considered.

Vining (1998) extended the approach of KC and
Pignatiello (1993) by taking the expected value of the loss
function:

£ = [0 - 07 CHX) — 6)] + trace[ClvarfOBL,  (2)

where C is a positive definite matrix of costs or weights,
and the other terms have the same definitions as Equation
(1). The first term [(§(x) — )T C(§(x) — 8)] represents the
penalty imposed for the deviation of any responses from
target values, and the second term trace[C{var[§(x)]}] rep-
resents the penalty imposed by the quality of the prediction.
The method considers the correlations among the responses
and the process economics. Moreover, it takes into account
the effect of predictive ability on the optimal solutions. The
method also includes, as a special case, the distance mea-
sure of the KC approach by choosing suitable parameters
such as C and @. The difficulty with this method is that the
choice of C may be subjective and the computation of the
variance-covariance matrix is complicated for practitioners
when the responses have different model forms. In addition,
the penalty for deviation of the responses from targets is
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given the same importance as the penalty for poor qual-
ity of the response predictions. Furthermore, similar to the
KC approach, an examination of linear dependence among
responses is necessary. Here, a mitigating measure might
be used by adding a tuning parameter « (0 < @ < 1) in the
formulation:

E = [6() - 6)"CEx) - 6)] + atrace[Cvar§ )], (3)

Thus, the effect of the predictive term on the optimal solu-
tions would be well investigated.

2.2. The desirability function approach

The desirability function approach transforms response i
to a scale-free value between zero and one called the desir-
ability d;. The desirabilities are then combined into a single
objective measure to be maximized, using a geometric mean
function (Harrington, 1965):

D = (did>...d)'" @

Derringer (1994) extended the technique to a general form
using a weighted geometric mean:

D= (d"dy...d=)" Y, ®)

where w; is the relative weights among the n response
(U =1,2,...,n). The relative weights allow the DM’s pref-
erences for the responses to be taken into account. The main
idea of the desirability function approach is to find a sys-
tematic and interpretable way to transform the responses to
a desirability function. Derringer and Suich (1980) (here-
after referred to as DS) choose, for each response, levels
A<B=<Csuchthatif § < 4 or § > C, the response j is
unacceptable and otherwise. The two-sided transformation
desirability d can be defined as:

- .

{(B—A)] ford<p=<B,
d={[G-O)" . ©)

— fOI’BS SC,

{(B~cu Y

0 otherwise,

where u and v are parameters that control the shape of the
desirability function. The final solution x* is the one that
maximizes the geometric mean of the individual response
desirabilities.

To ensure that the desirability function and its derivative
are continuous, Del Castillo et al. (1996) presented a mod-
ified technique in which different priorities are assigned to
the responses so that the importance of different responses
can be considered explicitly.

2.3. The fuzzy approach

Recently, Kim and Lin (2000) (hereafter referred to as KL)
improved the desirability approach by suggesting an alter-
native scheme. They assumed that the degree of satisfac-
tion with respect to the jth response is equal to one when
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the response equals its target value T; and decreases un-
bounded as the response moves away from its target. Once
aresponse is below the lower target T;™" or above the upper
target 7,7%%, the desirability value is zero (meaning the DM
does not accept such a solution). The general desirability
functions they suggested take the form:

exp(?) —exp(tlzl) .
=] epp-1_ T1#0 )
-1z ift =0,

where ¢ is called the exponential constant which is used
to adjust the shape of the desirability function, and z is
a standardized parameter representing the distance of the
estimated response from its target in units of the maximum
allowable deviation. Then an optimization scheme is given
by:

Maximize A,
X

subject to
dz) 2 1. @®)

This formulation aims at maximizing the minimum degree
of satisfaction A with respect to all the responses, which is
equivalent to the following problem:

Maximize(min{d, (z), da(z), . . . d,(2))). )]

The optimization scheme using the “maximin” is robust
to the potential dependencies between responses. It con-
siders multiple conflicting responses as well as the model
predictive ability, which is not given in the conventional
desirability function approach.

The desirability function approach provides a flexible
scheme for the optimization of a MRS. Through the choice
of parameters 4 and v in Equation (6) and ¢ in Equation
(7), the DM can express their preference for the different re-
sponses. However, a “good” desirability function is rather
difficult to define. We have to determine the desirability
function shape, which should represent the tendency of de-
sirability as accurately as possible for a real process. The
characteristic of the process, however, is usually unknown
in advance. Therefore, a reasonable guess is required for the
desirability function and a great deal of caution is needed in
the application of the desirability function method (Box and
Draper, 1987). Comparing KC'’s distance approach with
DS’s desirability function approach, we find that the for-
mer has a more explicit optimal measure (the distance from
response targets), while the latter is more flexible for incor-
porating the DM’s preference (by adjusting the desirability
function shape). In this paper, we propose an approach with
both desirable characteristics.
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3. Goal attainment approach for MRS optimization

3.1. The optimization scheme

With the complex conflicts of interest common in today’s
industry, a well-defined mathematical representation of the
DM’s preferences to achieve the optimum responses si-
multaneously is difficult (if at all possible) to build. On
the contrary, from a DM’s viewpoint, it will be of great
value to make the multiple responses attain designated
targets as closely as possible. This ideal status cannot be
achieved simultaneously in general, because of the conflict-
ing characteristics among responses. Hence, the deviations
of variables from their targets are introduced as the ob-
jective function in the optimization procedure. This leads
to the application of the techniques of goal programming
(Steuer, 1986; Schniederjans, 1995; Taha, 1997) in various
MO problems.

In this paper, we propose a goal attainment scheme
(Gembicki and Haimes, 1975), a variant of goal program-
ming, for MRS in the formulation as:

Minimize 3§,
subject to

pi(x)— TF
y______j() J 58 j=l,2,...n,

wj
gi(X)=0 = 1121 s My,
h;(x)so 1= 1,2’ 9m27
XeX,

(10)

where T* = (T}, T;, ..., T;} are a set of designated tar-
gets, which are associated with a set of response func-
tion objectives ¥(x) = ($1(X), J2(X), ..., Pa(X)}, where x =
[x1, x2, ..., x,]7 is a set of control factors and & (called the
attainment factor) is an unrestricted scalar variable. Nor-
mally, the MRS problems only include bounds of control
factors over X such as: x| < x < x, for a rectangular region
or xxT < r? for a spherical region (where r is the radius of
the zone of interest). The term «;8 introduces an element of
slackness into the problem, which otherwise imposes that
the targets T be rigidly met and it also enables the DM to
express a measure of the relative trade-offs between the ob-
jectives. The relative degree of under- or over-achievement
of the targets is controlled by a vector of weighting coeffi-
cientsw = {wy, wy, ..., @, }(= 0). Note that if some w; = 0,
it means that the maximum limits for the objectives p;(x)
are T7.

In Iaddition, according to the scheme for minimax opti-
mization presented in Brayton et al. (1979), there exists the
following equivalent scheme:

Minimize § such that f,(x) < é§ = mxin mjax{/}(x)}. amn

Xuetal
In the proposed approach, we take:
X)) -T7
fix) = % , J=l...,n (o>0).
J

It should be noted that in Equation (10), a non-smooth
objective constraint:

¥x) - T}
@j

<34

k4

can be simply replaced by the following two equivalent
smooth constraints:

Minimize §
subject to
yix) - T}
wj
_ (ZJ_@-_TJ

j

<3,

12

The mechanism of the goal attainment approach is illus-
trated for a dual response system in Fig. 1. In the objec-
tive function space, the lower bound between A and B de-
scribes the noninferior solutions set. Given vector T* and w,
the direction of the vector T* + 8w can be determined and
Equation (10) can be transformed into (here we assumed
that T* < %):

)f& Jj=1,2,...n

Minimize §
subject to
T +8w-¥Y=0.

Therefore, the problem is equivalent to finding a feasible
point on this vector in objective space which is closest to
the origin. It is obvious that the optimal solution will be
the first point at which T* + 5w intersects the feasible re-
gion in the objective space. Should this point of intersection
exist, it would clearly be a noninferior solution. As it can be
shown, the approach may find noninferior optimal points
that lie upon a nonconvex boundary of attainable sets. It

Vo
A .
T + 0w
Yo
PO O~
1, T &
i

Fig. 1. The mechanism of the goal attainment approach for a dual
response system.
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also should be noted that § > 0,8 = 0 and § < 0 represent
respectively that the goals are unattainable, attainable and
over-attainable which implies an improved solution will be
obtained.

Equation (10) can be posed as a NonLinear Program-
ming (NLP) problem and solved in Sequential Quadratic
Programming (SQP) (see the Appendix), a popular algo-
rithm for NLP. The SQP algorithm is one of feasible direc-
tion methods. Namely, the primal feasibility is maintained
during this optimization (search through feasible region),
hence the method is often referred to as a primal method
(Bazaraa et al., 1993). Moreover, the method can obtain
a quadratic or superlinear convergence behavior for even
nonconvex solutions. Therefore, the SQP method represents
the state-of-the-art in NLP methods. Many different SQP
software programs are available, The routines of SQP for
goal attainment are available in the Matlab™ optimiza-
tion toolbox. Our modifications of the code and related
considerations for the MRS problems will be discussed in
the following section.

3.2, Relationships and comparison
of optimization formulations

There are several approaches in the literature that have
a close relationship with the proposed scheme, The stan-
dardized performance approach by Barton and Tsui (1991)
attempted to maximize the minimum weighted deviation
from tolerance limits. Their formulation is:

M= LSJ)

SP = maximize { minimum [minimum ( (
X y g, /i

Sl

where u; is the expected value of the performance measure,
LS; and US; respectively represent the lower and the upper
tolerance limits, and o; is the standard deviation of the jth
error term. Plante (2001) proposed the following model as
a special case of their process capability approach:

Maximize C
X

subject to

l“'j_LSj>C U‘S}-/"'j>c
9 ~ 7 o 7

C>0, j=1,....m.

It is interesting to note that several approaches (Khuri
and Conlon, 1981; Barton and Tsui, 1991; Kim and Lin,
2000; Plante, 2001) and the proposed goal attainment ap-
proach can all be incorporated into the general frame of
Equation (11) with different f;(x) as shown in Table 1. Also
note that maximum C = minimum (-C).

From Table 1, it is clear that the weights of Barton and
Tsui (1991) and Plante (2001) are the inverse of the stan-
dard deviation for each response. The weights of the KC
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Table 1. Comparison of f;(x) within different approaches

Approach Ji(x)

Khuri and Conlon (1981) o = [(§(x) — )T {var[§(x)}}
x(§(x) — 6)]'/2

Barton and Tsui (1991) Maximum((=-4), (4522))

Kim and Lin (2000) - !(z) (Equation (7))

Special cases of Plante (2001) (-I-‘J;_—“l) and (’—‘L#gi)

Currently proposed approach |2/'(‘x#71|

approach are the inverse of the variance-covariance matri-
ces among responses. For these approaches, the weights are
all fixed in the entire optimization stage. In addition, we
shall show that our approach includes the approach of KL
by choosing suitable targets T} and weights w; in the NTB,
LTB or STB cases.

For a NTB type response with a symmetric desirability
function and ¢ = 0 (Kim and Lin, 2000):

—d(z) =]z -1
(550 = TP 3;(x) = 2T} + T
IP-T} ©  L-T™
TP < T} < §/x) < T,

, (13)
X)) = T 9(x) — 2T} + T
ll;min _ 1}* - . 1"']_ - 1'.';1\“
TP < 5(x) < Tj < T

Therefore, the proposed formulation ¢an repeat the KL
formulation by letting:

T = @1 - TR = ™™, o} = (T; - 7}."““)
= (1™ - 1),
and
T = (217 - 1}@) = T}“i“, w? = (T/™* - T))
= (Tj* - T}gmn)’
respectively. Note that
Pi®) = TP yy(x) = 2T + TP™

- = <Y,
S TR

Six) =

and » will always be positive.
Accordingly, for the STB and LTB type responses:

—~d(z) =|z] - 1
yix) - ;™" .
—_— TN < (X) < TMmax STB type,
J J J
_ |-
TP — 3%)
J J N
J J J
-1 ;
14
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These two cases can be repeated by lettmg T3* = Tin,
w} = (TP — T%) and T¥ = 7% o} = (7pb% — iy,
respectlvely, in the proposed approach When 1 # 0 KL
gave a mechanism to tune the shape of the desirability func-
tion (see Equation (7)) to incorporate the DM’s preference.
In the proposed scheme, the DM’s preference will be real-
ized by the tuning weights.

Similarly, we also can repeat the approaches of Barton
and Tsui (1991) and the special cases of Plante (2001) by
defining o} = 1/0; and

A LAY

In summary, the proposed approach and several other
approaches can all be included in a general optimization
frame. The proposed approach, however, provides more
flexible means to consider different targets and weights ac-
cording to the DM’s preference. Furthermore, it includes
some of the prior formulations as special cases by choosing
suitable targets and weights.

3.3, Consideration of model predictive capability

It should be noted that the KC approach considered the
predictive ability of the estimated response models by incor-
porating the variance of responses while the KL approach
did this by tuning the shape of desirability functions. How-
ever, both the DS and the proposed approaches implicitly
assume that the goodness of fit for all responses is the same.
Consequently, the results can be misleading when some re-
sponses have a substantially better fit than others. In prin-
ciple, an estimated response with a lower predictive ability
(worse model fitting) should have a smaller effect in the op-
timization. If the weight of one response is relatively large,
it should have more effect in the final optimization results.
In order to determine the weight for a given magnitude of
predictive ability, we need to find a relationship between the
weights and a predictive ability index. The model’s predic-
tive ability can be measured by many criteria such as R?,
adjusted R* or Mean-Square-Error (MSE) etc. For sim-
plicity of presentation, we use the well-known R2. Other
criteria can be used in a similar manner. The larger R? is,
the better the predictive capability, and the response is al-
lowed to have a larger impact on the optimal results (closer
to the response targets), thus a smaller weight in the opti-
mization scheme. (Note that in Equation (10), a relatively
smaller weight parameter implies that the final response is
closer to the ideal goal.) A natural assignment is thus:

1
wj’.z (Rz)a), for0 < R? <1,

where, w; is the weight without considering the predictive
capability.
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3.4. The implementation steps and considerations

The following steps and considerations are recommended
to implement the proposed scheme.

Step 1. Develop the experimental design, conduct the ex-
periments and collect the data.

Fit the response surface for multiple responses, usu-
ally a polynomial regression model is used. The
predictive capability of the model is a very im-
portant consideration and should be justified by
meaningful criteria, such as R? or adjusted R*
value.

Determine the targets T/ (ideal responses) and

bounds of targets Tmm and T as well as con-
straints of control factors

Basically, there are two ways to determine the re-
sponse targets: the natural one is from practical in-
dustry requirements and experience; the other one
is by optimizing each individual response (the first
step of the KC approach). The proposed algorithm
guarantees the final optimal solution will lie within
the goal bounds. The constraints on control factors
x indicate the region of interest of a design point.
The common regions are: x; < X < x, for rectangu-
lar region or xx” < r? for a spherical region (where
ris the radius of the zone of interest).

Determine the weight w; for each response.

The weights will determine the relative com-
promise of different responses and hence the
DM’s preference on muitiple objectives. There
are several approaches to choose weights. The
DM can change the weights based on prefer-
ence and requirements for different targets. We
have shown in the above section how to repeat
other formulations by choosing suitable targets and
weights. Two popular weight assignments are given
below:

Step 2.

Step 3.

Step 4.

* Setting the w; = 1, for every response. The pro-
posed scheme will lead to the maximum distance
measure (denoted by DIS), i.e., the deviation
from an individual ideal goal is minimized. This
measure is suitable for cases when all responses
are close in magnitude.

¢ Setting the w; = IT7], that is the weights are
equal to their response targets respectively. It
indicates that the same percentage (denoted by
PERgG) under- or over-attainment of the targets
is achieved. This measure can be used in the cases
when the magnitudes of all responses are very
different.

As mentioned earlier, we can consider the model
predictive capability by further adjusting the
weights, i.e. using o} = (1/R)w;.
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In this paper, we will employ the absolute
distance (DIS), percentage of deviation (PERgG)
and MSE to compare the optimization perfor-
mance of various approaches. The first two mea-
surements allow explicit physical interpretations,
while DIS and MSE are suitable for the cases
where all responses are close in the magnitude.
Specifically, the measurements are defined as
follows:

DIS; = |§; - T},

PERG = ) (9 — T}1/T})/n,
Jj=1
PERGmax = rnax(ljzj - T;|/I?,j= 1,...,n), and

MSE = ) (@ — T})*/n,
J=1

where, §; is the jth predicted response, T} is the
Jjth ideal response point and » is the number of re-
sponses.
Optimization: formulation and computation.
Once the modeling components are determined,
the optimization problem can be formulated, as
proposed. Note that a set of starting points x, are
needed to initiate the procedure. It should also be
noted that a gradient-based optimization method
may fail to reach to the optimal point in the case
of non-differentiable points or may not satisfy the
global optimization conditions. Therefore, it is rec-
ommended that the optimization program be it-
erated using all experimental design points as the
starting points of the optimization. The best solu-
tion is chosen as the result. Although the scheme
may not principally guarantee the global optimum,
it is straightforward and from our experience, it
does provide a global optimal solution in many
cases.
Step 6. Recommend the suggested solutions.

Step 5.

The best response may require that control factors attain
a level with high cost. In many circumstances, the DM may
only need some solutions that satisfy predefined targets with
a suitable cost. Therefore, the recommendation of different
combinations within the bound of targets will be valuable
for manufacturing organizations.

4, Examples and comparisons

In this section, three published examples will be investi-
gated and compared. We shall focus on the optimization as-
pect and compare several approaches against the proposed
approach.
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Table 2. The setting targets and constraints parameters of the tire
tread compound

Target lower Target upper
Responses bound Target (T*) bound
Y1 120 130
2 1000 1300
¥3 400 500 600
ya 60 67.5 75

Bl <3,i=1,23 oj=lorey=T* j=1,234.

4.1, Example 1: Tire treads compound study

Derringer and Suich (1980) used the desirability approach
to optimize the four quality indices of a tire tread associated
with three control factors. The four responses are y;: PICO
abrasion index (LTB type of response); y»: 200% modulus
(LTB type of response); ys: elongation at break (NTB type
of response); and y4: hardness (NTB type of response). The
parameters for the proposed approach are given in Table 2.
Three control factors are x; which is the hydrated silica
level; x, which is the silane coupling agent level; and x3
the sulfur concentration. A three-variable rotatable central
composite design with six center points was employed to
generate the data which was then fitted to the full second-
order model as follows:

y1 = 139.12 + 16.49x; + 17.88x; + 10.91x; — 4.01x7
—3.45x7 — 1.57x3 4 5.13x1%2 + 7.13x1 33 + 7.88 323,

y2 = 1261.11 + 268.15x) + 246.5x; + 139.48x3 — 83.55x?
~124.79x2 4 199.17x2 + 69.38x1 X, + 94.13x1 X3
+104.38x,x3,

y3 = 400.38 — 99.67x; — 31.4x; — 73.9x; + 7.93x?
+17.3x2 +0.43x2 + 8.75x1x; + 6.25x1%3 + 1.25x233,

¥4 = 68.91 — 1.41x; 4 4.32x, + 1.63x3 + 1.56x7 + 0.06x2
—0.32x7 — 1.63x; %3 + 0.13x1x3 — 0.25x23.

The results of the proposed approach are summarized and
compared with the DS approach in Table 3. Note that in the
DS results, y; has been “sacrificed”, thus it has a significant
departure from its ideal goal which led to a large DIS (34.3),
PER Gmax (6.86%) and overall MSE (294.12). It is also clear
in the proposed approach with w; = 1 makes the overall
distance measure deviating from individual response targets
optimal (DIS; = § = 3.497) and the MSEis very low (12.23,
as mentioned before, the index is comparable when all re-
sponses are similar in magnitude), while w; = T* makes
the overall percentage under- or over-attainment of the
ideal goal optimal. Here the attainment factor § = 2.216%
in the optimization scheme, i.e., every predictive response
has a low percentage of PERg (2.216 %), a more balanced
performance compared with the DS approach (for which
PER Gmax = 6.86%).
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Table 3. Comparison of results: DS approach versus the proposed approach

Parameters DS approach Proposed approach (w; = 1) Proposed approach (w; = T*)
Optimal setting

x* (—0.05, 0.145, —0.868) (—0.309, 0.69, —1.06) (—0.268, 0.264, —0.912)
Predicted response .

Y(x*) (129.5, 1300, 465.7, 68) (126.5, 1296.5, 496.5, 70.996) (127.12, 1271.19, 488.92, 68.996)
Attainment factor

) 3.497 2.216%

DIS; 0.5,0,34.3,0.5 (3.497, 3.497, 3.497, 3.497) (2.88, 28.8, 11.08, 1.49)

PERG (PER Gmax) (%) 1.9 96 (6.860) 2. 2097 (5.181) 2.2160 (2.216)

MSE 294.12 12.23 425.87
Degree of desirability (0.189, 1, 0.656, 0.932) (0.13, 0.99, 0.96, 0.534) (0.14, 0.9, 0.89, 0.8)

The values of the degree of desirability are also listed in
Table 3 for comparison. Note that desirability of y; has been
significantly improved. We also observed that when w; = 1,
the degree of desirability of y4 is reduced significantly (from
0.932 t0 0.534) although the value (70.996) still is within the
acceptable scope. This is because that level of desirability
in a triangle desirability function in the DS approach (a
linearly increasing function from 60 to 67.5 and then a lin-
early decreasing function from 67.5 to 75) is very sensitive
to any deviation from the response targets especially when
the range of the acceptable bounds of the response is small
(from 60 to 75). This implies that the desirability function
approach, in some cases, might be too subjective to rep-
resent real cases. Hence, the balanced performance should
be measured by various measures (MSE, DIS, PERg) to
avoid a misleading conclusion. It also should be noted that
the magnitude of all responses should be investigated when
using these measures for a reasonable comparison.

Furthermore, in MRS, there must be some trade-offs
among different responses. In our approach, the trade-off
between responses can be controlled according to the pref-
erence of the DM through weight adjustment. For exam-
ple, Table 4 gives the results based on different preferences
for the responses. The boldface values are the ones close
to the results of the DS approach in Table 2 (129.5, 1300,
465.7, 68). Note that DS only represents one specific set of
preferences, while the proposed approach provide a flexible
framework to assess different cases and hence is a robust
approach.

4.2. Example 2: The foaming properties of whey protein

This example was investigated by Khuri and Conlon (1981)
through a generalized distance approach. It investigated the
effects of heating temperature (x;), PH level (x3), redox po-
tential (x3), sodium oxalate concentration (xs), and sodium
lauryl sulfate concentration (xs) on the foaming properties
of whey protein concentrates. The four response variables
are the maximum overrun (y), the time at first drop (3),
the undenatured protein (y;), and soluble protein (y4) and
all are LTB type of responses. A central composite design
with six center points was employed in the study and a
full second-order regression model for each of the four re-
sponses with their R? values are as follows:
» =1176.98 — 176.08x; — 18.17x; + 57.58x3 + 21.84x,
+19.08xs — 56.97x? — 23.84x2 — 44.84x% — 34.09x?
- 9.22x§ - 25x1 X2 — 48.88)61 X3 — 12.25x1 X4
—36.75x1x5 — 2.88x2x3 + 16.75x3x4 + 11.0x3x5
—4.38x3x4 +2.38x3x5 — 1.0xax5  (R? = 0.94),
y2 =9.44 +1.08x; + 3.69x; + 1.60x3 — 0.21x4 — 1.5x;5
+0.56x7 — 0.13x2 + 0.24x2 4 0.37x2
1.06x2 +2.15x) x5 — 0.46x1 %3 — 2.75x1 X4
—2.13x1x5 + 0.19x2x3 — 0.85x3x4 — 2.35x3x5
—0.96x3x4 — 1.21x3%5 + 0.63x4xs  (R? = 0.84),
71.79 — 10.12X] - 8.68X2 — O.IOX3 — 0.71JC4
+1.37x5 — 4.16x2 — 4.77x2 — 2.36x3 — 0.34x3

~0.33x2 — 6.21x1% +2.77x1 %3 + 1.77x1 %4

Y3

Table 4. Partial results of the responses and control factors considering preference sets

@y 2 w3 wy Ji Y2 Y3 Y4 X1 X2 X3

130 1300 470 67.5 129.1753 1291.753 467.0183 67.928 23 —0.063 32 0.117 604 -0.856 37
130 1300 470 70 130.4006 1304.006  471.4485 69.784 27 -0.158 19 0.477 927 -0.89479
130 1300 470 69 129.9815 1299.815 469.9332 69.009 81 —-0.129 89 0.323 331 —0.87282
129.5 1300 465.7 68 129.4685 1299.684 4655868  68.016 53 —0.050 58 0.146 299 —0.865 97
157.5 1300 450 67.5 145.5645 1318.876  415.8987 72.6152 0.011695 1 —0.42168
157.5 1300 450 71.25 146.0803 1274.73 417.3722 73.897 58 -0.23163 1 —0.12956
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Table 5. The setting targets and constraints parameters of the
foaming properties of WPC

Responses Target lower bound Target(T*) Target upper bound

1 1271.12 1496.77 1722.42
» 24.20 34.97 45.74
¥ 77.21 90.17 103.13
Y4 102.92 123.45 143.98

A nonlinear constraint is needed: Y5, x? < 5asinKC. oy =1.

+0.71x1 x5 — 1.68x2x3 — 0.26x2x4 + 0.48x3 x5
+0.04x3x4 + 1.51x3x5 + 0.03x3x5  (R* = 0.96),

ys = 103.81 — 8.25x; + 7.51x5 4+ 2.38x3 + 1.13x,
+1.66xs — 7.37x} — 4.66x3 — 2.58x2 — 2.01x2
1.07x2 — 0.11x1 3 + 0.47xx3 + 2.09x; X4 + 0.77x1 x5
—0.78x2x3 + 0.29x2x4 — 0.16x2x5 + 1.44x3x4
4.09x3x5 +0.29x4x5 (R?* = 0.91).

Itis straightforward to obtain the individual optimum re-
sponse using a common single objective optimization pro-
cedure, for example, ridge analysis for second-order poly-
nomial models (Draper, 1963). According to the first step
of KC, the individual maxima and their 95% confidence in-
tervals for the example are regarded as the response targets
and bounds as shown in Table 5.

Table 6 displays the results of the proposed approach
and the KC approach. The results indicate (w; = 1), that
although the y,, y3 and y4 responses of the proposed ap-
proach deteriorate slightly compared to the KC approach,
the y; response was significantly improved (from 1434 to
1478.43) and led to a lower overall MSE (from 1155.3 to
287.81). Therefore, a better balance among targets is at-
tained on the MSE and DIS measure. However, the KC
approach is slightly better on the measure of average per-
centage of deviation (PERg = 19.7%). Hence, the prefer-
ence of the DM will be an important consideration in the
choice of optimal solutions. The optimization results of ex-
ample 2 taking into account model predictive ability were
shown in the last column of Table 6. The y, response has
the lowest R? (=0.84, as compared with other R? = 0.94,
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0.96, 0.91) and thus has decreased from 16.63 to 16.36. The
responses ¥, y3, and y4 are all improved (from 1478.43 to
1480.14; from 78.23 to 78.40; from 105.11 to 106.27) and
lead to lower MSE (from 287.81 to 264.07) and PER g (from
20.44 10 20.32%).

4.3. Example 3: Mechanical properties of JS-SS400 steel

This real example taken from Kim and Lin (2000) investi-
gated the effects of steel composition as well as rolling and
cooling conditions with six input variables: (i) the percent-
age of carbon x;; (ii) the percentage of manganese x»; (iii)
the percentage of silicon x3; (iv) the thickness of the strips
or plates x4; (v) the milling temperature xs; and (vi) the
coiling temperature xs on the mechanical properties of JS-
SS400-type steel. The mechanical properties were measured
by three responses: (i) the tensile strength y; (NTB type);
(ii) the yield strength y, (LTB type); and (iii) the elongation
»3 (LTB type). A second-order polynomial model based on
a coded data set with their R? value proposed by Kim and
Lin (2000) is:

y1 = —101.0145 4 1.8625x; 4 2.4005xs — 0.0101x2
~0.2030x7 — 0.0088x% + 0.2127xx4 + 0.0777x; x5
—0.1393x1xs (R? = 0.98),
y2 = 22.5934 4 2.5767x3 + 0.4271 x5 — 0.004x2
—0.0159x2 ~ 0.0326x23 + 0.0219x;x6
—0.0198xs5xs (R? = 0.94),
y3 = —1160.1051 + 18.7135x; + 10.8304x; + 13.5285x;5
—0.5210x7 4 0.0209x3 — 0.0322x2 + 0.0054x?
- +0.0483x2x3 — 0.0251 x3x5 ~ 0.1741xx5
(R? = 0.80).
The response models have different sets of input variables.
This is not allowed in the KC approach. The ideal targets
and bounds (Kim and Lin, 2000) are listed in Table 7.

The allowable ranges of x; to xg (x[™*, x™*) are as fol-
lows: x; = (16, 20) and x; = (70, 90) if 7.00 < x4 < 10.00;
x; =(18,22) and x; = (18,22) if 10.00 < x4 < 12.7; x3 =
0, 30); x4 =(7.00,12.70); x5 =(85,89); xs=(60,64).

Table 6. Comparison of results: KC approach versus the approach proposed

Proposed approach (w; = 1)

Proposed approach (w; = 1)

Parameters KC approach (without R? consideration) (with R consideration)
Optimal setting

x* (—1.31, —-0.16, 0.30, 0.46, 1.72) (—1.503, 0.019, 0.764, 0.638, 1.324) (—1.457,0.037, 0.768, 0.624, 1.377)
Predicted response

v(x*) (1434.0, 16.98, 81.61,106.59) - (1478.43, 16.63, 78.23, 105.11) (1480.141, 16.36, 78.4, 106.27)
Attainment factor

3 18.34 15.63

DIs; (62.77, 17.99, 8.56, 16.86) (18.34, 18.34, 11.93, 18.34) (16.63, 18.61, 11.76, 17.18)

20. 44 (52.44) 20.32(53.21)

PERG (PERGmax) (%) 19.7 (51.44)
MSE 1155.3 287.81

264.07
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Table 7. Ideal targets and bounds of mechanical properties of
JS-SS400 steel '

Responses Target lower bound Target (T*) Target upper bound

» 43.10 47.55 52.00
y2 26.30 48.08 48.08
3 20.00 43.67 43.67

Table 8 shows the current operating conditions and
optimization results by the proposed approach. It is clear
that the PER index (from 25.82 t022.21% and 22.67%) and
PER Gmax (from 44,95 to 31.30% and 35.4%) are improved
by the proposed approach. The DIS of y; and y; are im-
proved (from 1.99 and 14.98 to 1.18 and 14.49) while the
DIS of y3 is worse (from 13.67 to 15.46) after considering
the predictive ability by R2.

Table 9 shows a comparison of results obtained using the
KL approach versus the proposed approach. The proposed
approach produced a competitive result. We improved the
PER index (from 8.73 and 8.65% to 5 and 5.15%) and
PERGmax (from 21.18 and 22.01%to 7.255 and 8.08%). The
DIS of y; and y, are improved (from 0.2364 and 3.4883 to
0.2363 and 3.3042) while the DIS of y; is lower (from 3.1683
to 3.5263) after considering the predictive ability by R2.

5. Discussions and conclusions

A goal attainment modeling approach for the optimization
of muitiple response surfaces is proposed in this paper. The
proposed approach has several methodological advantages
over existing approaches.

First, the approach combines the advantages of the KC,
DS and KL approaches. The optimization measure is the
weighted distance departure from response targets that has
a direct physical interpretation. It is similar to the KC ap-
proach to some extent because the latter is equivalent to
employing variances and covariances of responses to de-
termine the weights. The main difference, however, is that
the proposed approach allows for more flexibility in choos-
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ing weights and can incorporate the DM’s preference into
the distance measure with weights, making the approach
more robust. It also employs the basic idea of the desir-
ability function approach in this respect and can achieve a
better balance among all the responses depending on the
magnitude of responses. Moreover, it has been shown that
the proposed optimization formulation may fully or partly
include some prior work such as the KL approach as special
cases by assigning proper response targets and weights.

Second, similar to the KL approach, the proposed ap-
proach allows for a more flexible form of the fitted response
functions, i.e., different functional forms and different sets
of input variables. This is not the case in the KC approach.
Furthermore, the proposed approach does not require the
assumption of a transformation scheme of the objective
functions, which, however, is the basic requirement in the
DS and KL approaches.

Third, the new approach is robust to dependencies among
responses. Moreover, the predictive ability of the fitted
model can be taken into account in the weights adjustment
using R?. In this aspect, the KL approach incorporated
models’ predictive ability through the adjustment of de-
sirability function shape using R? or adjusted R%. On the
contrary, the KC approach must remove the dependence
between responses in advance and the predictive ability of
the models has not been discussed in the DS approach.
Table 10 organizes the KC, DS and KL approaches with
the proposed scheme in terms of the optimization measure,
model assumption and characteristics etc.

It should also be noted that minimax (or maximin) to op-
timization has some drawbacks as well. In particular, the
proposed approach only considers the response with maxi-
mum weighted distance or percentage of deviation from the
target, and thus useful information associated with other
responses could be missed, which may lead to an unreason-
able decision in some cases. For example, if we have two can-
didate solutions, which are the same in one objective func-
tion value, but different in the other, they may still have the
same goal-attainment value for their two objectives, a mis-
leading solution thus may be generated. As another extreme
case, the approach may prefer an operating set-up with

Table 8. Comparison of results: current operation condition versus the proposed approach

Proposed approach (w; = T) Proposed approach (w; =T)

Parameters Current operation condition (without R? consideration) (with R? consideration)
Optimal settings
(17.74, 78.08, 15.42, (17.96, 70.00, 20.76, (17.93, 71.43, 18.89,
9.55, 6.75, 63.24) 7.00, 89, 60.0) 7, 87.89, 60)

Predicted response

Y(x*) (48.88, 33.79, 24.04) (45.56, 33.10, 30) (46.37, 33.59, 28.21)
Attainment factor

8 0. 3116 0.2832

DIS; (1.33,14.29, 19.63 ) (1.99, 14.98, 13.67 ) (1.18, 14.49, 15.46)

PERG (PERGmax) (%0)  25.82 (44.95) 22.21 (31.30) 22.67(35.4)

MSE 197.10 138.41 150.12
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Table 9. Comparison of results: KL approach versus the proposed approach
KL (Without R? KL (Without R? Proposed approach Proposed approach
consideration (11, 12, 13) consideration: (1,1}, 1;) (w; = T) (without R? (o =T) (with R?
Parameters =(-3.0,0030)) =(-27,06,44)) consideration) consideration)
Optimal settings (18.02, 109.67, 9.57, (18.00, 110.00, 9.23, (17.96, 110.00, 12.398,  (17.9603, 110.00, 12.215,
12.01, 85.00, 64.00) 11.97, 85.00, 64.00) 7.00, 85.00, 64.00) 7.00, 85.00, 64.00)
Predicted response
V(x*) (47.72, 45.85, 34.42) (47.65, 46.28, 34.06) (47.7864, 44.5917,

40.5017) (47.7863, 44.7758, 40.1437)
Attainment factor
8 0.07255 0.0646
DI, (0.17, 2.23,9.52) (0.1, 1.8, 9.61) (0.2364, 3.4883, 3.1683) (0.2363, 3.3042, 3.5263)
PERG (PERGmax) (%) 8.73 (21.18) 8.65(22.01) 5(7.255) 5.15 (8.08)
MSE 31.88 31.87 7.42 7.80

(PERG1, PERG, PER 3, PERGs) = (0.49, 0.49, 0.49, 0.49)
to that with (PERG;, PERG;, PERG3, PERG4)= (0.1, 0.1,
0.1, 0.5). It is thus recommended that several approaches
be adopted to validate the final solution when necessary.
The requirement of the approach is that the response
functions are a continuously twice differentiable function.
This is a common condition for the gradient-based op-
timization methods. Another requirement is that the re-
sponse targets are available in advance, This can be eas-

ily obtained through practical experience or single objec-
tive optimization method. This is because the experiments
are normally conducted in some operating window, i.e., the
control factor vector x subject to some bound. In this case,
the proposed approach could still be useful through a rea-
sonable choice of the response targets within the region
of interest even if the responses themselves are unbounded
(LTB, STB types). In addition, considering all experimental
points as the starting points in the optimization procedure

Table 10. A comparison of the three existing approaches and the proposed approach

DS approach KC approach KL approach Proposed approach

Optimization measure Maximize the overall Minimize the distance Maximize the minimal  Minimize the maximal
degree of satisfaction from response targets desirability of all weighted distance
of all responses (variances and responses from response targets

covariances of '
responses are
incorporated into a
distance function)

Modeling assumption Assumption of a Each response function  No assumptions on the = No assumptions on the
transformation should be of the response function response function
scheme for the same functional form form; assumption of form (the response
desirability function and use the same a transformation targets should be

design variables scheme for the available in advance)
desirability function

Dependence between No effect on the Dependence must be No effect on the No effect on the

responses solution procedure removed in advance solution procedure, solution procedure,
and affects the final and method is robust and method is robust
results to dependencies to dependencies.

Fitted surface model Assumes same Takes into account Takes into account Different predictive

predictive ability predictive ability for predictive ability predictive ability abilities can be
all individual through the through the incorporated into the
responses prediction variances adjustment of the weights adjustment
of responses desirability function
shape

DM'’s preference The preference can be Doesn’t take into The preference can be The preference can be
incorporated into the account. incorporated into the incorporated into the
shape adjustment of shape adjustment of weights adjustment
the desirability the desirability
function function
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within the region of interest can significantly reduce the
potential problems with local optimum.
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Appendix

The SQP algorithm

Based on the work of Han (1967), Biggs (1975) and
Powell (1978), the SQP algorithm closely mimics Newton’s
method for constrained optimization just as is done for
unconstrained optimization, given the general optimization
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problem stated below:
Minimize f(x),
subject to
g(x)=0 i=1,...,m,
hx)<0 i=1,...,m.

Here x € X and all functions are assumed to be contin-
uously twice differentiable. The basic idea of SQP is the
formulation of a QP subproblem based on a quadratic ap-
proximation of the Lagrangian function L(x,) subject to
constraints linearized about the current iterate (xx, Ak, Wz):

. 1
Minimize f(xc)+ Vf ()" 4+ 54" V’L(x) 4,
subject to

Ve (x) g+ gixe) =0, i=1,...,m,
Vhi ()T q4+ ki) <0, i=1,...,my,
Here

mi

me
VL) = VY (X0 + D M V28 e + ) e V2hi (Xi),

i=1 i=1

is the Hessian of the Lagrangian at x, with the Lagrange
multiplier vectors Ax and w, and q = x — x; is the di-
rection of the search. In addition to primal feasibility, the
Karush-Kuhn-Tucker (KKT) condition requires that the
optimization problem needs to find Lagrange multipliers A
and v such that:

VIO + VLG + 3O AVE00) + 31T = 0,
i=1 i=1

wilhi(xi) + Vhixe)Tql =0 i=1,..
u>0, Aunrestricted.

'1m2’

Hence, if qx solves QP (xx, Ax, ue) with Lagrange multi-
pliers Ax41 and wgy1, and if g = 0, then x; along with
(Ar+1, Uky) yields a KKT solution for the original prob-
lem. Otherwise, we set Xg+1 = Xi + ks as before and form
a new iteration. The step length parameter oy is determined
by an appropriate line search procedure so that a sufficient
decrease in a merit function ¥(x) is obtained. Here the merit
function is defined for guiding and measuring the process
of the algorithm. Under appropriate circumstances, it will
serve as a descent function for an algorithm, decreasing in
value at each step so that it is minimized at a solution to
the original problem. In the goal attainment approach, the
merit function is defined as (Brayton et al., 1979):

n, [ ymax{0,y®) - T} — w8} ifw;=0,

W(x)zjz m]axj}(x) j=1...,n

otherwise,
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where t; is the penalty parameter.

Corresponding to the varied point, a computation is car-
ried out to set up the model of the QP subproblem to be
solved at the next iteration until the optimality conditions
are satisfied within a given tolerance.
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